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A methodology for structural analysis of compensation of thermal expansions used for channel or
aboveground sections of heat network pipelines with radial expansion bends has been proposed.
The methodology is based on the methods of structural mechanics and allows to find technically
based dimensions of radial expansion bends. Increased flexibility of the heat pipe angles and
stress-raisers of additional bending stresses have been taken into account, the functional and
graphical dependencies of the stress caused by thermal deformations of the heat pipe section with
the U-shaped radial expansion bends on the temperature of the coolant have been presented. The
authors developed and presented the computer program used for calculating radial expansion
bends.

Due to the program analyzing the model of a heat pipe section with a radial U-shaped expansion
bend has been calculated. Comparison of the calculation results with the results obtained by
means of the well-known software system “Start” developed by the scientific-and-technological
enterprise “Pipeline” has shown a sufficient convergence of results, which confirms the efficiency
of the presented methodology and computer program.
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KomneHncanus remneparypHbIX AedopManui
TEIJIONPOBOIOB ¢ PAAHAJIBHBIMUA KOMIIEHCATOPAMH
10.J1. JIunoBka, B.U. BeaujioBel

Cubupckuti hedepanvHulil yHUBepcumem
Poccus, 660041, Kpacnospck, np. Ce0600mbitL, 79

Ilpeonoscena memoouxa paciema KOMREHCAYUYU MeMNEPAMYPHBIX PACUUPEHULl Ol KAHATbHBIX UTU
HAO3eMHBIX Y4acmKo8 mpybonposooos menyiogblx cemell ¢ paouaibHulMu Komnencamopamu. Memoouka
OCHOBAHA HA MEMOOAX CIPOUMENbHOU MEXAHUKU U HO36805€m NO00OPAMb MeXHUYeCKU 000CHOBAHHbLE
2abapumvl paouanbHLIX KOMNEHCAmopos. Yumenvl nogvlueHHas cubKOCms 0Meod08 menionpogooos
U KOHYEeHMpamopvl OONOTHUMENbHbIX U3CUOHBIX HANPANCEHUN, U3T0MHCeHbl (DYHKYUOHATbHbIE U
epaghuieckue 3a8UCUMOCIU HANPAXHCEHUS MEeMRePAmypHbIX dehopmayuil y4acmyka menionposood
¢ [I-00pa3snbim paduanbHbiM KOMREHCaAmopomM om memnepamypul menjionocumend. Ilpeocmasnena
PpaspabomanHas aemopamu Cmamvi KOMNBIOMEPHAS NPOSPAMMA 04  paciema paoudibHblX
KOMNEHCAMOPO8, ¢ UCHOIb308AHUEM KOMOPOU NPOedeH pacuem Mooeau YIacmKa menionpogooa ¢
paouanvuvim [1-06pasnvim komnencamopom. CpasHeHue pe3yibmamos paciema ¢ pes3ynbmamamu,
NONYYEeHHbIMU NPU NOMOWU U36ECTHOU NpoepaMMHOU cucmembvl «Cmapmy, paspadomanHo Hay4Ho-
mexnuyeckum npeonpuamuem «Tpyoonposooy, noka3ano 00CmMamoyHyIo CXoOUMOCHb Pe3yiIbinamos,
umo noomeepxicoaem pabomocnocoOHOCMb NPeOCMABNIeHHOU MemoOuKu U KOMIbIOmepHOU
npozpammbl.

Kniouesvie cnosa: meniosas cemov, memnepamyphvle pacuiupenus menionpogooos, KOMNEHCayusl
memnepamypHuLx oegpopmayuti mpyo, paoudaibHvle KOMREHCAmopbl.

Introduction

For heat supply network the most significant loading factor is thermal expansion of pipes.
Incorrect calculation of compensation of thermal expansion may cause heating main leaks and
breakdown of equipment connected to heat supply networks. A correct solution of the issue concerning
compensation for thermal expansion of heat supply networks guarantees its reliability and durability.
An estimate of reliability of urban heating networks from the point of view of calculating heating
mains for compensation of thermal expansions is presented in [1]. The issues concerning reliability of
engineering systems are considered in [2].

