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In the present paper, using S.L. Sobolev’s method, interpolation splines that minimize the expression∫ 1

0
(φ(m)(x)+ω2φ(m−2)(x))2dx in the space K2(Pm) are constructed. Explicit formulas for the coefficients

of the interpolation splines are obtained. The obtained interpolation splines are exact for monomials
1, x, x2, . . . , xm−3 and for trigonometric functions sinωx and cosωx.

Keywords: interpolation spline, Hilbert space, norm minimizing property, Sobolev’s method, discrete
argument function.
DOI: 10.17516/1997-1397-2018-11-3-383-396.

1. Introduction. Statement of the Problem

In order to find an approximate representation of a function φ by elements of a certain finite
dimensional space, it is possible to use values of this function at some finite set of points xβ ,
β = 0, 1, . . . , N . The corresponding problem is called the interpolation problem, and the points
xβ are called the interpolation nodes.

There are polynomial and spline interpolations. It is known that the polynomial approxi-
mation is non-practical for approximation of functions with finite and little smoothness, which
often occurs in applications. This circumstance makes it necessary to work with splines. Spline
functions are very useful in applications. Classes of spline functions possess many nice structural
properties as well as excellent approximation powers. They are used, for example, in data fitting,
function approximation, numerical quadrature, and the numerical solution of ordinary and par-
tial differential equations, integral equations, and so on. Many books are devoted to the theory
of splines, for example, Ahlberg et al [1], Arcangeli et al [2], Attea [3], Berlinet and Thomas-
Agnan [4], Bojanov et al [5], de Boor [7], Eubank [10], Green and Silverman [13], Ignatov and
Pevniy [21], Korneichuk et al [23], Laurent [24], Mastroianni and Milovanović [26], Nürnberger
[27], Schumaker [29], Stechkin and Subbotin [36], Vasilenko [37], Wahba [38] and others.

If the exact values φ(xβ) of an unknown smooth function φ(x) at the set of points {xβ , β =

0, 1, . . . , N} in an interval [a, b] are known, it is usual to approximate φ by minimizing∫ b

a

(g(m)(x))2dx (1.1)
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in the set of interpolating functions (i.e., g(xβ) = φ(xβ), β = 0, 1, . . . , N) of the space L(m)
2 (a, b).

Here L
(m)
2 (a, b) is the Sobolev space of functions with a square integrable m-th generalized

derivative. It turns out that the solution is a natural polynomial spline of degree 2m − 1 with
knots x0, x1, . . . , xN called the interpolating Dm-spline for the points (xβ , φ(xβ)). In the non
periodic case this problem has been first investigated by Holladay [20] for m = 2. His results have

been generalized by de Boor [6] for any m. In the Sobolev space L̃(m)
2 of periodic functions, the

minimization problem of integrals of the type (1.1) was investigated in works [11, 12, 14, 25, 28]
and others.

We consider the Hilbert space

K2(Pm) =
{
φ : [0, 1] → R

∣∣∣ φ(m−1) is absolutely continuous and φ(m) ∈ L2(0, 1)
}
,

equipped with the norm

∥φ |K2(Pm)∥ =

{∫ 1

0

(
Pm

(
d

dx

)
φ(x)

)2

dx

}1/2

, (1.2)

where

Pm

(
d

dx

)
=

dm

dxm
+ ω2 dm−2

dxm−2
, ω > 0, m > 2

and ∫ 1

0

(
Pm

(
d

dx

)
φ(x)

)2

dx <∞.

The equality (1.2) is the semi-norm, and ∥φ∥ = 0 if and only if φ(x) = c1 sinωx + c2 cosωx +

Rm−3(x), where Rm−3(x) is a polynomial of degree m− 3.
It should be noted that for a linear differential operator of order n, L ≡ Pn( d/ dx), Ahlberg,

Nilson, and Walsh in the book [1, Chapter 6] investigated the Hilbert spaces in the context of
generalized splines. Namely, with the inner product

⟨φ,ψ⟩ =
∫ 1

0

Lφ(x) · Lψ(x) dx,

K2(Pn) is a Hilbert space if we identify functions that differ by a solution of Lφ = 0.
Consider the following interpolation problem:

Problem 1. To find the function Sm(x) ∈ K2(Pm), which gives the minimum of the norm (1.2)
and satisfies the interpolation condition

Sm(xβ) = φ(xβ), β = 0, 1, . . . , N, (1.3)

where xβ ∈ [0, 1] are the nodes of interpolation, φ(xβ) are given values.

