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1. Introduction. Statement of the Problem

In order to find an approximate representation of a function ¢ by elements of a certain finite
dimensional space, it is possible to use values of this function at some finite set of points x3,
B8 =0,1,...,N. The corresponding problem is called the interpolation problem, and the points
xg are called the interpolation nodes.

There are polynomial and spline interpolations. It is known that the polynomial approxi-
mation is non-practical for approximation of functions with finite and little smoothness, which
often occurs in applications. This circumstance makes it necessary to work with splines. Spline
functions are very useful in applications. Classes of spline functions possess many nice structural
properties as well as excellent approximation powers. They are used, for example, in data fitting,
function approximation, numerical quadrature, and the numerical solution of ordinary and par-
tial differential equations, integral equations, and so on. Many books are devoted to the theory
of splines, for example, Ahlberg et al [1], Arcangeli et al [2], Attea [3], Berlinet and Thomas-
Agnan [4], Bojanov et al [5], de Boor [7], Eubank [10], Green and Silverman [13], Ignatov and
Pevniy [21], Korneichuk et al [23], Laurent [24], Mastroianni and Milovanovi¢ [26], Niirnberger
[27], Schumaker [29], Stechkin and Subbotin [36], Vasilenko [37], Wahba [38] and others.

If the exact values ¢(x3) of an unknown smooth function ¢(z) at the set of points {zg, 8 =
0,1,...,N} in an interval [a, b] are known, it is usual to approximate ¢ by minimizing

b
/ (6™ (2))?da (11)
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in the set of interpolating functions (i.e., g(zg) = ¢(z5), 8 =0,1,..., N) of the space Lgm) (a,b).
Here Lgm) (a,b) is the Sobolev space of functions with a square integrable m-th generalized
derivative. It turns out that the solution is a natural polynomial spline of degree 2m — 1 with
knots xg,x1,...,xn called the interpolating D™-spline for the points (xg,¢(zg)). In the non
periodic case this problem has been first investigated by Holladay [20] for m = 2. His results have

been generalized by de Boor [6] for any m. In the Sobolev space Lém) of periodic functions, the
minimization problem of integrals of the type (1.1) was investigated in works [11, 12, 14, 25, 28§]
and others.

We consider the Hilbert space

Ky (P,) = {(p :[0,1] - R ’ o™= is absolutely continuous and ™ € Ly (0, 1)},

equipped with the norm
1/2

i 2 (Pl = { [ (e () w(m))gdx} , (12)

d dqm dnL—Q
P, — )= 2 0 >2
( dx) dom T gz W7

/01 (pm (i) go(x))de < .

The equality (1.2) is the semi-norm, and ||¢|| = 0 if and only if ¢(x) = ¢; sinwz + ¢3 coswz +
Ry, —3(x), where R,,_3(z) is a polynomial of degree m — 3.

It should be noted that for a linear differential operator of order n, L = P,,(d/dz), Ahlberg,
Nilson, and Walsh in the book [1, Chapter 6] investigated the Hilbert spaces in the context of
generalized splines. Namely, with the inner product

where

and

1
(or9) = / Lo(z) - Li(x) de,

K5(P,) is a Hilbert space if we identify functions that differ by a solution of Ly = 0.
Consider the following interpolation problem:

Problem 1. To find the function Sy, (x) € Ko(P,,), which gives the minimum of the norm (1.2)
and satisfies the interpolation condition

Sm(xlﬁ) :Lp(xﬁ>7 /8207 1""7N7 (1.3)
where xg € [0,1] are the nodes of interpolation, ¢(xg) are given values.