Thermal expansion of pipelines of heating networks appears to be the main loading factor,
regardless of the way of laying. However, the calculation of stresses based on thermal expansion for
trench and trenchless heating mains varies considerably. The calculation techniques used for trench
or aboveground sections of heat network pipelines are unacceptable for calculation used in terms
of trenchless heating mains. Some theoretical aspects of calculating the thermal deformations of
underground trenchless heating mains have been discussed in [3].

Modern technologies used for calculating main pipelines have been described in [4]. In order
to make calculations heat network pipelines are typically simulated as rod structures. In the case
of thermal expansion of heat supply networks the loss of pipe stability seems to be permissible.
The loss of stability is another important task that should be taken into consideration in case of
calculating thermal expansion of heat network pipelines. The solution of this problem has been
considered in [5-8].
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Computational simulation with a georeference of networks location, without which it is impossible
to calculate the operating modes of district heating pipelines correctly, has been the main concern of
the following papers [9-11]. The solution of new, rather complex tasks in the field of transportation of
energy sources can contribute to cyber-physical systems [12] and cloud-based computing [13].

Scalable parallel computation of finite element models can be also an effective tool for managing
network operation modes in complex geological conditions of modeling used in geotechnical
engineering [14].

Optimizing route location of urban power grids is certain to be one of the most important tasks,
ensuring a reduction in capital investments in district heating networks [15].

Remote-controlled regulating devices allow to communicate with power suppliers on-line, but
this requires a radical rethinking of existing control algorithms. In [16-18], the results of simulating
the distributed systems in terms of transportation of power for heating needs, ventilation and air
conditioning (HVAC), have been presented.

One of the most important tasks of optimizing the transportation system of power sources is
certain to minimize the power consumption of pumps and heat losses in the pipeline network. The
solution of this problem by means of the nonlinear programming algorithm (NPA) and the genetic
algorithm (GA) has been described in [19]. The research results of the dynamic characteristics of the
thermal regimes of district heating systems due to dynamic modeling method have been presented
[20].

Methods

Methods of structural mechanics allow to perform structural analysis of the heat supply network to
loads and imposed deformations, including compensation for thermal expansions. The most commonly
used method is the force method. In order to calculate heat pipes for thermal expansion there is a
modification of the force method, called the elastic center method. Structural analysis of expansion
bends for thermal effects by the elastic center method are considered in [21, 22]. It should be noted
that, in terms of structural mechanics, the heat pipe is a statically indeterminate system. The assigned
task is to disclose this static indeterminacy. In case of using the force method, the disclosure of static
indeterminacy occurs due to eliminating of primary system from redundant constraints and their
replacement by a statically determinate primary system. Unknown reactions of eliminated redundant
constraints are determined by forces and moments. Displacements for each of eliminated redundant
constraints are equal to zero. Primary unknowns are forces in eliminated redundant constraints, which
are calculated on the basis that corresponding displacement to each constraint are equal to zero.

Let us consider a section of a heat pipe bounded by two fixed supports (Fig. 1la). In terms of
structural mechanics, this section is a three times statically indeterminate system. The eliminated
fixed support is placed at the origin of an X'Y-coordinate system. The second fixed support is shown as
B. Reactions of the eliminated redundant constraints X1, X2, X3 are positive.

Generally speaking, for a common flat section of a heat pipe, primary system is determined by
eliminating constraints for one of the fixed and all sliding supports. The eliminated redundant constraints
are replaced by unknown forces and moments. Subsequently it is required to find generalized forces.
In the meantime, it should be assumed that displacements caused by the generalized forces in primary

system do not violate restrictions imposed by redundant constraints on given system.
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Fig. 1. Design piping diagrams

Problem conditions under consideration can be expressed as the following system of equations,

called the system of canonical equations of the force method

611X1 + 012Xy + 813X3 + -+ 611 X + A= 0;

021Xy + 652Xy + 693X5 + -+ 5 X + A, = 0; ()

6i1X1 + 612X, + 0izX3 + - 4+ Xk + 4= 0,

where 841, 813, «., 011 «vy 821, 822, ..., Oy — are the unit displacements of primary system; X;, Xy, X3, ..., X —
are the primary unknowns; Ay, A,, ..., A; — are the free terms of the canonical equations. These terms
represent generalized displacements in primary system, which correspond to the generalized force X;.
External loading, temperature differences, displacement of the supports, pre-tensioning of pipelines
are responsible for these displacements.