Following [37, p.46, Theorem 2.2] we get the analytic representation of the interpolation spline
Sm(x)

Sm(x) =
N∑

γ=0

CγGm(x− xγ) + d1 sin(ωx) + d2 cos(ωx) +Rm−3(x), (1.4)

where Cγ , γ = 0, 1, . . . , N , d1 and d2 are real numbers, Rm−3(x) =
m−3∑
α=0

rαx
α is a polynomial of

degree m− 3 and

Gm(x) =
(−1)msignx

4ω2m−1

(
(2m− 3) sinωx− ωx cosωx+ 2

m−2∑
k=1

(−1)k(m− k − 1)(ωx)2k−1

(2k − 1)!

)
(1.5)
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is a fundamental solution of the operator
d2m

dx2m
+ 2ω2 d2m−2

dx2m−2
+ ω4 d2m−4

dx2m−4
, i.e., Gm(x) is a

solution of the equation

G(2m)
m (x) + 2ω2G(2m−2)

m (x) + ω4G(2m−4)
m (x) = δ(x), (1.6)

here δ(x) is Dirac’s delta function.
It is known that (see, for instance, [37]) the solution Sm(x) of the form (1.4) of Problem 1

exists, is unique when N +1 > m and coefficients Cγ , d1, d2 and rα of Sm(x) are defined by the
following system of N +m+ 1 linear equations

N∑
γ=0

CγGm(xβ − xγ) + d1 sin(ωxβ) + d2 cos(ωxβ) +Rm−3(xβ) = φ(xβ), β = 0, 1, . . . , N, (1.7)

N∑
γ=0

Cγ sin(ωxγ) = 0, (1.8)

N∑
γ=0

Cγ cos(ωxγ) = 0, (1.9)

N∑
γ=0

Cγx
α
γ = 0, α = 0, 1, . . . ,m− 3. (1.10)

The main aim of the present paper is to solve Problem 1, i.e., to solve system (1.7)–(1.10)
for equally spaced nodes xβ = hβ, β = 0, 1, . . . , N, h = 1/N , N + 1 > m and to find analytic
formulas for the coefficients Cγ , d1, d2 and rα of Sm(x).

It should be noted that interpolation splines minimizing the semi-norms in the L(m)
2 (0, 1),

W
(m,m−1)
2 (0, 1) and K2(P2) Hilbert spaces were constructed in works [8, 17, 18, 19, 31, 32] by

using Sobolev’s method. Furthermore, the connection between interpolation spline and optimal
quadrature formula in the sense of Sard in L

(m)
2 (0, 1) and K2(P2) spaces were shown in [8] and

[18].
The rest of the paper is organized as follows: in Section 2 we give some definitions and known

results. In Section 3 we give the algorithm for solution of system (1.7)–(1.10) when the nodes xβ
are equally spaced. Using this algorithm, the coefficients of the interpolation spline Sm(x) are
computed in Section 4.

2. Preliminaries

In this section we give some definitions and known results that we need to prove the main
results.

Below we mainly use the concept of discrete argument functions and operations on them.
The theory of discrete argument functions is given in [34, 35]. For completeness we give some
definitions about functions of discrete argument.

Assume that the nodes xβ are equally spaced, i.e., xβ = hβ, h =
1

N
, N = 1, 2, . . . .

Definition 2.1. The function φ(hβ) is a function of discrete argument if it is given on some
set of integer values of β.
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Definition 2.2. The inner product of two discrete functions φ(hβ) and ψ(hβ) is given by

[φ(hβ), ψ(hβ)] =
∞∑

β=−∞

φ(hβ) · ψ(hβ),

if the series on the right hand side of the last equality converges absolutely.