Following 37, p.46, Theorem 2.2] we get the analytic representation of the interpolation spline
Sm(z)

N
Sm(x) = Z CyGm(z — 24) + di sin(wz) + da cos(wz) + Rym—3(x), (1.4)
v=0
m—3
where C,,, v=0,1,...,N, dy and dq are real numbers, R,,_3(z) = Y r,z* is a polynomial of
a=0

degree m — 3 and

—1)™signx 2 Ve (i — ke — 1) (w21
Gn(z) = (LJBTE ((2m — 3)sinwx — wx coswz + 22 (=D (2]5_ 11))'( ) ) (1.5)
k=1 ’
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2m d2m72 d2m74
is a f'undamental solgtion of the operator o T 202 g2 T w? ppT—y Le, Gp(z) is a
solution of the equation
G2™) (z) + 202G D (1) + WGP (z) = §(), (1.6)

here §(z) is Dirac’s delta function.

It is known that (see, for instance, [37]) the solution Sy, (z) of the form (1.4) of Problem 1
exists, is unique when N +1 > m and coefficients C., d1, d2 and rq of S,,(z) are defined by the
following system of N + m + 1 linear equations

N
ZCma(xﬁ — ) + di sin(wzg) + do cos(wzg) + Rm—3(x8) = p(zg), F=0,1,...,N, (1.7)

7=0

N
Z C, sin(wz) =0, (1.8)
v=0
N
Z C, cos(wz,) =0, (1.9)
~=0
N
ZCﬂ,xf;:O, a=0,1,...,m—3. (1.10)

v=0

The main aim of the present paper is to solve Problem 1, i.e., to solve system (1.7)-(1.10)
for equally spaced nodes zg = h3, 8 =0,1,...,N, h =1/N, N +1 > m and to find analytic
formulas for the coefficients C.,, dy, da and rq of Sp,(x).

It should be noted that interpolation splines minimizing the semi-norms in the Lgm) (0,1),
WQ(m’mfl)(O, 1) and K3(P;) Hilbert spaces were constructed in works [8, 17, 18, 19, 31, 32] by
using Sobolev’s method. Furthermore, the connection between interpolation spline and optimal
quadrature formula in the sense of Sard in L(Qm)(O7 1) and K5(P2) spaces were shown in [8] and
[18].

The rest of the paper is organized as follows: in Section 2 we give some definitions and known
results. In Section 3 we give the algorithm for solution of system (1.7)-(1.10) when the nodes zg
are equally spaced. Using this algorithm, the coefficients of the interpolation spline S,,(x) are
computed in Section 4.

2. Preliminaries

In this section we give some definitions and known results that we need to prove the main
results.

Below we mainly use the concept of discrete argument functions and operations on them.
The theory of discrete argument functions is given in [34, 35]. For completeness we give some
definitions about functions of discrete argument.

Assume that the nodes zg are equally spaced, i.e., zg = hf, h = N=12,....

N?
Definition 2.1. The function ¢(hB) is a function of discrete argument if it is given on some
set of integer values of (5.
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Definition 2.2. The inner product of two discrete functions o(hf) and ¥(hB) is given by

o0

[o(hB), ¥(hB) = > @(hB) - v(hB),

B=—00
if the series on the right hand side of the last equality converges absolutely.

Definition 2.3. The convolution of two functions p(hB) and ¥(hf) is the inner product

o0

o(hB) * p(hB) = [p(hy), ¥(hB —hy)] = > o(hy) - $(hB — hy).

y=—00

The Euler-Frobenius polynomials Ey(z), k = 1,2,... are defined by the following formula

[35]
(1—2)**2 /7 d\" =«
E _ =) = 2.1
k(z) T xda: (1—,’1))2, ( )

E() (LE) =1.

For the Euler-Frobenius polynomials Fy(z) the following identity holds

Ey(z) = 2" E}, (i) , (2.2)

and also the following theorem is true

Theorem 2.1 (Lemma 3 of [30]). Polynomial Qr(x) which is defined by the formula

k+1 Aipk+1
Qk(m) = (LL' - 1)k+1 i (Az 2ki_)l (23)
=0

is the Buler-Frobenius polynomial (2.1) of degree k, i.e. Qp(z) = Ej(x), where A0*F =
S (=1)tChk.