The free terms are determined on the basis of the following dependences

Al = Alt + AIM + AlO + Alp;
Ay = Dpe + Dgm + Ay + Agp; Az = A + Aay, @

where Ay, A,, A; — are the displacements of application points of the corresponding unknown forces
X1, X2, X3 in the direction of these forces (Fig. la); A, A, — are the thermal expansions of pipes;
Ay, Asy — reduced to the origin coordinates components of the displacement in the direction of the
forces X1, X2 from pre-compression (for pre-tension, displacements are negative); Aq, Az, Aoy — are
the linear and angular displacements, which are caused by displacement of supports; Ay, Ay, A, — are
the displacements that correspond to unknown X; arising in primary system as a result of external
loading.
The thermal expansions of pipes are calculated as follows

A= —LyaAt; Ay= —LyaAt, 3)

where L,, L, — are the projections on the x, y axis of distance between end supports (Fig. la); a — is
the linear expansion coefficient of pipe material for specified temperature of pipe wall; At — is the
temperature difference.

The negative sign in equations (3) is responsible for process of the thermal expansion of the
pipeline. With decreasing temperature, equations (3) are positive, since the reverse process occurs.
The point of reference of the change in temperature is the temperature at which the installation of the

heat pipe is completed.
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The linear and angular displacements caused by displacement of supports are determined by the

following equations
AlO = AlO AlO + yBOL AZO = A AZO + XBOL Aao Aaé + A(lg, (4)

where Ay, Az, Ay — are the linear and angular displacements caused by displacement of the supports;
Alo, AZO, Aaﬁ — are the positive displacements of the eliminated support A (Fig. 1a) in the direction of
the unknowns X1, X2, X3, respectively; A}130, AZBO, Aag — are the positive displacements of the support
B in the same directions; Xz, ¥ — are the coordinates of the support B.

The displacements that correspond to the unknown Xi in primary system from external loading
are calculated by the Mohr’s Integral.

For a flat heat pipe consisting of n elements, we can write the following equations
L
=Yn )y k

where M;, M,, M; — are the bending moments in an arbitrary section of primary system, caused

M Mp L Msz

dL; Agp = T o k222 AL Agy = T, [ k2L, (5)

by action of the unit forces X;, X,, X5 respectively; M, — is the bending moment in the same
section, caused by external loading; k — is the pipe flexibility factor; EI — is the pipe stiffness
factor.

The number of canonical equations corresponds to the degree of system static indeterminacy.
The coefficients of the equations &;, contain data about the displacements of application points of the
unknown forces in the direction of their action caused by unit forces or moments. The first of the
displacement indices &;, represents the unknown force number X; which given generalized displacement
corresponds to; the second index is the number of unit force that would cause this displacement. The
displacement §;, corresponds to the force X;, when X;8;, is the work of the force X; on the displacement
6. The coefficient A, is the displacement of the application point of the force X; in the direction of its
action, which is caused by external loading, temperature differences, displacement of the supports and
pre-tension of the heat pipe.

If we do not take into account effect of longitudinal and transverse forces on the displacement,
only taking into account bending and torsion, Mohr’s formula for the three-dimensional section of the

pipeline, consisting of n-elements, will have the following form

= Sk Jy KLy + B [ ©)

where M; — is the bending moment in an arbitrary section of primary system from the action of the
unit generalized force X; = 1; M, — is the bending moment in the same section from M;; H; — is the
torque in an arbitrary section of primary system from the force X; = 1; Hy — is the torque in the
same section from the force X, = 1; E — is the modulus of elasticity of pipe material; G — is the shear
modulus of pipe material; I — is the moment of inertia of pipe cross-section; I, — is the polar moment
of inertia of pipe cross-section; L — is the length of the pipeline element; k — is the pipe flexibility
factor.