Definition 2.3. The convolution of two functions φ(hβ) and ψ(hβ) is the inner product

φ(hβ) ∗ ψ(hβ) = [φ(hγ), ψ(hβ − hγ)] =
∞∑

γ=−∞
φ(hγ) · ψ(hβ − hγ).

The Euler-Frobenius polynomials Ek(x), k = 1, 2, . . . are defined by the following formula
[35]

Ek(x) =
(1− x)k+2

x

(
x
d

dx

)k
x

(1− x)2
, (2.1)

E0(x) = 1.
For the Euler-Frobenius polynomials Ek(x) the following identity holds

Ek(x) = xkEk

(
1

x

)
, (2.2)

and also the following theorem is true

Theorem 2.1 (Lemma 3 of [30]). Polynomial Qk(x) which is defined by the formula

Qk(x) = (x− 1)k+1
k+1∑
i=0

∆i0k+1

(x− 1)i
(2.3)

is the Euler-Frobenius polynomial (2.1) of degree k, i.e. Qk(x) = Ek(x), where ∆i0k =
i∑

l=1

(−1)i−lCl
i l
k.

The following formula is valid [15]:

n−1∑
γ=0

qγγk =
1

1− q

k∑
i=0

(
q

1− q

)i

∆i0k − qn

1− q

k∑
i=0

(
q

1− q

)i

∆iγk|γ=n, (2.4)

where ∆iγk is the finite difference of order i of γk, q is the ratio of a geometric progression.
When |q| < 1 from (2.4) we have

∞∑
γ=0

qγγk =
1

1− q

k∑
i=0

(
q

1− q

)i

∆i0k. (2.5)

In our computations we need the discrete analogue Dm(hβ) of the differential operator
d2m

dx2m
+

2ω2 d
2m−2

dx2m−2
+ ω4 d

2m−4

dx2m−4
which satisfies the following equality

Dm(hβ) ∗Gm(hβ) = δ(hβ), (2.6)
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where Gm(hβ) is the discrete argument function corresponding to Gm(x) defined by (1.5), δ(hβ)
is equal to 0 when β ̸= 0 and is equal to 1 when β = 0, i.e. δ(hβ) is the discrete delta-function.
The equation (2.6) is the discrete analogue of the equation (1.6).

In [16, 17] the discrete analogue Dm(hβ) of the differential operator
d2m

dx2m
+ 2ω2 d

2m−2

dx2m−2
+

ω4 d
2m−4

dx2m−4
, which satisfies equation (2.6), is constructed and the following is proved.

Theorem 2.2. The discrete analogue to the differential operator
d2m

dx2m
+2ω2 d

2m−2

dx2m−2
+ω4 d

2m−4

dx2m−4

satisfying equation (2.6) has the form

Dm(hβ) = p



m−1∑
k=1

Akλ
|β|−1
k , |β| > 2,

1 +
m−1∑
k=1

Ak, |β| = 1,

C +
m−1∑
k=1

Ak

λk
, β = 0,

(2.7)

where

Ak =
(1− λk)

2m−4(λ2k − 2λk coshω + 1)2p
(2m−2)
2m−2

λkP ′
2m−2(λk)

, (2.8)

C = 4− 4 coshω − 2m−
p
(2m−2)
2m−3

p
(2m−2)
2m−2

, p =
2ω2m−1

(−1)mp
(2m−2)
2m−2

, (2.9)

p
(2m−2)
2m−2 = (2m− 3) sinhω − hω coshω + 2

m−2∑
k=1

(−1)k(m− k − 1)(hω)2k−1

(2k − 1)!
, (2.10)

P2m−2(x) =

2m−2∑
s=0

p(2m−2)
s xs = (1− x)2m−4

[
[(2m− 3) sinhω − hω coshω]x2+

+ [2hω − (2m− 3) sin(2hω)]x+ [(2m− 3) sinhω − hω coshω]

]
+

+ 2(x2 − 2x coshω + 1)2
m−2∑
k=1

(−1)k(m− k − 1)(hω)2k−1(1− x)2m−2k−4E2k−2(x)

(2k − 1)!
,

(2.11)

here E2k−2(x) is the Euler-Frobenius polynomial of degree 2k − 2, ω > 0, hω 6 1, h = 1/N ,
N > m− 1, m > 2, p(2m−2)

2m−2 , p
(2m−2)
2m−3 are the coefficients and λk are the roots of the polynomial

P2m−2(λ), |λk| < 1.