=1
The following formula is valid [15]:

n—1

k i k i
1 q ; q" q ;
k ink ik
o= () it~ 1 () At o, 2.4

=0

where A’y* is the finite difference of order i of v*, ¢ is the ratio of a geometric progression.
When |g| < 1 from (2.4) we have

[eS) k )
1 ,
Y = (1‘1) A'0". (2.5)
=0 i Nl
2m
In our computations we need the discrete analogue D,, (hf) of the differential operator pom +
d27n—2 d2m—4 z
2w? Jam3 +w? T which satisfies the following equality
D (hB) % G (hpB) = 6(hB), (2.6)
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where G, (h3) is the discrete argument function corresponding to G, (z) defined by (1.5), 6(hf)
is equal to 0 when 8 # 0 and is equal to 1 when 8 = 0, i.e. §(hf3) is the discrete delta-function.
The equation (2.6) is the discrete analogue of the equation (1.6).

2m d27n—2
In [16, 17] the discrete analogue D,,(hf3) of the differential operator T + 2w2m +
T x
d2m 4
wt preTE— which satisfies equation (2.6), is constructed and the following is proved.
x
2m d2m—2 d2m—4
Theorem 2.2. The discrete analogue to the differential operator +2w? — 4wt —
dx2m dr2m—2 dyp2m—4
satisfying equation (2.6) has the form
m—1
X AN 18122
=L
Z ,Tk B =0,
where
o (L )P AOF — 2 cos he £ 1255 (2.8)
' MPhm—s (M) | '
(2m—2) 2m—1
2
C:4—4COShw_2m—%, p:%, (29)
Pam—2 (=1)"Pom—2
m—2 k 2k—1
2m—2 . (=1D)*(m -k —1)(hw)
p(Qm_2 ) (2m — 3) sin hw — hw cos hw + 2 kz @ 1)>'( . (2.10)
=1
2m—2
Pom—2(z) = Z pPm=Ags = (1 — g)?m* [[(Qm — 3)sin hw — hw cos hw]x?+
s=0
+ [2hw — (2m — 3) sin(2hw)]x + [(2m — 3) sin hw — hw cos hw]] + (2.11)

(m —k —1)(hw)?~1(1 — )22 =4 Ey_o(x)
(2k — 1)! ’

m— 2

+2(2? — 2z coshw + 1)? Z

k=1

here Eog_o(x) is the Euler-Frobenius polynomial of degree 2k — 2, w > 0, hw < 1, h = 1/N,

N>2m—-—1,m>2, pgiin:;), p(ziinff) are the coefficients and A\, are the roots of the polynomial

lpszg()\), |)\k:‘ < 1.

Furthermore several properties of the discrete argument function D,,(hfS) were given in [16,
17]. Here we give the following properties of the discrete argument function D,,(hS) which we
need in our computations.

2m 2m—2
Theorem 2.3. The discrete analogue D,,,(h5) of the differential operator dcigm + 2w de,‘Qm 5+
2m—4
d — satisfies the following equalities
dyp2m—4
1) Dy, (hB) * sin(hwp) = 0,
2) Dy (hB) % cos(hwp) = 0,
3) Dy (hB) * () sin(hew) = 0,
4) Dy, (hB) * (hwp) cos(hwfB) = 0,
5) Dy (hB) x (hB)* =0, a =0,1,...,2m — 5.
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3. The algorithm for computation of coefficients
of interpolation splines

In the present section we give the algorithm for solution of system (1.7)—(1.10) when the
nodes xg are equally spaced, i.e., g = h83, h = N N =1,2,.... Here we use a method similar
to the one suggested by S.L.Sobolev 33, 35] for finding the coefficients of optimal quadrature
formulas in the Sobolev space Lgm)(O, 1).

Suppose that Cs = 0 when 5 < 0 and 8 > N. Using Definition 2.3, we rewrite the system
(1.7)—(1.10) in the convolution form

Gm(hB) * Cp + dy sin(hwp) + da cos(hwfB) + Ry—3s(hB) = p(hB), B=0,1,...,N, (3.1)

g: Cp - sin(hwp) = 0, (3.2)
5=0

3 Cp - cos(hwf) = 0, (3.3)
8=0

§305~(h5)0‘=0, a=01,...,m—3, (3.4)
8=0

where R,,_3(hf) = mig ro(hB)*.
a=0

Thus we have the following problem.

