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Introduction

Model of a viscous incompressible fluid is one of the most frequently used in fluid mechanics.
For this case the density and all other physical characteristics of the fluid are constant, and the
major unknowns are the components of the velocity vector u, v, w and pressure p. Generally
accepted equations to describe motion of such a media are the Navier– Stokes equations [1–4].
They can be represented in dimensionless form as
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Here ∆ is a three-dimensional Laplace operator: ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, Φ is the potential of

external forces, Re is the Reynolds number.
The vanishing of the kinematic viscosity corresponds to Re=+∞. For this case the right-

hand sides of (1–3) are significantly simplified. Terms proportional to
1

Re
are neglected, and

the Navier–Stokes equations turn into Euler equations. The term "ideal" or "perfect" fluid are
usually used for such a medium.
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The Navier – Stokes and Euler equations have numerous applications to practical problems.
Their complex study is one of the areas of modern mathematical physics [5–6]. Today, however,
many issues are not fully clarified and they require further study. One of the main problems is the
lack of a constructive method of solving these equations. An important step in this direction is
the construction of integrals of motion. The provisions of classical fluid mechanics in this regard
are as follows. There are three integrals that are convenient for practical application [1–4].

The Lagrange – Cauchy integral is for potential non-stationary fluid flow. For an incompress-
ible medium it can be represented in dimensionless variables as

p+Φ+
U2

2
+

∂φ

∂t
= f(t), (5)

where U =
√
u2 + v2 + w2, φ is the velocity potential, f(t) is an arbitrary function of time.

The Lagrange –Cauchy integral is just for the potential motion of both ideal and viscous
media.

The Bernoulli integral is for the steady-state motion along the stream line of an ideal medum.
In the case of an incompressible medium it can be written in dimensionless variables as

p+Φ+
U2

2
= Csl, (6)

where Csl denotes a constant that depends on the choice of a stream line. The subscript "sl"
from English "stream line" is underlines this pattern.

The constant Csl on the right-hand side (6) does not depend on the choice of a stream line
if the additional condition −→

U ×
−→
Ω = 0, (7)

is hold, where
−→
U is the velocity vector,

−→
Ω is the swirl vector, ”×” means the vector product.

In this case the integral is often called the Euler – Bernoulli integral. It can be written as

p+Φ+
U2

2
= C, (8)

where C denotes an absolute constant that does not depend on the choice of a stream line.
These integrals are the basic relations of classical fluid mechanics. A wide variety of problems

were solved on the basis of these integrals. But even for these well known relations not all
questions are clarified adequately. For example, it is not clear how the Bernoulli integral (6) is
transformed if the characteristic point is not taken along a stream line. Then relation (6) fails.
It is also not clear what we will have instead of (5) if we abandon the condition of potentiality
of motion.

Assumptions and range of applicability for integrals (5), (6), (8) are different. But each of

them contains the same combination p+Φ+
U2

2
which is usually called the Bernoulli trinomial.

We face the question on the existence of a general root integral which also would contain the
Bernoulli trinomial and include relations (5), (6), (8) as special cases.

1. Root integral

The procedure to construct general root integral was proposed [7–9]. This procedure is based
on the representation of equations (1–4) in free divergence form

∂Pi

∂x
+
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= 0, (9)
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where Pi, Qi, Ri, Si are some combinations of unknowns and their first derivatives with respect
to spatial coordinates.

Each equation of the form (9) admits integration. The resulting relation can be combined and
simplified by full or partial exclusion of the non-divergent terms. Some of the resulting relations
can be brought to the form (9) and then integrated again. Transformations result in nine basic
relations. Using the simplest notation, they can be represented as
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Let us note that new values Ψi appear in relations (10–18). Functions Ψi are associated
unknowns. They arise as a result of integration of original equations (1–4), and supplement the
system unknowns. They are called "stream pseudo-functions" [9–11].