Furthermore several properties of the discrete argument function Dm(hβ) were given in [16,
17]. Here we give the following properties of the discrete argument function Dm(hβ) which we
need in our computations.

Theorem 2.3. The discrete analogue Dm(hβ) of the differential operator
d2m

dx2m
+2ω2 d

2m−2

dx2m−2
+

ω4 d
2m−4

dx2m−4
satisfies the following equalities

1) Dm(hβ) ∗ sin(hωβ) = 0,
2) Dm(hβ) ∗ cos(hωβ) = 0,
3) Dm(hβ) ∗ (hωβ) sin(hωβ) = 0,
4) Dm(hβ) ∗ (hωβ) cos(hωβ) = 0,
5) Dm(hβ) ∗ (hβ)α = 0, α = 0, 1, . . . , 2m− 5.
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3. The algorithm for computation of coefficients
of interpolation splines

In the present section we give the algorithm for solution of system (1.7)–(1.10) when the

nodes xβ are equally spaced, i.e., xβ = hβ, h =
1

N
, N = 1, 2, . . . . Here we use a method similar

to the one suggested by S. L. Sobolev [33, 35] for finding the coefficients of optimal quadrature
formulas in the Sobolev space L(m)

2 (0, 1).
Suppose that Cβ = 0 when β < 0 and β > N . Using Definition 2.3, we rewrite the system

(1.7)–(1.10) in the convolution form

Gm(hβ) ∗ Cβ + d1 sin(hωβ) + d2 cos(hωβ) +Rm−3(hβ) = φ(hβ), β = 0, 1, . . . , N, (3.1)
N∑

β=0

Cβ · sin(hωβ) = 0, (3.2)

N∑
β=0

Cβ · cos(hωβ) = 0, (3.3)

N∑
β=0

Cβ · (hβ)α = 0, α = 0, 1, . . . ,m− 3, (3.4)

where Rm−3(hβ) =
m−3∑
α=0

rα(hβ)
α.

Thus we have the following problem.

Problem 2. Find the coefficients Cβ, (β = 0, 1, . . . , N), d1, d2 and polynomial Rm−3(hβ) of
degree m− 3 which satisfy the system (3.1)–(3.4).

Further on we investigate Problem 2 which is equivalent to Problem 1. Instead of Cβ we
introduce the following functions

v(hβ) = Gm(hβ) ∗ Cβ , (3.5)

u(hβ) = v (hβ) + d1 sin(hωβ) + d2 cos(hωβ) +Rm−3(hβ). (3.6)

Now we express the coefficients Cβ using the function u(hβ).
Taking into account (2.7), (3.6) and Theorems 2.2, 2.3, for the coefficients we have

Cβ = Dm(hβ) ∗ u(hβ). (3.7)

Thus, if we find the function u(hβ), then the coefficients Cβ will be found from equality (3.7).
To calculate the convolution (3.7) it is required to find the representation of the function u(hβ)

for all integer values of β. From equality (3.1) we get that u(hβ) = φ(hβ) when hβ ∈ [0, 1]. Now
we need to find the representation of the function u(hβ) when β < 0 and β > N .

Since Cβ = 0 when hβ /∈ [0, 1], we have

Cβ = Dm(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1].

Now we calculate the convolution v(hβ) = Gm(hβ) ∗ Cβ when β 6 0 and β > N .
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Suppose β 6 0 then taking into account equalities (1.5), (3.2)-(3.4), we have

v(hβ) =

∞∑
γ=−∞

Cγ Gm(hβ − hγ)

N∑
γ=0

Cγ
(−1)msign(hβ − hγ)

4ω2m−1

[
(2m− 3) sin(hωβ − hωγ)−

−(hωβ − hωγ) cos(hωβ − hωγ) + 2

m−2∑
k=1

(−1)k(m− k − 1)(hωβ − hωγ)2k−1

(2k − 1)!