Problem 2. Find the coefficients Cg, (8 = 0,1,...,N), di1, da and polynomial R,,—3(hB) of
degree m — 3 which satisfy the system (3.1)—(5.4).

Further on we investigate Problem 2 which is equivalent to Problem 1. Instead of Cz we
introduce the following functions

v(hB) = G (hB) * Cg, (3.5)
u(hf) = v (hB) + dy sin(hwp) + ds cos(hwpB) + Ry —3(hB). (3.6)

Now we express the coefficients C using the function u(hg).
Taking into account (2.7), (3.6) and Theorems 2.2, 2.3, for the coefficients we have

Cj = Dy (hB) * u(hB). (3.7)

Thus, if we find the function u(h3), then the coefficients C;z will be found from equality (3.7).

To calculate the convolution (3.7) it is required to find the representation of the function u(hg)
for all integer values of 8. From equality (3.1) we get that uw(h8) = ¢(hB) when b € [0,1]. Now
we need to find the representation of the function u(hg3) when 8 < 0 and g > N.

Since Cg = 0 when hf ¢ [0, 1], we have

Cs = Dm(hf) xu(hB) =0,  hB ¢[0,1].

Now we calculate the convolution v(h8) = G, (h3) * Cg when 8 < 0 and 5 > N.
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Suppose 8 < 0 then taking into account equalities (1.5), (3.2)-(3.4), we have
Z Oy G (BB — h) Z e fogf miia) {(Qm — 3)sin(hwf — hwy)—
y=—00
m—2
(=1)*(m — k — 1)(hwpB — hwy)?*—1
2 =
—(hwpf — hwy) cos(hwf — hwy) + ; k- 1!
(—1)m N N
S lcos(hw,b’) Z C., (hwy) cos(hwy) + sin(hwp) Z C,, (hwv) sin(hwy)+
v=0 v=0
2 DFe(m—k — 1w
2y Y B e KD SRS
k=[2] a=m—2 o =0
where [@} is the integer part of m
Thus when 5 < 0 we get
v(hB) = —Dysin(hwf) — Dy cos(hwB) — Qum—3(hB), (3.8)
where
( 1)7n (_1)m N
D, = 12T Z C,(hwy)sin(hwy), Dy = T ZCA,(hw’y) cos(hwv), (3.9
v=0 v=0
and

m—2 2k— )kto E— 1)w2k—1 N
Qs = s 8 CIGU TSI o S o

w‘s

Ja= v=0

is an unknown polynomial of degree m — 3 of (hf3).
Similarly, in the case 8 > N for the convolution v(h8) = G, (h3) * C we obtain

We

v(hfB) = Dy sin(hwf) + Dy cos(hwf) + Qm—3(h3), (3.11)

denote
R o(hB) = Rin_s(hB) — Qm_s(hB), df =dy — Dy, dy =dy — Ds, (3.12)
+73(hﬂ) = RM—B(hﬁ) + Qm—S(hﬁ)a dT == dl + Dl, d;_ = d2 + DQ, (313)

where R, _5(hf) = ZT ~(hB)™, R} _5(hB) = ZT - (hB).

Taking into account (3.6), (3.8) and (3.11) we get the following problem

Problem 3. Find a solution of the equation

Do (hB) *u(hf) =0, hB ¢ [0,1] (3.14)
having the form:
dy sin(hwp) + dy cos(hwp) + R, _3(hB), B <0,
u(hB) = ¢ »(hp), 0< A (3.15)
df sin(hwp) + df cos(hwp) + R, _3(hB), 5> N.
Here R, _4(hB) and R} _4(hB) are unknown polynomials of degree m — 3 with respect to hf3.
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If we find di, df, d;, df and polynomials R, _5(h3), R} _5(hB3) then from (3.12), (3.13)
we have
1 _ 1 _
Rm*3(hﬁ) = 5 (R;—S(hﬁ) + Rm—B(hﬁ)) , diy = g(dﬁ + dk )7 k=1,2, (3 16)
1 _ 1 _ '
Qm*3(h5) = 5 (R;—?)(hﬂ) - Rm—?)(hﬂ)) , Di = §(dz - dk )a k=1,2.