Functions αk, βk, γk, δk are arbitrary functions of three variables, and they occur during the
process of integration. These functions and their first derivatives are additives in the right-hand
side of equations (10–18). Each of functions αk, βk, γk, δk does not depend on one of variables
x, y, z and t, respectively. Then the following equalities must hold

∂αk

∂x
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= 0. (19)

Variables d and dt are additives in relation (10). They represent the dissipative terms,
and correspond to the reduced stationary and non-stationary dissipation, respectively. These
variables are defined as follows
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dt = −1

3

∂

∂t

(
∂(Ψ2 −Ψ1)

∂x
+

∂(Ψ4 −Ψ3)

∂y
+

∂(Ψ6 −Ψ5)

∂z

)
. (21)

Characters ∆yz, ∆xz, ∆xy denote the partial Laplace operators with espect to spatial coor-
dinates

∆yz =
∂2

∂y2
+

∂2

∂z2
, ∆xz =
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∂x2
+
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∂z2
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+

∂2

∂y2
.

Relations (10–18) connect the major unknowns u, v, w, p, associated unknowns Ψi, and an
arbitrary functions αk, βk, γk, δk. The order of derivatives of major unknowns is one that is less
than their order in the original equations (1–4).

Relations (10–18) considered together represent the root integral of Navier – Stokes equa-
tions (1–4). The proof of this statement can be found in [9–10].

It is not surprising thing that the integral is represented by nine interdependent relations
rather than one relation. If we do not introduce restrictions, such as potentiality of motion,
ideality of medium, motion along a stream line then the number of relations are increased and
their structure becomes more complex.

The presence of new associated unknown Ψi in relations (10–18) is not surprising. Analogues
of associated unknown are also present in integrals (5) and (6). The role of an associate unknown
in integral (5) plays the velocity potential φ. The associated unknown in integral (6) is the value
of the right-hand side Csl since this value depends on the stream line and therefore it is a function.
An arbitrary additive function is also in integral (5). This is a function of time f(t).

Let us note that the analysis of equations of motion of an incompressible fluid is essentially
similar to that used earlier [7]. However, the consideration was limited to the case of 2D equations
and the final relation for integral has not been presented. Similar approach was used in [8]. In that
paper the equation containing an associated unknown called ”parametrically defined” differential
equation.

The root integral of 3D Navier – Stokes equations (1–4) is represented by nine interconnected
relations (10–18). Comparison of these relations with known Lagrange – Cauchy (5), Bernoulli
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(6) and Euler – Bernoulli (8) integrals leads to the following statements. Each of integrals (5),
(6), (8) is a special case of (10–18).

2. Integral of Lagrange – Cauchy as a special case of the root
integral

Let us consider the Lagrange – Cauchy integral. The following theorem is valid.

Theorem 2.1 The Lagrange –Cauchy (5) integral is a special case of the root integral (10–18).

Proof. Consider relations (10-18) and suppose that fluid flow is potential. Then the potential
of velocity φ exists and it satisfies the Laplace equation ∆φ = 0. The following equality holds
[1–4]
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∂z
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Each of velocity components also satisfies the Laplace equation

∆u = 0, ∆v = 0, ∆w = 0. (23)

In this case the motion is irrotational so
−→
Ω = 0. The latter is equivalent to three scalar
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Using conditions (22–24), we have to prove that from (10–18) follows (5).
Relation (10) contains the largest number of unknowns and pressure p appears only in this

relation. The left-hand side of (10) differs by d + dt from Bernoulli trinomial. We take first
derivatives of d+ dt with respect to spatial coordinates and obtain three groups of equations.

2.1.1. Taking into account (20), (21), we obtain derivative with respect to ∂x
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The second term of right-hand side contains third derivatives with respect to spatial coordi-

nates. Let us transform this term with the use of relations (11-18). We find
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Taking into account (26), we trasform (25) as
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Relation (27) can be significantly simplified. It follows from (23) that ∆u = 0. Taking into

account continuity equation (4) we obtain that group of terms proportional to
1

Re
vanishes.