]
=

= − (−1)m

4ω2m−1

[
cos(hωβ)

N∑
γ=0

Cγ(hωγ) cos(hωγ) + sin(hωβ)
N∑

γ=0

Cγ(hωγ) sin(hωγ)+

+2
m−2∑
k=[m2 ]

2k−1∑
α=m−2

(−1)k+α(m− k − 1)ω2k−1

(2k − 1− α)!α!
(hβ)2k−1−α

N∑
γ=0

Cγ(hγ)
α

]
,

where
[m
2

]
is the integer part of

m

2
.

Thus when β 6 0 we get

v(hβ) = −D1 sin(hωβ)−D2 cos(hωβ)−Qm−3(hβ), (3.8)

where

D1 =
(−1)m

4ω2m−1

N∑
γ=0

Cγ(hωγ) sin(hωγ), D2 =
(−1)m

4ω2m−1

N∑
γ=0

Cγ(hωγ) cos(hωγ), (3.9)

and

Qm−3(hβ) =
(−1)m

2ω2m−1

m−2∑
k=[m2 ]

2k−1∑
α=m−2

(−1)k+α(m− k − 1)ω2k−1

(2k − 1− α)! α!
(hβ)2k−1−α

N∑
γ=0

Cγ(hγ)
α (3.10)

is an unknown polynomial of degree m− 3 of (hβ).
Similarly, in the case β > N for the convolution v(hβ) = Gm(hβ) ∗ Cβ we obtain

v(hβ) = D1 sin(hωβ) +D2 cos(hωβ) +Qm−3(hβ), (3.11)

We denote

R−
m−3(hβ) = Rm−3(hβ)−Qm−3(hβ), d−1 = d1 −D1, d−2 = d2 −D2, (3.12)

R+
m−3(hβ) = Rm−3(hβ) +Qm−3(hβ), d+1 = d1 +D1, d+2 = d2 +D2, (3.13)

where R−
m−3(hβ) =

m−3∑
α=0

r−α · (hβ)α, R+
m−3(hβ) =

m−3∑
α=0

r+α · (hβ)α.

Taking into account (3.6), (3.8) and (3.11) we get the following problem

Problem 3. Find a solution of the equation

Dm(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1] (3.14)

having the form:

u(hβ) =


d−1 sin(hωβ) + d−2 cos(hωβ) +R−

m−3(hβ), β 6 0,

φ(hβ), 0 6 β 6 N,

d+1 sin(hωβ) + d+2 cos(hωβ) +R+
m−3(hβ), β > N.

(3.15)

Here R−
m−3(hβ) and R+

m−3(hβ) are unknown polynomials of degree m− 3 with respect to hβ.
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If we find d−1 , d
+
1 , d

−
2 , d

+
2 and polynomials R−

m−3(hβ), R
+
m−3(hβ) then from (3.12), (3.13)

we have

Rm−3(hβ) =
1

2

(
R+

m−3(hβ) +R−
m−3(hβ)

)
, dk =

1

2
(d+k + d−k ), k = 1, 2,

Qm−3(hβ) =
1

2

(
R+

m−3(hβ)−R−
m−3(hβ)

)
, Dk =

1

2
(d+k − d−k ), k = 1, 2.

(3.16)

Unknowns d−1 , d
+
1 , d

−
2 , d

+
2 and polynomials R−

m−3(hβ), R
+
m−3(hβ) can be found from equa-

tion (3.14), using the function Dm(hβ) defined by (2.7). Then we obtain explicit form of the
function u(hβ) and from (3.7) we find the coefficients Cβ . Furthermore from (3.16) we get
Rm−3(hβ), d1 and d2.

Thus, Problem 3 and respectively Problems 2 and 1 will be solved.
In the next section we apply this algorithm to compute the coefficients Cβ , β = 0, 1, . . . , N ,

d1, d2 and rα, α = 0, 1, . . . ,m− 3 of the interpolation spline (1.4) for any m > 2 and N +1 > m.