For a flat heat pipe, in the absence of torsion, formula (6) can be transformed to the following

form

Lj | MM
Sk =2, [, k Eldej' (7

— 608 —



Yury L. Lipovka and Vitaly I. Belilovets. Compensation of Thermal Deformations of Heat Supply Network with Radial...

For a common flat heat pipe section, the coefficients of the canonical equations are determined
by the sum of the Mohr’s integrals over the length of each element. The equations under consideration

can be expressed as follows

L L L
y2 X2 k
811: kaEdL'SZZZZJkEdL‘SSBZZ ﬁdL:
0 0 0
L L L
b5 =—3 J, kgdL; 83 =—X [, k%dL; 831 =2 [ k%dL. ®)

If the heat pipe section includes pipes of different cross-sections, the stiffness value EI will differ
for each of the section elements. Taking this into account, it is necessary to introduce notion of the

reduced flexibility factor. This flexibility factor is denoted by the symbol 1 and expressed as follows

e
n=kZ¢, ©

where k — is the flexibility factor; El, — is the element with the greatest stiffness value; EI — is the
stiffness value of given element.

Considering this, the determined integrals in formulas (8) take the meaning of the geometric
characteristics of the reduced length of the center line for heat pipe elements. The free terms of the

canonical equations system will express as follows
The reduced moments of inertia relative to the axes X, Y are calculated by formulas
L L
Jxi pr = fO yzndL; ]y,i pr = fo indL' an
The reduced inertia product
L
]Xy,i pr = fO xyndL. (12)
The reduced static moments relative to the X, Y axes
L L
Sxipr = fO yndL; Syipr = fo xndL. (13)
The reduced length of the centerline of the element
L
Lipr = fo ndL = nL;. (14)

In expressions (11) — (14) i displays the element number, L — the length, m; n — reduced the
flexibility factor.

In order to calculate by formulas (11) — (14), the centerline of the heat pipe should be divided into
elements with constant bending stiffness and curvature. Further on we need to define the initial and
final coordinates of each element, its reduced flexibility factor and the reduced length.

In Fig. 15, the central axes of the element (o, ) are drawn parallel to the given axes X, Y. Therefore

the moments of inertia for any element relative to the axes X, Y can be calculated by formulas

-2 =2
Ix,i pr = ]ﬁ,i pr T L pr¥j ]y,i pr = Jo,i pr T L pr¥i - 1s)
The reduced product of inertia of the i-th element is determined by the formula
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]xy,i pr = ]aﬁ,i pr T L priiyi' (16)

where L;,, — is the reduced length of the element, m; X; — is the coordinate of the straight element
center of gravity relative to the X axis, m; ¥; — is the coordinate of the straight element center of gravity
relative to the Y axis, m; Ju;ipr J,ipr — are the reduced moments of inertia of the i-th element relative to
the eigen central axes a, B; Jup,,r — 1S the reduced product of inertia of the i-th element relative to the
eigen central axes a, B.

The coordinates of the center of gravity relative to the X, Y axes (Fig. 1) are determined by the

following expressions

X = é(XLi +X0); ¥, = %(yLi +Yo,): ("

The ratio for the reduced length of the heat pipe is as follows

Lipr = TlJ(Xl,i - Xo,i)2 + (y1i — YO,i)Z- 18)

The reduced moments of inertia relative to the eigen central axes is determined by the following

dependences

1 2 1 2
Jojpr = 75 Li pr(X1i = %01) 5 Jpipr = o Li pr(Y1i = Voi) - (19)

The reduced product of inertia relative to the eigen central axes is determined by the following

formula

Jagipr = % Lipr (%15 = %01) (y11 — Yo,)- (20)

Thus, given geometric characteristics for the straight elements of the heat pipe are determined as
follows

the reduced moments of inertia of the i-th element

_ (Y1,i—YO,i)2 (Y1,i+Y0,i)2 .
Jxipr = Lipr [0+~ [ 1)

[(Xll X01 (Xll + X0 1) l
1pr

]y,i pr —

the reduced product of inertia of the i-th element

[(xli—xol)(yll Yo,i) (X1,i+Xo,i¥Y1,i+Yo,i)].

