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A methodology for structural analysis of compensation of thermal expansions used for channel or 
aboveground sections of heat network pipelines with radial expansion bends has been proposed. 
The methodology is based on the methods of structural mechanics and allows to find technically 
based dimensions of radial expansion bends. Increased flexibility of the heat pipe angles and 
stress-raisers of additional bending stresses have been taken into account, the functional and 
graphical dependencies of the stress caused by thermal deformations of the heat pipe section with 
the U-shaped radial expansion bends on the temperature of the coolant have been presented. The 
authors developed and presented the computer program used for calculating radial expansion 
bends.
Due to the program analyzing the model of a heat pipe section with a radial U-shaped expansion 
bend has been calculated. Comparison of the calculation results with the results obtained by 
means of the well-known software system “Start” developed by the scientific-and-technological 
enterprise “Pipeline” has shown a sufficient convergence of results, which confirms the efficiency 
of the presented methodology and computer program.
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Компенсация температурных деформаций  
теплопроводов с радиальными компенсаторами

Ю.Л. Липовка, В.И. Белиловец
Сибирский федеральный университет 

Россия, 660041, Красноярск, пр. Свободный, 79

Предложена методика расчета компенсации температурных расширений для канальных или 
надземных участков трубопроводов тепловых сетей с радиальными компенсаторами. Методика 
основана на методах строительной механики и позволяет подобрать технически обоснованные 
габариты радиальных компенсаторов. Учтены повышенная гибкость отводов теплопроводов 
и концентраторы дополнительных изгибных напряжений, изложены функциональные и 
графические зависимости напряжения температурных деформаций участка теплопровода 
с П-образным радиальным компенсатором от температуры теплоносителя. Представлена 
разработанная авторами статьи компьютерная программа для расчета радиальных 
компенсаторов, с использованием которой проведен расчет модели участка теплопровода с 
радиальным П-образным компенсатором. Сравнение результатов расчета с результатами, 
полученными при помощи известной программной системы «Старт», разработанной научно-
техническим предприятием «Трубопровод», показало достаточную сходимость результатов, 
что подтверждает работоспособность представленной методики и компьютерной 
программы.

Ключевые слова: тепловая сеть, температурные расширения теплопроводов, компенсация 
температурных деформаций труб, радиальные компенсаторы.

Introduction

For heat supply network the most significant loading factor is thermal expansion of pipes. 
Incorrect calculation of compensation of thermal expansion may cause heating main leaks and 
breakdown of equipment connected to heat supply networks. A correct solution of the issue concerning 
compensation for thermal expansion of heat supply networks guarantees its reliability and durability. 
An estimate of reliability of urban heating networks from the point of view of calculating heating 
mains for compensation of thermal expansions is presented in [1]. The issues concerning reliability of 
engineering systems are considered in [2].

Thermal expansion of pipelines of heating networks appears to be the main loading factor, 
regardless of the way of laying. However, the calculation of stresses based on thermal expansion for 
trench and trenchless heating mains varies considerably. The calculation techniques used for trench 
or aboveground sections of heat network pipelines are unacceptable for calculation used in terms 
of trenchless heating mains. Some theoretical aspects of calculating the thermal deformations of 
underground trenchless heating mains have been discussed in [3].

Modern technologies used for calculating main pipelines have been described in [4]. In order 
to make calculations heat network pipelines are typically simulated as rod structures. In the case 
of thermal expansion of heat supply networks the loss of pipe stability seems to be permissible. 
The loss of stability is another important task that should be taken into consideration in case of 
calculating thermal expansion of heat network pipelines. The solution of this problem has been 
considered in [5-8].
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Computational simulation with a georeference of networks location, without which it is impossible 
to calculate the operating modes of district heating pipelines correctly, has been the main concern of 
the following papers [9-11]. The solution of new, rather complex tasks in the field of transportation of 
energy sources can contribute to cyber-physical systems [12] and cloud-based computing [13].