4. Computation of coefficients of interpolation spline (1.4)

In this section, using the above algorithm, we obtain the explicit formulas for the coefficients
of the interpolation spline (1.4) which, as we have proved in the previous section, is the solution
of Problem 1.

It should be noted that the interpolation spline (1.4), the solution of Problem 1, is exact for
any polynomials of degree m− 3 and for trigonometric functions sinωx and cosωx.

Now we shall obtain exact formulas for the coefficients of the interpolation spline (1.4). The
result is the following

Theorem 4.1. Coefficients of the interpolation spline (1.4), with equally spaced nodes in the
space K2(Pm), have the following form

C0 = p

[
Cφ(0) + φ(h)− d−1 sin(hω) + d−2 cos(hω) +

m−3∑
α=0

r−α · (−h)α
]
+

+
m−1∑
k=1

Akp

λk

[
N∑

γ=0

λγkφ(hγ) +Mk + λNk Nk

]
,

Cβ = p

[
φ(hβ − h) + Cφ(hβ) + φ(hβ + h)

]
+

+

m−1∑
k=1

Akp

λk

[
N∑

γ=0

λ
|β−γ|
k φ(hγ) + λβkMk + λN−β

k Nk

]
, β = 1, 2, . . . , N − 1,

CN = p

[
Cφ(1) + φ(1− h) + d+1 sin(ω + hω) + d+2 cos(ω + hω) +

m−3∑
α=0

r+α · (1 + h)α

]

+
m−1∑
k=1

Akp

λk

[
N∑

γ=0

λN−γ
k φ(hγ) + λNk Mk +Nk

]
,

dk =
1

2

(
d+k + d−k

)
, k = 1, 2, rα =

1

2

(
r+α + r−α

)
, α = 0, 1, . . . ,m− 3,

where

Mk =
λk[d

−
2 (cos(hω)− λ1)− d−1 sin(hω)]

λ2k + 1− 2λk cos(hω)
+

m−3∑
α=1

r−α (−h)α
α∑

i=1

λik∆
i0α

(1− λk)i+1
+

r−0 λk
1− λk

, (4.1)
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Nk =
λk[d

+
2 (cos(ω + hω)− λk cosω) + d+1 (sin(ω + hω)− λk sinω)]

λ2k + 1− 2λk cos(hω)
+

+
m−3∑
α=1

r+α

 α∑
j=1

Cj
αh

j

j∑
i=1

λik∆
i0j

(1− λk)i+1
+

λk
1− λk

+
r+0 λk
1− λk

(4.2)

and p, C, Ak are defined by (2.8),(2.9), λk are the roots of the polynomial (2.11), |λk| < 1,

∆i0α =
i∑

l=1

(−1)i−lCl
i l
α, and d−k , d+k , k = 1, 2, r−α , r

+
α , α = 0, 1, . . . ,m− 3, are defined from the

system (4.3), (4.4), (4.6), (4.7).

Proof. First we find the expressions for d−2 and d+2 . When β = 0 and β = N from (3.15) for
d−2 and d+2 we get

d−2 = φ(0)− r−0 , (4.3)

d+2 =
φ(1)

cosω
− d+1 tanω − 1

cosω

m−3∑
α=0

r+α . (4.4)

Now we have 2m− 2 unknowns d−1 , d+1 , r−α , r+α , α = 0, 1, . . . ,m− 3.
From equation (3.10), by choosing β = −1,−2, . . . ,−(m− 1) and β = N +1, N +2, . . . , N +

m− 1, we are able to solve the previous system.
Taking into account (3.15), (4.3) and (4.4), from (3.14) we get the following system

− d−1

[ ∞∑
γ=1

Dm(hβ + hγ) sin(hωγ)

]
+

m−3∑
α=1

r−α

[
(−h)α

∞∑
γ=1

Dm(hβ + hγ)γα

]
+

+ r−0

[ ∞∑
γ=1

Dm(hβ + hγ)(1− cos(hωγ))