]Xy,i pr — 1pr (22)

The reduced static moments of the i-th straight element can be determined by the following

formulas

— 1 — 1
Sxi pr — L pr¥i = ELi pr(YLi + YO,i); Sy,i pr = L prXi = ELi pr(Xl,i + XO,i)- (23)

Fig. 1¢ shows the curvilinear element of the heat pipe in the XY coordinate system. The coordinates
of the center of curvature of the element are denoted by Xc, Yc. The radius of curvature is denoted by
R. The central angle of the element is denoted by ¢. The angle of inclination of the initial tangent to the

positive direction of the X axis is denoted by a.
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The reduced moment of inertia and product of inertia of the i-th curvilinear element located

arbitrarily are determined by the following equations
Jxipr = Ri pr(Yc,izcl — 2Ryy.iC; + R*Cy); (24)
Jyipr = Ripr(%ci?Cy + 2RixciCs + Ri*Cs);
Jxy,ipr = Ri pr(XciVeiCi — RixciCz + RiyeiCs — Ri%Cy),

where x;, y.; — are the coordinates of curvature center of the longitudinal axis of the i-th curvilinear

element, m; R; — is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m;

Ri,: — is the reduced radius of curvature
R; pr = nR;. (25)
The reduced length is calculated by formula
L pr — R; prcl- (26)

The reduced static moments are calculated by formulas

Sxi pr = R; pr(Yc,icl - Ricz); Sy,i pr = R pr(Xc,icl + RiCS)- (27)
The values of the coefficients C; are determined by the following expressions
C1 =3 C; = 2sinZcos (a+2); C; = 2sinZsin (o +2); (28)
C, = 0,5[¢ + sing cos(2a + ¢)]; Cs = 0,5[¢ — sine cos(2a + ¢)];
Ce = 0,5sing sin(2a + ¢).
In expressions (28), the angles a and ¢ are considered in radians.
All the coefficients of the canonical equations were multiplied by EI, = const. It follows

that El 6, = 6;*. Thus, the formula of the canonical equations coefficients by given geometrical

characteristics of a simple flat heat pipe composed of n elements will be as follows

511* = Yiz1 Jxi pr’ 522* = Yiz1 ]y,i pr 533* =2t Ly pr (29

n n n
* * *
O =— Z ]xy,i pr O3 = _Z Sy,i prs 031 = z Sx,i pr:
i=1 i=1 i=1

The system of canonical equations for the calculated section of the heat pipe be transposed to the
following form
811Xy + 812X, + 813 X5 + A1 =0;
851 X1 + 025Xy + 8,3 X3+ AS = 0; 30)
831Xy + 832 Xy + 833" X3+ A3 =0,
Applying Cramer’s formulas, solution of system (30) can be represented as follows

D,

Xj=-3iXo == Xy =~ (31)

where D — is the determinant of the coefficient matrix of the system (30); D;, D,, D; — is the
determinants obtained from D by replacing the corresponding column of the coefficients ;. * by free
terms column.

The determinants D, D,, D3 are defined by the following formulas
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D] = ATal + A;a4 + A;as; D2 = ATa4 + A;az + A;aé;

(32)
D3 = A’{aS + A§a6 + A§a3,
where a,, a,, a;, a4, as, a, — are the constants.
The determinant D is calculated by formula
D= 511*31 + 612*3.4 + 813*35. (33)
The constants a,, a,, as, a4, as, a5 are determined by the following formulas
— * * *2_ — * * *2. _ * * *2.
a; =0y 833 — 0833 ; 8 =98;; 033 —Oy3 ;a3 =20y O —Op ; (34

a3 =083783" — 81278337 a5 =812 8p3" — 81370
a6 = 8y 813" — 82378y -

It is necessary to consider analysis of the pipe flexibility factor in more detail. In the beginning of
the 20" century the classical solution for bending curved pipes (bends) was published by T. Karman.
In this solution, an energy approach with the subsequent solution of the problem by the Ritz method
was used. The solution was a trigonometric series. With the neglecting of all members of the series,
except for the first, a formula for the flexibility factor (Karman’s formula) for curved pipes in bending
was derived. This formula has the following form