The second group on right-hand side of (27) also vanishes due to (4) and (24). Let us use

equation (16) and relation
∂δk
∂t

= 0 from (19). Then we obtain that all the remaining terms on

the right-hand side of (27) are reduced to
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Then relation (27) takes the form
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2.1.2. Let us take the first derivative of d + dt with respect to y. According to (20), (21),
we obtain the original equation in the form
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Let us simplify the term with third derivatives on the right-hand side. Using (11–18), we find
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+
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)
+

1

2

∂2β2

∂x∂t
+

1

2

∂2β3

∂z∂t
+

∂β4

∂y
+

∂γ4
∂y

. (30)

Taking into account (30), we transform (29) as

∂(d+ dt)

∂y
=

1

Re

(
−∆v − 1

3

∂

∂y

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

))
+ v

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z
) + u(

∂v

∂x
− ∂u

∂y

)
+

+ w

(
∂v

∂z
− ∂w

∂y

)
+

1

2

∂

∂t

(
− ∂2Ψ1

∂x∂y
+

∂2Ψ3

∂x2
− ∂2Ψ4

∂z2
+

∂2Ψ6

∂y∂z
− ∂2Ψ7

∂x∂z
+

∂2Ψ9

∂x∂z

)
+

+
1

2

∂2β2

∂x∂t
+

1

2

∂2β3

∂z∂t
+

∂α4

∂y
+

∂γ4
∂y

. (31)

Using (23) together with continuity equation (4), we find that first group of terms on the
right-hand side of (31) vanishes. Let us note that the second group of terms is also vanishes as
a consequence of equation (4) and conditions (24). If we use (17) and (19) then all the remaining

terms on the right-hand side are reduced to
∂v

∂t
+

∂α4

∂y
+

∂γ4
∂y

.

As a result relation (31) takes the form

∂(d+ dt)

∂y
=

∂v

∂t
+

∂α4

∂y
+

∂γ4
∂y

. (32)

2.1.3. Let us take the first derivative of d+ dt with respect to z. Using (20), (21), we obtain

∂(d+ dt)

∂z
= −1

3

(
u
∂u

∂z
+ v

∂v

∂z
+ w

∂w

∂z

)
+

1

3

(
− ∂3Ψ10

∂x2∂z
− ∂3Ψ10

∂y2∂z
+

∂3Ψ11

∂x2∂z
+

∂3Ψ11

∂z3
−

− ∂3Ψ12

∂y2∂z
− ∂3Ψ12

∂z3
− ∂3Ψ13

∂x∂y∂z
+

∂3Ψ14

∂x∂z2
− ∂3Ψ15

∂y∂z2

)
+

1

3

∂

∂t

(
∂2Ψ2

∂x∂z
− ∂2Ψ1

∂x∂z
+

∂2Ψ4

∂y∂z
−

− ∂2Ψ3

∂y∂z
+

∂2Ψ6

∂z2
− ∂2Ψ5

∂z2

)
. (33)

Using (11–15), a group of terms with third derivatives on the right-hand side of (33) can be

converted. Let us find −1

3

∂

∂z
of (11), −2

3

∂

∂z
of (12),

∂

∂x
of (14),

∂

∂y
of (15). Then we obtain

an expression for the needed term with third derivatives in the form

1

3

(
− ∂3Ψ10

∂x2∂z
− ∂3Ψ10

∂y2∂z
+

∂3Ψ11

∂x2∂z
+

∂3Ψ11

∂z3
− ∂3Ψ12

∂z3
− ∂3Ψ12

∂y∂z2
− ∂3Ψ13

∂x∂y∂z
+

∂3Ψ14

∂x∂z2
− ∂3Ψ15

∂y∂z2

)
=

= −2

3
u
∂u

∂z
− 2

3
v
∂v

∂z
+

4

3
w
∂w

∂z
+w

∂u

∂x
+u

∂w

∂x
+w

∂v

∂y
+ v

∂w

∂y
+

1

Re

(
− 1

3

∂2v

∂y∂z
− 1

3

∂2u

∂x∂z
− 4

3

∂2w

∂z2
−

− ∂2w

∂x2
− ∂2w

∂y2

)
+

∂

∂t

(
1

3

∂2Ψ1

∂x∂z
+

1

6

∂2Ψ2

∂x∂z
+

1

3

∂2Ψ3

∂y∂z
+

1

6

∂2Ψ4

∂y∂z
+

1

3

∂2Ψ5

∂z2
+

1

2

∂2Ψ5

∂x2
− 1

3

∂2Ψ6

∂z2
−

− 1

2

∂2Ψ6

∂y2
− 1

2

∂2Ψ8

∂x∂y
− 1

2

∂2Ψ9

∂x∂y

)
+

1

2

∂2γ2
∂y∂t

+
1

2

∂2γ3
∂x∂t

+
∂α4

∂z
+

∂β4

∂z
. (34)