]
+ d+1

[ ∞∑
γ=1

Dm(h(N + γ)− hβ)
sin(hωγ)

cosω

]
+

+
m−3∑
α=1

r+α

 α∑
j=1

Cj
αh

j
∞∑
γ=1

Dm(h(N + γ)− hβ)γj +
∞∑
γ=1

Dm(h(N + γ)− hβ)
cosω − cos(ω + hωγ)

cosω

+
+ r+0

[ ∞∑
γ=1

Dm(h(N + γ)− hβ)
cosω − cos(ω + hωγ)

cosω

]
= −

N∑
γ=0

Dm(hβ − hγ)φ(hγ)−

− φ(0)

[ ∞∑
γ=1

Dm(hβ + hγ) cos(hωγ)

]
− φ(1)

cosω

[ ∞∑
γ=1

Dm(h(N + γ)− hβ) cos(ω + hωγ)

]
, (4.5)

where β = −1,−2, . . . ,−(m− 1) and β = N + 1, N + 2, . . . , N +m− 1.
Now we consider the cases β = −1,−2, . . . ,−(m − 1). From (4.5) replacing β by −β and

using (2.7) and (2.5), after some calculations for β = 1, 2, . . . ,m− 1, we get the following system
of m− 1 linear equations

d−1 B
−
β +

m−3∑
α=0

r−αB
−
βα + d+1 B

+
β +

m−3∑
α=0

r+αB
+
βα = Tβ , β = 1, 2, . . . ,m− 1, (4.6)

where

B−
β = −

[
m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k sin(hωγ) + sin(hω(β − 1)) + C sin(hωβ) + sin(hω(β + 1))

]
,
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B−
βα = (−h)α

[
m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k γα + (β − 1)α + Cβα + (β + 1)α

]
,

B−
β0 =

m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k (1− cos(hωγ)) + (1− cos(hω(β − 1)))+

+C(1− cos(hωβ)) + (1− cos(hω(β + 1))),

B+
β =

1

cosω

m−1∑
k=1

Akλ
N+β
k sin(hω)

λ2k + 1− 2λk cos(hω)
,

B+
βα =

m−1∑
k=1

Akλ
N+β
k

λk

[
α∑

j=1

Cj
αh

j

j∑
i=1

λik∆
i0j

(1− λk)i+1
+

λk
1− λk

− λk[cos(ω + hω)− λk cos(hω)]

cosω [λ2k + 1− 2λk cos(hω)]

]
,

B+
β0 =

m−1∑
k=1

Akλ
N+β
k

[
1

1− λk
− cos(ω + hω)− λk cos(hω)

cosω [λ2k + 1− 2λk cos(hω)]

]
,

Tβ = −
m−1∑
k=1

Akλ
β−1
k

N∑
γ=0

λγkφ(hγ)−

−φ(0)

[
m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k cos(hωγ) + cos(hω(β − 1)) + C cos(hωβ) + cos(hω(β + 1))

]
−

− φ(1)

cosω

m−1∑
k=1

Akλ
N+β
k [cos(ω + hω)− λk cosω]

λ2k + 1− 2λk cos(hω)
.

Here β = 1, 2, . . . ,m− 1 and α = 1, 2, . . . ,m− 3.
Further, in (4.5), we consider the cases β = N+1, N+2, . . . , N+m−1. From (4.5) replacing

β by N + β and using (2.7) and (2.5), after some calculations for β = 1, 2, . . . ,m− 1 we get the
following system of m− 1 linear equations

d−1 A
−
β +

m−3∑
α=0

r−αA
−
βα + d+1 A

+
β +

m−3∑
α=0

r+αA
+
βα = Sβ , β = 1, 2, . . . ,m− 1, (4.7)

where

A−
β = −

m−1∑
k=1

Akλ
N+β
k sin(hω)

λ2k + 1− 2λk cos(hω)
,

A−
βα = (−h)α

m−1∑
k=1

Akλ
N+β−1
k

α∑
i=1

λik∆
i0α

(1− λk)i+1
,

A−
β0 =

m−1∑
k=1

Akλ
N+β
k (λk + 1)(cos(hω)− 1)