14l
10+122%’

(35)

where k — is the flexibility factor of the curved pipe (bend); A — is the geometric characteristic of the

curved pipe, defined as follows

4RS

M=o

(36)

where R — is the radius of curvature of the curved pipe, mm; D, — is the outer diameter of the curved
pipe, mm; d — is the wall thickness of the curved pipe, mm.
If we neglect all the members of the series except the first two, we obtain the Karman formula in

the second approximation for calculating the flexibility factor, having the form

3453622436001 37)
105+4136)2+48000.%"
The formula in the third approximation is defined similarly
3+3280224+329376)1% +28224001.° (38)

T 25247391202 42446 1761+ 282240000

When deriving the formula for the flexibility factor, T. Karman made the following assumptions:

1) the radius of curvature of the central line of a curved pipe is much larger than the radius of a pipe

itself; 2) the wall thickness of a curved pipe is small in comparison with the radius of a pipe; 3) the

displacement of the neutral axis was not taken into account; 4) the Poisson’s ratio was not taken into

account; 5) the ways of fixing curved pipes with straight pipes were not taken into account; 6) the

bending moment does not change along the entire length of a curved pipe; 7) the influence of internal
excess pressure was not taken into account.

The bending of curved pipes was investigated by R. Clark and 1. Reissner. A solution of this

problem was obtained, by analyzing the differential equations, when considering the bending of
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curved pipes from the point of view of the theory of thin-walled shells. By the method of asymptotic

integration, the following formula for the flexibility factor

k =21/12(1 — 1), (39)

where A — is the geometric characteristic of the curved pipe; p — is the Poisson’s ratio.
If we assume a Poisson ratio to be equal to 0.3, then the Clarke and Reissner formula can be

represented as follows

A
k= Ten 40)

The R. Clark and I. Reissner formula gives a more precise value of the flexibility factor of curved
pipes than the T. Karman’s formulas for A <0.3.

At the present day, a great number of different works has been devoted to solving the problems
of calculating pipe bends. For example, in [23-24] analytical solutions for the bending of pipes are

considered. In [25] the solution for the bending of pipes using the finite element method is presented.

Results and Discussion

The Karman’s formula and formula of Clark and Reissner were investigated. The graph of the
dependences of the change in the flexibility factor on the geometric characteristic of a curved pipe for
three Karman approximations and the Clarke and Reissner formulas are constructed.

Analysis of the graphs in Fig. 2 gives the following results. Firstly, the larger is the wall thickness
of a curved pipe, the flexibility factor is the closer to 1. Secondly, the Karman’s approximations are
incorrectly used in determining the flexibility factor of curvilinear elements of heat pipes, since they
are thin-walled structures for which their geometric characteristics will have small values. If we take
the geometric characteristic of a curved pipe to be zero, then the flexibility factor for all the Karman’s
approximations will have nonzero values. This is not true, since with the value of the geometric
characteristic of a curved pipe are equal to zero, the flexibility factor of this pipe is similarly equal to
zero. It follows that the Karman’s approximations are correctly used to determine the flexibility factor
of thick-walled pipes under high internal excess pressure. If a heat supply network is considered, then
the Clark and Reissner formula for determining the flexibility factor should be used.