Unknowns d, df, dy, dj and polynomials R, _,(h3), R, _5(hf) can be found from equa-
tion (3.14), using the function D,,(hf) defined by (2.7). Then we obtain explicit form of the
function u(hB) and from (3.7) we find the coefficients Cg. Furthermore from (3.16) we get
Rmfg(hﬁ), dl and dg.

Thus, Problem 3 and respectively Problems 2 and 1 will be solved.

In the next section we apply this algorithm to compute the coefficients Cg, 3 = 0,1, ...
dy, dy and ro, « = 0,1,...,m— 3 of the interpolation spline (1.4) for any m > 2 and N+1 >

N

) )

4. Computation of coefficients of interpolation spline (1.4)

In this section, using the above algorithm, we obtain the explicit formulas for the coefficients
of the interpolation spline (1.4) which, as we have proved in the previous section, is the solution
of Problem 1.

It should be noted that the interpolation spline (1.4), the solution of Problem 1, is exact for
any polynomials of degree m — 3 and for trigonometric functions sin wz and coswz.

Now we shall obtain exact formulas for the coefficients of the interpolation spline (1.4). The
result is the following

Theorem 4.1. Coefficients of the interpolation spline (1.4), with equally spaced nodes in the
space Ko(Py,), have the following form

m—3
Co = p|Cp(0)+ ¢(h)—d sin(hw) + dy cos(hw) + Z ro - (—h)*| +
a=0
Akp
Z Z)\ (h7) +Mk+)\ka],
k=1
Co = plilhs — 1)+ Coth) + 15+ 1) +
m—1 A D N
+> Tk SN (k) + N My + )\,]fﬂNkl , B=1,2,...,N -1,
=1 F [5=o
m—3
Cn = pl|Cp(1)+¢(1—h)+df sin(w+ hw) + dj cos(w + hw) + Z r (14 h)*
a=0
A/cp >
+ 3 > A TTe(hy) + A My + N |
k=1 k v=0
L, 1, .
dp, = i(dk—kdk), k=1,2, razi(ra—kra), a=0,1,...,m—3,
where
Aeld5 (cos(hw) — Ay) — dy sin(hw)] <= 2 ALATQe Y
My, = ) 4.1
k A7 4+ 1= 2); cos(hw) +az::1 ; (1= Ag)itt 1—)\k7 (4.1)
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Ai[d5 (cos(w + hw) — A cosw) + di (sin(w + hw) — \g sinw)] n
A7+ 1 — 2\ cos(hw)

m—3 o J i Ai()j +
T LAY /\k T /\k

+ k 0
+> ol Z;C‘])‘M;(l—)\k)i“+l—kk 15,

a=1

Ny =

(4.2)

and p, C, Ay are defined by (2.8),(2.9), A\ are the roots of the polynomial (2.11), |M\g| < 1,
. i .
AT0Y = S (—1)tChe, and d,, dz, k=1,2,r,, rt, a=0,1,...,m — 3, are defined from the
i=1
system (4.3), (4-4), (4-6), (4.7).

Proof. First we find the expressions for d, and dj . When 3 =0 and 8 = N from (3.15) for
dy and dj we get

2 = ¢(0) =g, (4.3)
a = (f)(sz) i ta  cosw Z: (44)

Now we have 2m — 2 unknowns d; , di", v, v}, a=0,1,...,m — 3.

From equation (3.10), by choosing = —-1,-2,...,—(m—1)and f=N+1,N+2,...,N+
m — 1, we are able to solve the previous system.