Scalable parallel computation of finite element models can be also an effective tool for managing 
network operation modes in complex geological conditions of modeling used in geotechnical 
engineering [14].

Optimizing route location of urban power grids is certain to be one of the most important tasks, 
ensuring a reduction in capital investments in district heating networks [15].

Remote-controlled regulating devices allow to communicate with power suppliers on-line, but 
this requires a radical rethinking of existing control algorithms. In [16-18], the results of simulating 
the distributed systems in terms of transportation of power for heating needs, ventilation and air 
conditioning (HVAC), have been presented.

One of the most important tasks of optimizing the transportation system of power sources is 
certain to minimize the power consumption of pumps and heat losses in the pipeline network. The 
solution of this problem by means of the nonlinear programming algorithm (NPA) and the genetic 
algorithm (GA) has been described in [19]. The research results of the dynamic characteristics of the 
thermal regimes of district heating systems due to dynamic modeling method have been presented 
[20].

Methods

Methods of structural mechanics allow to perform structural analysis of the heat supply network to 
loads and imposed deformations, including compensation for thermal expansions. The most commonly 
used method is the force method. In order to calculate heat pipes for thermal expansion there is a 
modification of the force method, called the elastic center method. Structural analysis of expansion 
bends for thermal effects by the elastic center method are considered in [21, 22]. It should be noted 
that, in terms of structural mechanics, the heat pipe is a statically indeterminate system. The assigned 
task is to disclose this static indeterminacy. In case of using the force method, the disclosure of static 
indeterminacy occurs due to eliminating of primary system from redundant constraints and their 
replacement by a statically determinate primary system. Unknown reactions of eliminated redundant 
constraints are determined by forces and moments. Displacements for each of eliminated redundant 
constraints are equal to zero. Primary unknowns are forces in eliminated redundant constraints, which 
are calculated on the basis that corresponding displacement to each constraint are equal to zero.

Let us consider a section of a heat pipe bounded by two fixed supports (Fig. 1a). In terms of 
structural mechanics, this section is a three times statically indeterminate system. The eliminated 
fixed support is placed at the origin of an XY-coordinate system. The second fixed support is shown as 
B. Reactions of the eliminated redundant constraints X1, X2, X3 are positive.

Generally speaking, for a common flat section of a heat pipe, primary system is determined by 
eliminating constraints for one of the fixed and all sliding supports. The eliminated redundant constraints 
are replaced by unknown forces and moments. Subsequently it is required to find generalized forces. 
In the meantime, it should be assumed that displacements caused by the generalized forces in primary 
system do not violate restrictions imposed by redundant constraints on given system.
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Problem conditions under consideration can be expressed as the following system of equations, 
called the system of canonical equations of the force method
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The linear and angular displacements caused by displacement of supports are determined by the 
following equations
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where M� – is the bending moment in an arbitrary section of primary system from the action 
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If the heat pipe section includes pipes of different cross-sections, the stiffness value EI will 

differ for each of the section elements. Taking this into account, it is necessary to introduce notion 
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For a common flat heat pipe section, the coefficients of the canonical equations are determined 
by the sum of the Mohr’s integrals over the length of each element. The equations under consideration 
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If the heat pipe section includes pipes of different cross-sections, the stiffness value EI will differ 
for each of the section elements. Taking this into account, it is necessary to introduce notion of the 
reduced flexibility factor. This flexibility factor is denoted by the symbol η and expressed as follows

of the reduced flexibility factor. This flexibility factor is denoted by the symbol η and expressed as 

follows 

η � k EI�
EI
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where k – is the flexibility factor; 

EI� – is the element with the greatest stiffness value; 

EI – is the stiffness value of given element. 

Considering this, the determined integrals in formulas (8) take the meaning of the geometric 

characteristics of the reduced length of the center line for heat pipe elements. The free terms of the 

canonical equations system will express as follows 
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The reduced moments of inertia relative to the axes X, Y are calculated by formulas 
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The reduced inertia product 
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The reduced static moments relative to the X, Y axes 
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� ; S�,� �� � � xηdLL

� .                     (13) 

The reduced length of the centerline of the element 

L� �� � � ηdLL
� � ηL�.                            (14) 

In expressions (11) – (14) i displays the element number, L – the length, m; η – reduced the 

flexibility factor. 