(λk − 1)(λ2k + 1− 2λk cos(hω))
,

A+
β =

1

cosω

[
m−1∑
k=1

Ak

λk

∑
γ=1

λ
|β−γ|
k sin(hωγ) + sin(hω(β − 1)) + C sin(hωβ) + sin(hω(β + 1))

]
,

A+
βα =

α∑
j=1

Cj
αh

j

[
m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k γj + (β − 1)j + Cβj + (β + 1)j

]
+

+

m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k + 2 + C − 1

cosω

[
m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k cos(ω + hωγ)+
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+cos(ω + hω(β − 1)) + C cos(ω + hωβ) + cos(ω + hω(β + 1))

]
,

A+
β0 =

m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k + 2 + C − 1

cosω

[
m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k cos(ω + hωγ)+

+cos(ω + hω(β − 1)) + C cos(ω + hωβ) + cos(ω + hω(β + 1))

]
,

Sβ = −
m−1∑
k=1

Ak

λk

N∑
γ=0

λN+β−γ
k φ(hγ)− φ(0)

m−1∑
k=1

Akλ
N+β
k (cos(hω)− λk)

λ2k + 1− 2λk cos(hω)
−

− φ(1)

cosω

[
m−1∑
k=1

Ak

λk

∞∑
γ=1

λ
|β−γ|
k cos(ω + hωγ)+

+cos(ω + hω(β − 1)) + C cos(ω + hωβ) + cos(ω + hω(β + 1))

]
.

Here β = 1, 2, . . . ,m− 1 and α = 1, 2, . . . ,m− 3.
Thus for the unknowns d−1 , d+1 , r−α , r+α , α = 0, 1, . . . ,m − 3 we have obtained system (4.6),

(4.7) of 2m−2 linear equations. Since our interpolation problem has a unique solution, the main
matrix of this system is non singular. Unknowns d−1 , d+1 , r−α , r+α , α = 0, 1, . . . ,m − 3 can be
found from system (4.6), (4.7). Then taking into account (3.16), using (4.3) and (4.4) we have

dk =
1

2

(
d+k + d−k

)
, k = 1, 2, rα =

1

2
(r+α + r−α ) , α = 0, 1, . . . ,m−3. Now we find the coefficients

Cβ , β = 0, 1, . . . , N .
From (3.6), taking into account (3.15), we deduce

Cβ =
N∑

γ=0

Dm(hβ − hγ)φ(hγ) +

+
∞∑
γ=1

Dm(hβ + hγ)

[
d−1 sin(−hωγ) + d−2 cos(hωγ) +

m−3∑
α=0

r−α (−hγ)α
]
+

+
∞∑
γ=1

Dm(h(N + γ)− hβ)

[
d+1 sin(ω + hωγ) + d+2 cos(ω + hωγ) +

m−3∑
α=0

r+α (1 + hγ)α

]
,

where β = 0, 1, . . . , N.

From here, using (2.7) and formula (2.5), taking into account (4.1) and (4.2), after some
calculations we arrive at the expressions of the coefficients Cβ , β = 0, 1, . . . , N which are given
in the assertion of the theorem. Theorem 4.1 is proved. 2

Remark . From Theorem 4.1, when m = 2, we get Theorem 7 of [17] and Theorem 3.1 of [19],
and when m = 2, ω = 1 we get Theorem 3.1 of [18].
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Построение интерполяционных сплайнов, минимизирую-
щих полунорму в пространстве K2(Pm)

Абдулло Р.Хаётов
Институт математики им. В.И. Романовского

Академия наук Республики Узбекистан
М.Улугбека 81, Ташкент, 100125

Узбекистан

В настоящей статье, используя метод С.Л. Соболева, построены интерполяционные сплайны,
минимизирующие выражения

∫ 1

0
(φ(m)(x) + ω2φ(m−2)(x))2dx в пространстве K2(Pm). Получены

явные формулы для коэффициентов интерполяционных сплайнов. Построенные интерполяцион-
ные формулы точны для одночленов 1, x, x2, . . . , xm−3 и тригонометрических функций sinωx и
cosωx.

Ключевые слова: интерполяционный сплайн, гильбертово пространство, свойство минимизации
нормы, метод Соболева, функции дискретного аргумента.
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