Taking into account (3.15), (4.3) and (4.4), from (3.14) we get the following system

0o m—3 0o
n [Z Dy (BB + hy)sin(hwy) | + > ro [(=B)* > Din(hB + hy)y”
y=1 a=1 y=1
> = sin(hw?y)
. +
+ 7 ; Dy, (b + hy)(1 — cos(hwy)) | + d ; D, (h — hg)——= p—
iy = cosw — cos(w + hwy)
1Y CIRIY D (R(N — hB)y’ Do (h(N —h —
+az::17‘a z_: Z +7) — hB)y +;l (h(N +~) = hp) p—
> cosw — cos(w + hwy) al
g Zl Doy (h(N + ) — hp3) — ] = - Z D (hf3 = hy)p(hy) =
— Dy, (h h h D, (h(N —h h , (4.5
[Z 8+ Iy cos(huy ] o [2_: +9) — hB) cos(w + w)] (15)
where f=—-1,-2,...,—(m—1)and S=N+4+1,N+2,...,N+m—1.
Now we consider the cases 8§ = —1,—2,...,—(m — 1). From (4.5) replacing 8 by —8 and
using (2.7) and (2.5), after some calculations for 8 =1,2,...,m —1, we get the following system

of m — 1 linear equations

m—3 m—3
dy By + > roB, +diBf+ > riBi =Ts B=12....m—1, (4.6)
a=0 a=0
where
m—1 A fe%s)
By =— | > 5N A sin(hwy) + sin(hw(B — 1)) + C'sin(hwf3) + sin(hw (S + 1))
i =1
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m—1 A %] B
Bia= (=) |30 - DA T+ (B -1+ OB (4 1)°
k=1 =1

By = Z f—: Z /\LB77|(1 — cos(hwy)) + (1 — cos(hw(B — 1))+
k=1

+C(1 — cos(hwp)) + (1 — cos(hw(B + 1))),
m—1

Z Ak)\,?”rﬁ sin(hw)
~ cosw A2 41— 2\ cos(hw) ’

m—1 Ak)\NJrﬁ

et J

o LAY Ak Ak[cos(w + hw) — Ak cos(hw)]
BT = Rk J B k _ _
Bex ; A ;Cah ; (1 — )i+t + 1— X cosw [AZ +1—2);cos(hw)]
Z A )\N+,8 1 cos(w + hw) — Ai, cos(hw)
= ¥ 1—X\p  cosw A2+ 1 — 2\, cos(hw)] |’

m—1

ZA,M 12/\

Z 1;\1— Z )\‘,f_ﬂ’| cos(hwy) + cos(hw(B — 1)) + C cos(hwf) + cos(hw(B + 1)) | —
k=1 ~y=1

m—1
e(1)
coswZ
k=1
Here =1,2,....m—1land a=1,2,...,m — 3.

Further, in (4.5), we consider the cases 5 = N+1,N+2,..., N+m—1. From (4.5) replacing
B by N 4 8 and using (2.7) and (2.5), after some calculations for 5 = 1,2
following system of m — 1 linear equations

Ak)\kNJrﬁ [cos(w + hw) — A cosw]
A7 41— 2\ cos(hw)

m — 1 we get the

m—3 m—3
dy A +Zr A6a+d+A++Zr+A+ =S5 B=1,2...,m—1, (4.7)
where
o nil Ak)\fﬂvﬂi sin(hw)
— A7 41— 2\ cos(hw)’
L NLA
a N+B—-1
Z Ak >\ Z 1 — )\k H—l’
’”Zl AkA;W(AkH)(cos(hw) —1)
sO = (A = 1A} +1 =2, cos(hw))’
Z Z AP sin(hwy) + sin(hw(B — 1)) + C sin(hwB) + sin(hw(B + 1)) |,
COS W
m—1 A}c o] ) . ) )
Ab, = Z CI " SN (81 + 08+ (B+1) | +
j=1 k=1 y=1
m—1 [e%s} m—1
+ A A oy Z A 5 Z )\lﬁ i cos(w + hwy)+
el k =1 COS W %
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+ cos(w + hw(B — 1)) + C cos(w + hwfB) + cos(w + hw(B + 1))