In order to calculate by formulas (11) – (14), the centerline of the heat pipe should be 

divided into elements with constant bending stiffness and curvature. Further on we need to define 

the initial and final coordinates of each element, its reduced flexibility factor and the reduced 

length. 

In Fig. 1b, the central axes of the element (α, β) are drawn parallel to the given axes X, Y. 

Therefore the moments of inertia for any element relative to the axes X, Y can be calculated by 

formulas 

J�,� �� � Jβ,� �� � L� ��y�
�;  J�,� �� � Jα,� �� � L� ��x�

�.                   (15) 

The reduced product of inertia of the i-th element is determined by the formula 

J��,� �� � Jαβ,� �� � L� ��x�y�,                             (16) 

where L� �� – is the reduced length of the element, m; 

x� – is the coordinate of the straight element center of gravity relative to the X axis, m; 

y� – is the coordinate of the straight element center of gravity relative to the Y axis, m; 
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Fig. 1c shows the curvilinear element of the heat pipe in the XY coordinate system. The 

coordinates of the center of curvature of the element are denoted by Xc, Yc. The radius of curvature 

is denoted by R. The central angle of the element is denoted by φ. The angle of inclination of the 

initial tangent to the positive direction of the X axis is denoted by α. 
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is denoted by R. The central angle of the element is denoted by φ. The angle of inclination of the 

initial tangent to the positive direction of the X axis is denoted by α. 
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Fig. 1c shows the curvilinear element of the heat pipe in the XY coordinate system. The coordinates 
of the center of curvature of the element are denoted by Xc, Yc. The radius of curvature is denoted by 
R. The central angle of the element is denoted by φ. The angle of inclination of the initial tangent to the 
positive direction of the X axis is denoted by α.
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The reduced moment of inertia and product of inertia of the i-th curvilinear element located 
arbitrarily are determined by the following equations

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 
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The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 
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                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 
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All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��

�

���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	 (25)

The reduced length is calculated by formula

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��

�

���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	 (26)

The reduced static moments are calculated by formulas

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��

�

���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	 (27)

The values of the coefficients Ci are determined by the following expressions

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��

�

���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	 (28) 

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��

�

���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	  

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��

�

���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	
In expressions (28), the angles α and φ are considered in radians.
All the coefficients of the canonical equations were multiplied by EI0 = const. It follows 

that EI0δik = δik*. Thus, the formula of the canonical equations coefficients by given geometrical 
characteristics of a simple flat heat pipe composed of n elements will be as follows

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��

�

���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	 (29) 

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�

cos �α � φ
�
� ; C� � 2sin φ

�
sin �α � φ

�
� ;            (28) 

C� � �,��φ � sinφ cos�2α � φ��;  C� � �,��φ � sinφ cos�2α � φ��; 

C� � �,�sinφ sin�2α � φ�. 

In expressions (28), the angles α and φ are considered in radians. 

All the coefficients of the canonical equations were multiplied by EI� � cons�. It follows 

that EI�δ�� � δ��
�. Thus, the formula of the canonical equations coefficients by given geometrical 

characteristics of a simple flat heat pipe composed of n elements will be as follows 

δ��
� � ∑ J�,� ��

�
��� ;  δ��

� � ∑ J�,� ��
�
��� ;  δ��

� � ∑ L� ��
�
��� ;             (29) 

δ��
� � � � J��,� ��
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���

;  δ��
� � � � S�,� ��

�

���

;  δ��
� � � S�,� ��

�

���

. 