Using (34), we transform (33) and obtain
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∂(d+ dt)

∂z
=

1

Re

(
−∆w− 1

3

∂

∂z

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

))
+w

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ u

(
∂w

∂x
− ∂u

∂z

)
+

+ v

(
∂w

∂y
− ∂v

∂z

)
+

1

2

∂

∂t

(
∂2Ψ2

∂x∂z
+

∂2Ψ4

∂y∂z
+

∂2Ψ5

∂x2
− ∂2Ψ6

∂y2
− ∂2Ψ8

∂x∂y
− ∂2Ψ9

∂x∂y

)
+

+
1

2

∂2γ2
∂y∂t

+
1

2

∂2γ3
∂x∂t

+
∂α4

∂z
+

∂β4

∂z
. (35)

We use continuity equation (4) together with (23) and find that the terms proportional to
1

Re
vanishes. The second group of terms is also vanishes due to equation (4) and conditions (24).

Using equations (18) and (19), we obtain that remaining terms on the right-hand side of (35)

are reduced to
∂w

∂t
+

∂α4

∂z
+

∂β4

∂z
.

Finally, relation (35) takes the form

∂(d+ dt)

∂z
=

∂w

∂t
+

∂α4

∂z
+

∂β4

∂z
. (36)

2.1.4. The first derivatives of d + dt with respect to x, y, z are defined by (28), (32), (36).

These relations can be written in a more convenient form if we add in the right-hand sides
∂α4

∂x
,

∂β4

∂y
,
∂γ4
∂z

, respectively. Each of these quantities is equal to zero under condition of (19), so

relations (28), (32), (36) are valid. Using (22) and changing the order of differentiation with
respect to time and coordinates in the second mixed derivatives, we find that relations (28),
(32), (36) take the form

∂(d+ dt)

∂x
=

∂

∂x

(
∂φ

∂t
+ α4 + β4 + γ4

)
,

∂(d+ dt)

∂y
=

∂

∂y

(
∂φ

∂t
+ α4 + β4 + γ4

)
, (37)

∂(d+ dt)

∂z
=

∂

∂z

(
∂φ

∂t
+ α4 + β4 + γ4

)
.

Quantities (d + dt) and
(∂φ
∂t

+ α4 + β4 + γ4

)
have the same derivatives with respect to

coordinates. Hence, they may differ only by an additive arbitrary function of time −f(t). Then
we have

d+ dt =
∂φ

∂t
+ α4 + β4 + γ4 − f(t). (38)

Substituting (38) into (10), we obtain relation that is equivalent to (5)

p+Φ+
U2

2
+

∂φ

∂t
− f(t) = 0.

Thus, the Lagrange – Cauchy integral (5) is a special case of root integral (10–18).
The proof of Theorem 2.1 is complete. �

3. Integral of Bernoulli and Euler – Bernoulli as special cases
of the root integral

The following theorems are valid.
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Theorem 3.1 The Bernoulli integral (6) is a special case of the root integral (10–18).

Proof. The derivation of the Bernoulli integral is based on three assumptions [1–4]. We
assume that medium is ideal, motion is steady-state, and characteristic point is selected along a
stream line. We prove that under these assumptions the Bernoulli integral (6) is a consequence
of (10–18).

According to first two assumptions, we have
∂

∂t
= 0 and

1

Re
= 0. The latter implies that

dt = 0 and relation (10) takes the form

p+Φ+
U2

2
+ d = α4 + β4 + γ4. (39)

The left-hand side of this equation differs from the Bernoulli trinomial by the value d. Let
us find the derivatives of d with respect to spatial coordinates. To do this one can use relations
(27), (31), (35). Note that these relations are simplified under given assumptions and take the
form

∂d

∂x
= u

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ v

(
∂u

∂y
− ∂v

∂x

)
+ w

(
∂u

∂z
− ∂w

∂x

)
+

∂β4

∂x
+

∂γ4
∂x

,

∂d

∂y
= v

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ u

(
∂v

∂x
− ∂u

∂y

)
+ w

(
∂v

∂z
− ∂w

∂y

)
+

∂α4

∂y
+

∂γ4
∂y

, (40)

∂d

∂z
= w

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ u

(
∂w

∂x
− ∂u

∂z

)
+ v

(
∂w

∂y
− ∂v

∂z

)
+

∂α4

∂z
+

∂β4

∂z
.