—1 e’}
Ak 5 18- 1
At =S ZENT AP o4 0 -
O ; Ak ; k et cosw

b

m—1 e’}
Ak B
Z T Z )\‘k " cos(w + hwy)+

k=1 k ~y=1

+ cos(w + hw(B — 1)) + C cos(w + hwfB) + cos(w + hw(B + 1))

)

Z Z)\N+ﬁ Y o(hy) -« Ak/\ +ﬁ (cos(hw) — )\k)i
(k) A2 + 1 — 2y cos(hw)

~ Aign 5
Z )\—Z A eos(w + hwy)+

k=1 k y=1

IEORES

Cosw

+cos(w + hw(f — 1)) + C cos(w + hwp3) + cos(w + hw(B + 1))].

Here p=1,2,....m—1land a=1,2,...,m — 3.

Thus for the unknowns dy , di, r;, a=0,1,...,m — 3 we have obtained system (4.6),
(4.7) of 2m — 2 linear equations. Since our mterpolatlon problem has a unique solution, the main
matrix of this system is non singular. Unknowns d;, d1 , T, Td, a=0,1,...,m — 3 can be
found from system (4.6), (4.7). Then taking into account (3.16), using (4.3) and (4.4) we have

1
di = i(dgﬂz,;),k:l,z T =
Cs, B=0,1,...,N.
From (3.6), taking into account (3.15), we deduce

Tav

5 (rf +r)),a=0,1,...,m—3. Now we find the coefficients

N
Cs =Y Dm(h—hy)p(hy) +
~=0
+ Z Dy, (hB + h) |dy sin(—hw7y) + dy cos(hwy) + Z
y=1 a=0
-3
Z h(N +v) —hpB) [d;r sin(w + hwy) + dj cos(w + hwy) + r (14 hy)®
y=1 a=0

where § =0,1,...,N.

From here, using (2.7) and formula (2.5), taking into account (4.1) and (4.2), after some
calculations we arrive at the expressions of the coeflicients C3, 5 = 0,1,..., N which are given
in the assertion of the theorem. Theorem 4.1 is proved. O

Remark. From Theorem 4.1, when m = 2, we get Theorem 7 of [17] and Theorem 3.1 of [19],
and when m = 2, w = 1 we get Theorem 3.1 of [18].
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ITocTpoeHne MHTEPHOJIAIMOHHBIX CILIAHOB, MUHUMU3UPYIO-
X MIOJIyHOPMY B mipocTpaHcTtBe Ks(F,,)

Ao6naynno P. Xaéros

Wucruryt maremarukn uM. B.M. Pomanosckoro
Akanemus nayk Pecriybiinku Y36ekucran

M. ¥Yayréeka 81, Tamkent, 100125

V3b6exkucran

B nacmosuwet cmamoe, ucnoavdya memod C.JI. Cobosesa, nocmpoerv, UHMEPNOAAUUOHHBIE CTLAGTHDL,
MUHUMUSUPYIOULUE BLPAIHCEHUS fol(tp(m)(a:) + W™= (2))2dx 6 npocmpancmee Ko(Pr). Hoayuenv
ABHBIE POPMYADL ONA KOIPPUUUEHMOE UHMEPNOAAUUOHHBIT CNAalinos. TTocmpoentbie UHMEPNOAAUUOH-
Hoe Popmyst mounse 0an odnowaeros 1, x, 2, ... ™ 3 u mpuzonomempuseckur Pyrryud sinws u

COSWT.

Karouesoie ca06a: uHmMeEPNOAAUUOHHIY CNAGTH, 2UAbOEPMOB0 NPOCTPAHCMEO, CEOTUCME0 MUHUMUSAUUYL
Hopmut, memod Cobosesa, Gyrkyuu JucKpemmnozo apeymerma.
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