The system of canonical equations for the calculated section of the heat pipe be transposed 

to the following form 

�
δ��

�X� � δ��
�X� � δ��

�X� � Δ�
� � �;

δ��
�X� � δ��

�X� � δ��
�X� � Δ�

� � �;
δ��

�X� � δ��
�X� � δ��

�X3 � Δ3
� � 0,

                      (30) 

Applying Cramer's formulas, solution of system (30) can be represented as follows 

X1 � � D1
D

;  X2 � � D2
D

;  X3 � � D3
D

,                       (31) 

where D – is the determinant of the coefficient matrix of the system (30); 

	

The system of canonical equations for the calculated section of the heat pipe be transposed to the 
following form

The reduced moment of inertia and product of inertia of the i-th curvilinear element located 

arbitrarily are determined by the following equations 

J�,� �� � R� ���y�,�
�C� � 2R�y�,�C� � R�

�C��;                    (24) 

J�,� �� � R� ���x�,�
�C� � 2R�x�,�C� � R�

�C��; 

J��,� �� � R� ���x�,�y�,�C� � R�x�,�C� � R�y� �C� � R�
�C��, 

where x�,�, y�,� – are the coordinates of curvature center of the longitudinal axis of the i-th 

curvilinear element, m; 

R� – is the radius of curvature of the longitudinal axis of the i-th curvilinear element, m; 

R� �� – is the reduced radius of curvature 

R� �� � ηR�.                                (25) 

The reduced length is calculated by formula 

L� �� � R� ��C�.                              (26) 

The reduced static moments are calculated by formulas 

   S�,� �� � R� ���y�,�C� � R�C��; S�,� �� � R� ���x�,�C� � R�C��.          (27) 

The values of the coefficients C� are determined by the following expressions 

C� � φ;  C� � 2sin φ
�
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where D  – is the determinant of the coefficient matrix of the system (30); D1, D2, D3  – is the 
determinants obtained from D by replacing the corresponding column of the coefficients δik* by free 
terms column.

The determinants D1, D2, D3 are defined by the following formulas
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D1, D2, D3 – is the determinants obtained from D by replacing the corresponding column of 

the coefficients δik
� by free terms column. 

The determinants D1, D2, D3 are defined by the following formulas 

D1 � Δ1
�a1 � Δ2

�a4 � Δ3
�a5;  D2 � Δ1

�a4 � Δ2
�a2 � Δ3

�a6;  D3 � Δ1
�a5 � Δ2

�a6 � Δ3
�a3, (32) 

where a1, a2, a3, a4, a5, a6 – are the constants. 

The determinant D is calculated by formula 

D � δ11
�a1 � δ12

�a4 � δ13
�a5.                          (33) 

The constants a1, a2, a3, a4, a5, a6 are determined by the following formulas 
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a6 � δ21
�δ13

� � δ23
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�. 

It is necessary to consider analysis of the pipe flexibility factor in more detail. In the 

beginning of the 20th century the classical solution for bending curved pipes (bends) was published 

by T. Karman. In this solution, an energy approach with the subsequent solution of the problem by 

the Ritz method was used. The solution was a trigonometric series. With the neglecting of all 

members of the series, except for the first, a formula for the flexibility factor (Karman's formula) 

for curved pipes in bending was derived. This formula has the following form 

k � 1�12λ2

10�12λ2,                                 (35) 

where k – is the flexibility factor of the curved pipe (bend); 

λ – is the geometric characteristic of the curved pipe, defined as follows 

λ � 4Rδ
�D��δ�2,                                 (36) 

where R – is the radius of curvature of the curved pipe, mm; 

D� – is the outer diameter of the curved pipe, mm; 

δ – is the wall thickness of the curved pipe, mm. 