First term on the right-hand side vanishes due to continuity equation (4). To do further
simplifications the following steps are performed. As it was done in Section 2.1.4, we add in

right-hand side (40) the terms
∂α4

∂x
,
∂β4

∂y
,
∂γ4
∂z

, respectively. Each of these quantities is equal to

zero so relation (40) stays valid. We left non-linear terms on the right-hand sides, and rearrange
all other terms to the left-hand sides. Then (40) takes the form

∂(d− α4 − β4 − γ4)

∂x
= v

(
∂u

∂y
− ∂v

∂x

)
+ w

(
∂u

∂z
− ∂w

∂x

)
,

∂(d− α4 − β4 − γ4)

∂y
= u

(
∂v

∂x
− ∂u

∂y

)
+ w

(
∂v

∂z
− ∂w

∂y

)
, (41)

∂(d− α4 − β4 − γ4)

∂z
= u

(
∂w

∂x
− ∂u

∂z

)
+ v

(
∂w

∂y
− ∂v

∂z

)
.

The right-hand side has obvious symmetry. Let us multiply the first relation (41) by u, the
second by v, the third by w and add up the resulting relations. We obtain that all terms of the
right-hand sides cancel each other and the resulting relation takes the form

u
∂(d− α4 − β4 − γ4)

∂x
+ v

∂(d− α4 − β4 − γ4)

∂y
+ w

∂(d− α4 − β4 − γ4)

∂z
= 0. (42)

Relation (42) can be written in vector form as
−→
U ·

−→
▽(d− α4 − β4 − γ4) = 0. (43)

The latter implies that the value of (d−α4 − β4 − γ4) does not change on direction given by
the velocity vector

−→
U (u, v, w). It means that it does not change along a stream line. So, along

the stream line the following equality hold
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(d− α4 − β4 − γ4) = −Csl, (44)

where Csl is a constant value corresponded to the selected stream line.
The value d determined by (44) is d = α4+β4+γ4−Csl. Substituting this in (39), we obtain

the following relation along a stream line

p+Φ+
U2

2
− Csl = 0. (45)

This is equivalent to the Bernoulli integral (6). Thus, the Bernoulli integral (6) is a special
case of the root integral (10–18).

Proof of Theorem 3.1 is complete. �

Theorem 3.2 The Euler –Bernoulli integral (8) is a special case of the root integral (10–18).

Proof. The derivation of the Euler – Bernoulli integral is base on three assumptions [1]. We
assume that medium is ideal, motion is steady-state and condition (7) is satisfied. We show that
under these assumptions (8) follows from (10–18).

Assumptions of ideality of a medium and the steady-state nature of motion coincides with
the assumptions of Section 3.1. It means that we can use some relations of the previous section,
in particular, relations (39) and (41). However, subject to (7) each of the right-hand sides of
(41) vanishes. Thus, in our case we have

∂(d− α4 − β4 − γ4)

∂x
=

∂(d− α4 − β4 − γ4)

∂y
=

∂(d− α4 − β4 − γ4)

∂z
= 0. (46)

This implies that the value of (d− α4 − β4 − γ4) is independent of spatial coordinates and it
is equal to constant:

(d− α4 − β4 − γ4) = −C. (47)

Substituting (47) into (39) we obtain

p+Φ+
U2

2
− C = 0. (48)

The latter is equivalent to (8). Thus, the Euler – Bernoulli integral is a special case of integral
(10–18).

Proof of Theorem 3.2 is complete. �

4. Systematization of integrals of motion for an
incompressible fluid flow

Thus, integrals (5), (6), (8) are special cases of the general integral represented by nine
relations (10–18). We say that (10–18) is integral "A". The significance of this integral is that
it can be the basis for other new integrals. Let us point out few of these cases.

First we consider the integral for motion of an ideal incompressible fluid. We call it the

integral " I ". It is derived from "A" with the use of condition
1

Re
= 0. In this case changes

occur only in five relations (11–15). The resulting integral " I " presented by nine ratios as well
as the general integral "A".