With bending curved pipelines under the influence of forces that flatten their cross section
significant local stresses arise. If the longitudinal stresses found in the conventional bending theory

are denoted by o, then the maximum longitudinal stresses can be calculated as follows
o™ = 0, 4D

where i, — is the longitudinal stress concentration factor in the curved pipe

=7, @)

where A — is the geometric characteristic of the flexibility of the curved pipe.
It should be remembered that the local stress concentration factor is present in any places of
sharp changes in the geometry of a pipeline. To these places, besides bends, you can include tees and
transitions from one diameter to another. For each case, there is a definite formula for calculating this

factor.
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Fig. 2. Dependence of the flexibility factor on the geometry of the pipe

The authors of this article have developed and registered the computer program “Calculation of
the expansion bends of a heat supply network” [26]. Calculation in the program is based on the methods
of structural mechanics. The program makes it possible to calculate thermal stresses for sections of
a heat supply network by means of different schemes of expansion bends that are not clamped by the
soil. The program provides calculation of both expansion bends and original angles of bending of a
heat supply network. Based on input information entered in the input fields, calculation is performed
and information on the stresses in the main sections of the configuration of the heat pipe section is
displayed in the result fields. This allows you to select the optimal size of expansion bends.

Fig. 3 shows the interface of the program. As you can see, the window is divided into 3 blocks:
configuration selection, initial data and results. The configuration selection block allows you to select
one of the 8 circuits of a heat pipe section with an expansion bend or an original angle of bending for
subsequent calculation. Thus, it is possible to calculate the symmetrical and asymmetrical scheme
of U-shaped and L-shaped expansion bends, Z-shaped and L-shaped expansion bends with angles
of bending of 90 or more degrees. The whole program is built on the basis of methods of structural
mechanics, applied to a heat supply network. Accordingly, the program takes into account the increased
flexibility of heat pipe bends.

Let us consider comparison between the results of calculation on thermal expansions of a section
of a heat pipe with the U-shaped expansion bend (loop), received by means of the presented program,
and the results of the program system “Start”. The section is bounded by fixed supports. We take
the following initial data: the pipeline 159x4.5 mm, steel 09G2S; the installation temperature minus
40 °C; the temperature of the heat transfer plus 150 °C; the working pressure 1.6 MPa; the density of
heat transfer 1000 kg/m?. The section has the following dimensions: the radius of bend 240 mm; the
loop shoulders length 8 m; the loop legs length 4 m; the loop back width 4 m. After the calculations,
the following results were obtained: the minimum stresses on the section (in the loop shoulders) was
8.9 MPa for the author’s program and 9.5 MPa for the Start; the stress in the loop legs was 23.8 MPa for
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Fig. 4. Temperature dependences of a heat pipe section with the U-shaped expansion bend

the author’s program and 24.5 MPa for the “Start”; the maximum stress in the loop back was 47.9 MPa
for the author’s program and 48.2 MPa for the “Start”. Due to this experiment, we can conclude that

the calculation in the computer program “Calculation of the expansion bends of a heat supply network”

is correct.

Let us consider the temperature dependences of a heat pipe section with an expansion bend. The

results will be presented graphically.

Fig. 4 shows the temperature curves for an example of a heat-pipe section. The numbers opposite
the line color show the temperature values. As we can see from the graph, the largest and smallest
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stresses from thermal expansions, at any considered temperature, are in sections 6, 9 (largest) and 4,
11 (smallest). The sections with the highest stresses are in the loop back, the sections with the smallest

stresses in the loop shoulders.

Conclusions

Due to the force method, a methodology for calculating the stresses based on thermal
expansions for sections of heat network trenchless pipelines with radial expansion bends has been
developed. In the methodology the increased flexibility of the bends has been taken into account.
The optimal formula for calculating the flexibility factor of heat pipe bends has been determined.
Due to developed methodology, a computer program for calculating radial expansion bends of
heat networks has been developed. The efficiency of this program has been confirmed by means of
comparing the results of a numerical experiment with the model of the U-shaped expansion bend
with the software system “Start” developed by the scientific-and-technological enterprise “Pipeline”.
The experiment used the design model of the U-shaped expansion bend made it possible to draw
the following conclusions: 1) the nature of temperature stresses distribution along the expansion
bend sections for any temperature of the coolant coincides; 2) the angles of the expansion bend back
are the most crucial elements where the greatest stresses are observed; 3) in case of calculating the
radial expansion bends, it is necessary to take into account the increased flexibility of the bends and
the concentration of local stresses in them, since their ignoring will cause large inaccuracies in the

results.
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