If we neglect all the members of the series except the first two, we obtain the Karman 

formula in the second approximation for calculating the flexibility factor, having the form 

k � 3�536λ2�3600λ4

105�4136λ2�4800λ4.                             (37) 

The formula in the third approximation is defined similarly 

k � 3�3280λ2�329376λ4�2822400λ6

252�73912λ2�2446176λ4�2822400λ6.                       (38) 

When deriving the formula for the flexibility factor, T. Karman made the following 

assumptions: 1) the radius of curvature of the central line of a curved pipe is much larger than the 

radius of a pipe itself; 2) the wall thickness of a curved pipe is small in comparison with the radius 

of a pipe; 3) the displacement of the neutral axis was not taken into account; 4) the Poisson's ratio 
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When deriving the formula for the flexibility factor, T. Karman made the following assumptions: 
1) the radius of curvature of the central line of a curved pipe is much larger than the radius of a pipe 
itself; 2) the wall thickness of a curved pipe is small in comparison with the radius of a pipe; 3) the 
displacement of the neutral axis was not taken into account; 4) the Poisson’s ratio was not taken into 
account; 5) the ways of fixing curved pipes with straight pipes were not taken into account; 6) the 
bending moment does not change along the entire length of a curved pipe; 7) the influence of internal 
excess pressure was not taken into account.

The bending of curved pipes was investigated by R. Clark and I. Reissner. A solution of this 
problem was obtained, by analyzing the differential equations, when considering the bending of 
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curved pipes from the point of view of the theory of thin-walled shells. By the method of asymptotic 
integration, the following formula for the flexibility factor

was not taken into account; 5) the ways of fixing curved pipes with straight pipes were not taken 

into account; 6) the bending moment does not change along the entire length of a curved pipe; 7) 
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The bending of curved pipes was investigated by R. Clark and I. Reissner. A solution of this 

problem was obtained, by analyzing the differential equations, when considering the bending of 

curved pipes from the point of view of the theory of thin-walled shells. By the method of 

asymptotic integration, the following formula for the flexibility factor 

k � 2λ �12�1 � μ2�⁄                             (39) 

where λ – is the geometric characteristic of the curved pipe; 

μ – is the Poisson's ratio. 

If we assume a Poisson ratio to be equal to 0.3, then the Clarke and Reissner formula can be 

represented as follows 

� � �
�.��

                                  (40) 

The R. Clark and I. Reissner formula gives a more precise value of the flexibility factor of 

curved pipes than the T. Karman’s formulas for � � 0.3. 

At the present day, a great number of different works has been devoted to solving the 

problems of calculating pipe bends. For example, in [23-24] analytical solutions for the bending of 

pipes are considered. In [25] the solution for the bending of pipes using the finite element method is 

presented. 

 

Results and Discussion 

The Karman’s formula and formula of Clark and Reissner were investigated. The graph of 

the dependences of the change in the flexibility factor on the geometric characteristic of a curved 

pipe for three Karman approximations and the Clarke and Reissner formulas are constructed. 

,	 (39)

where λ – is the geometric characteristic of the curved pipe; μ – is the Poisson’s ratio.
If we assume a Poisson ratio to be equal to 0.3, then the Clarke and Reissner formula can be 

represented as follows

was not taken into account; 5) the ways of fixing curved pipes with straight pipes were not taken 

into account; 6) the bending moment does not change along the entire length of a curved pipe; 7) 

the influence of internal excess pressure was not taken into account. 

The bending of curved pipes was investigated by R. Clark and I. Reissner. A solution of this 

problem was obtained, by analyzing the differential equations, when considering the bending of 

curved pipes from the point of view of the theory of thin-walled shells. By the method of 

asymptotic integration, the following formula for the flexibility factor 

k � 2λ �12�1 � μ2�⁄                             (39) 

where λ – is the geometric characteristic of the curved pipe; 

μ – is the Poisson's ratio. 

If we assume a Poisson ratio to be equal to 0.3, then the Clarke and Reissner formula can be 

represented as follows 

� � �
�.��

                                  (40) 

The R. Clark and I. Reissner formula gives a more precise value of the flexibility factor of 

curved pipes than the T. Karman’s formulas for � � 0.3. 

At the present day, a great number of different works has been devoted to solving the 

problems of calculating pipe bends. For example, in [23-24] analytical solutions for the bending of 

pipes are considered. In [25] the solution for the bending of pipes using the finite element method is 

presented. 