For the steady-state motion of incompressible viscous fluid occurs integral which we call the

integral " S ". It is derived from " A" with the use of condition
∂

∂t
= 0. In this case three
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relations (16–18) are replaced with continuity equation (4). For this case integral is presented
by six relationships [9]. Let us note that number of associated unknowns Ψi is reduced to six.

Another possible integral in this family corresponds to the case of steady state-motion of an
ideal incompressible fluid. We call it the " IS " integral. There are two different ways to derive

this integral. First one is to use the " S " integral with condition
1

Re
= 0. The second one is

to use the " I " integral with with condition
∂

∂t
= 0. The " IS " integral is represented by six

relations. When comparing it with the integral " S " changes take place only in the last five

relations. Terms proportional to
1

Re
= 0 vanishes.

There are other less obvious integrals that are generated by the "A" integral. For this we
consider the Lagrange – Cauchy integral (5). It is a special case of the " A" integral. As follows
from the above considerations, integral (5) is the result of changes in relation (10). However,
remaining relations (11–18) also remain valid. The combination of these eight interconnected
relations can be regarded as a new integral. This new integral we call the ” L2 ”, integral while
integral (5) is called the ” L1” integral. So, integral ” L2 ” obtained under the same assumptions
that integral ” L1” and it contains eight relations.

A similar situation occurs with integrals (6) and (8). Both integrals correspond to the case
of steady-state motion of an ideal fluid flow. Both integrals can be obtained from the " IS ",
integral represented by six relations. It follows from Sections 3.1 and 3.2 that both integrals are
the result of conversions of relation (10). However, the remaining five relations are also valid. If
we denote the Bernoulli integral (6) as the " B1" integral and the Euler –Bernoulli integral (8)
as the"E1" integral then " B2 " and " E2 " integrals naturally arises. Each of these new integrals
represented by five relations. Moreover, the "B2 " integral corresponds to the assumptions of the
Bernoulli integral and the "E2 " integral corresponds to the assumptions of the Euler –Bernoulli
integral.

Thus, the " A" integral generates, in addition to known integrals, six new integrals. These
integrals are " S ", " I ", " IS ", " B2 ", "E2 ", " L2 ".

To show various relationships between integrals more clearly, they are conveniently presented
in a form of tree. It follows from considerations given above that the "A " integral should be
placed at the base of the tree. All other integrals are special cases of the " A" integral. They
constitute two main branches. The right-hand branch contains integrals of motion for viscous
fluid " S ", " L1", " L2 ". The left-hand branch contains integrals for the particular cases of an
ideal fluid " I ", " IS ", " B1", "B2 ", " E1", " E2 ". All of these ten integrals form a tree of
integrals of motion for an incompressible fluid flow. The tree is shown in Fig. 1.

Conclusion

All integrals of incompressible fluid flow, both known and obtained in the paper, are presented
in the form of a tree. The "A" integral is at the base of the tree as the general one. The "A"
integral for this reason is fully justified the name the first integral of motion for an incompressible
fluid flow. All other integrals are special cases of the " A" integral. It is possible that new not
yet considered integrals may appear in this tree in the future.

Each new integral contains relationships between the governing values. These relations can
simplify the solution of hydrodynamical problems. This approach has been already implemented,
and solutions of hydrodynamical problems were based on " A", " S " and " IS " integrals[12–16].
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Fig. 1. Tree of integrals for an incompressible fluid flow
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Систематизация и анализ интегралов движения
несжимаемой жидкости

Александр В. Коптев
Гос. университет морского и речного флота им. адмирала С.О.Макарова

Двинская, 5/7, Санкт-Петербург, 198035
Россия

В работе рассмотрены и проанализированы интегралы движения несжимаемой среды, как из-
вестные, так и новые, полученные автором. Приводится доказательство того, что известные
интегралы Лагранжа–Коши, Бернулли и Эйлера –Бернулли есть частные случаи нового более об-
щего интеграла. Показано, что множество всех интегралов движения несжимаемой жидкости
образует логическую цепочку, которую можно представить в виде дерева.

Ключевые слова: несжимаемая жидкость, движение, уравнения Навье-Стокса, уравнения Эйле-
ра, частная производная, корневой интеграл, псевдофункция тока, потенциал, дерево.
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