 

Results and Discussion 

The Karman’s formula and formula of Clark and Reissner were investigated. The graph of 

the dependences of the change in the flexibility factor on the geometric characteristic of a curved 

pipe for three Karman approximations and the Clarke and Reissner formulas are constructed. 

,	 (40)

The R. Clark and I. Reissner formula gives a more precise value of the flexibility factor of curved 
pipes than the T. Karman’s formulas for λ < 0.3.

At the present day, a great number of different works has been devoted to solving the problems 
of calculating pipe bends. For example, in [23-24] analytical solutions for the bending of pipes are 
considered. In [25] the solution for the bending of pipes using the finite element method is presented.

Results and Discussion

The Karman’s formula and formula of Clark and Reissner were investigated. The graph of the 
dependences of the change in the flexibility factor on the geometric characteristic of a curved pipe for 
three Karman approximations and the Clarke and Reissner formulas are constructed.

Analysis of the graphs in Fig. 2 gives the following results. Firstly, the larger is the wall thickness 
of a curved pipe, the flexibility factor is the closer to 1. Secondly, the Karman’s approximations are 
incorrectly used in determining the flexibility factor of curvilinear elements of heat pipes, since they 
are thin-walled structures for which their geometric characteristics will have small values. If we take 
the geometric characteristic of a curved pipe to be zero, then the flexibility factor for all the Karman’s 
approximations will have nonzero values. This is not true, since with the value of the geometric 
characteristic of a curved pipe are equal to zero, the flexibility factor of this pipe is similarly equal to 
zero. It follows that the Karman’s approximations are correctly used to determine the flexibility factor 
of thick-walled pipes under high internal excess pressure. If a heat supply network is considered, then 
the Clark and Reissner formula for determining the flexibility factor should be used.

With bending curved pipelines under the influence of forces that flatten their cross section 
significant local stresses arise. If the longitudinal stresses found in the conventional bending theory 
are denoted by σ, then the maximum longitudinal stresses can be calculated as follows
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σmax � i0σ,                                 (41) 

where i0 – is the longitudinal stress concentration factor in the curved pipe 
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where λ – is the geometric characteristic of the flexibility of the curved pipe. 

	 (41)

where i0 – is the longitudinal stress concentration factor in the curved pipe
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where λ – is the geometric characteristic of the flexibility of the curved pipe. 

	 (42)

where λ – is the geometric characteristic of the flexibility of the curved pipe.
It should be remembered that the local stress concentration factor is present in any places of 

sharp changes in the geometry of a pipeline. To these places, besides bends, you can include tees and 
transitions from one diameter to another. For each case, there is a definite formula for calculating this 
factor.
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The authors of this article have developed and registered the computer program “Calculation of 
the expansion bends of a heat supply network” [26]. Calculation in the program is based on the methods 
of structural mechanics. The program makes it possible to calculate thermal stresses for sections of 
a heat supply network by means of different schemes of expansion bends that are not clamped by the 
soil. The program provides calculation of both expansion bends and original angles of bending of a 
heat supply network. Based on input information entered in the input fields, calculation is performed 
and information on the stresses in the main sections of the configuration of the heat pipe section is 
displayed in the result fields. This allows you to select the optimal size of expansion bends.

Fig. 3 shows the interface of the program. As you can see, the window is divided into 3 blocks: 
configuration selection, initial data and results. The configuration selection block allows you to select 
one of the 8 circuits of a heat pipe section with an expansion bend or an original angle of bending for 
subsequent calculation. Thus, it is possible to calculate the symmetrical and asymmetrical scheme 
of U-shaped and L-shaped expansion bends, Z-shaped and L-shaped expansion bends with angles 
of bending of 90 or more degrees. The whole program is built on the basis of methods of structural 
mechanics, applied to a heat supply network. Accordingly, the program takes into account the increased 
flexibility of heat pipe bends.

Let us consider comparison between the results of calculation on thermal expansions of a section 
of a heat pipe with the U-shaped expansion bend (loop), received by means of the presented program, 
and the results of the program system “Start”. The section is bounded by fixed supports. We take 
the following initial data: the pipeline 159x4.5 mm, steel 09G2S; the installation temperature minus 
40 °C; the temperature of the heat transfer plus 150 °C; the working pressure 1.6 MPa; the density of 
heat transfer 1000 kg/m3. The section has the following dimensions: the radius of bend 240 mm; the 
loop shoulders length 8 m; the loop legs length 4 m; the loop back width 4 m. After the calculations, 
the following results were obtained: the minimum stresses on the section (in the loop shoulders) was 
8.9 MPa for the author’s program and 9.5 MPa for the Start; the stress in the loop legs was 23.8 MPa for 
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where λ – is the geometric characteristic of the flexibility of the curved pipe. 
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Fig. 3. Interface of the program Calculation of expansion bends

It should be remembered that the local stress concentration factor is present in any places of 

sharp changes in the geometry of a pipeline. To these places, besides bends, you can include tees 

and transitions from one diameter to another. For each case, there is a definite formula for 

calculating this factor. 

The authors of this article have developed and registered the computer program "Calculation 

of the expansion bends of a heat supply network” [26]. Calculation in the program is based on the 

methods of structural mechanics. The program makes it possible to calculate thermal stresses for 

sections of a heat supply network by means of different schemes of expansion bends that are not 

clamped by the soil. The program provides calculation of both expansion bends and original angles 

of bending of a heat supply network. Based on input information entered in the input fields, 

calculation is performed and information on the stresses in the main sections of the configuration of 

the heat pipe section is displayed in the result fields. This allows you to select the optimal size of 

expansion bends. 
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After the calculations, the following results were obtained: the minimum stresses on the section (in 
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Let us consider the temperature dependences of a heat pipe section with an expansion bend. 
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the author’s program and 24.5 MPa for the “Start”; the maximum stress in the loop back was 47.9 MPa 
for the author’s program and 48.2 MPa for the “Start”. Due to this experiment, we can conclude that 
the calculation in the computer program “Calculation of the expansion bends of a heat supply network” 
is correct.

Let us consider the temperature dependences of a heat pipe section with an expansion bend. The 
results will be presented graphically.

Fig. 4 shows the temperature curves for an example of a heat-pipe section. The numbers opposite 
the line color show the temperature values. As we can see from the graph, the largest and smallest 



– 616 –

Yury L. Lipovka and Vitaly I. Belilovets. Compensation of Thermal Deformations of Heat Supply Network with Radial…

stresses from thermal expansions, at any considered temperature, are in sections 6, 9 (largest) and 4, 
11 (smallest). The sections with the highest stresses are in the loop back, the sections with the smallest 
stresses in the loop shoulders.

Conclusions

Due to the force method, a methodology for calculating the stresses based on thermal 
expansions for sections of heat network trenchless pipelines with radial expansion bends has been 
developed. In the methodology the increased flexibility of the bends has been taken into account. 
The optimal formula for calculating the flexibility factor of heat pipe bends has been determined. 
Due to developed methodology, a computer program for calculating radial expansion bends of 
heat networks has been developed. The efficiency of this program has been confirmed by means of 
comparing the results of a numerical experiment with the model of the U-shaped expansion bend 
with the software system “Start” developed by the scientific-and-technological enterprise “Pipeline”. 
The experiment used the design model of the U-shaped expansion bend made it possible to draw 
the following conclusions: 1)  the nature of temperature stresses distribution along the expansion 
bend sections for any temperature of the coolant coincides; 2) the angles of the expansion bend back 
are the most crucial elements where the greatest stresses are observed; 3) in case of calculating the 
radial expansion bends, it is necessary to take into account the increased flexibility of the bends and 
the concentration of local stresses in them, since their ignoring will cause large inaccuracies in the 
results.
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