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We regularize the ill-posed Cauchy problem for a first order elliptic matrix differential operator A with the
use of a mixed problem for its Laplacian A∗A, depending on small parameter in boundary conditions.
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The Cauchy problem for elliptic linear differential operators is a long standing problem con-
nected with numerous applications in physics, electrodynamics, fluid mechanics etc. (see [1,4] or
elsewhere). It appears that the regularization methods (see [5]) are most effective for studying
the problem. Recently, a new approach was developed, cf. [2] based on the simple observation
that the calculus of the solutions to the Cauchy problems foran elliptic equations just amounts to
the calculus of a (possibly non-coercive) mixed boundary value problems for an elliptic equations
with a parameter.

Let D be a bounded domain with Lipschitz boundary ∂D in Euclidean space Rn, n > 2,
with coordinates x = (x1, . . . , xn). For some multi-index α = (α1, . . . , αn) we will write ∂α for

the partial derivative
∂|α|

∂xα1
1 · · · ∂xαn

n
. We consider the complex-valued functions defined over the

domain D and its closure D. We also fix a relatively open connected set S with piecewise smooth
boundary ∂S on the hypersurface ∂D. Let Cs(D,S), s ∈ Z+, be the set of s-times continuously
differentiable functions in D, which are disappearing in some (one-sided) neighborhood of S in D.
Let Lq(D), 1 6 q 6 +∞, stand for the standard normed Lebesgue spaces of functions over D.
We also write Hs(D), s ∈ N, for the Sobolev space of functions whose weak derivatives up to
the order s belong to L2(D). Let the space Hs

0(D) stand for the closure of the space C∞
0 (D)

in Hs(D). For positive non-integer s we denote by Hs(D) the standard Sobolev-Slobodetskii
space The closure of Cs(D,S) in the space Hs(D) is denoted by Hs(D,S). Also, we will need
Sobolev spaces H−s(D) with negative smoothness which we define in the usual way as the dual
to Hs(D), with respect to the pairing ⟨·, ·⟩, induced from L2(D) see, for instance, [3], [4, Sec. 1.1].

Let A(x, ∂) be a first order matrix differential operator in a domain X ⊂ Rn, i.e. A =
n∑

j=1

Aj(x)∂j+A0(x). Here Aj(x) are (k×k)-matrices, whose components are complex-valued real-

analytic functions. The operator A is called elliptic on X if det

(
n∑

j=1

Aj(x)ζj

)
̸= 0 for all x ∈

X, ζ ∈ Rn\{0}. Let A∗
j (x) be the adjoint matrix for the matrix Aj(x) and A∗ = −

n∑
j=1

∂j(A
∗
j (x)·)+
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A∗
0 be the formal adjoint for A. If A is elliptic, then the second order differential operator A∗A

is strongly elliptic in X.

Problem 1. Consider the ill-posed Cauchy problem for the operator A in the domain D with
boundary data on the set S: given distributions u0 on S and f over D, find a distribution u
satisfying in a proper sense {

Au = f in D,
u = 0 on S.

(1)

In order to control the behaviour of solutions to problem (1), it is natural to introduce
the following function spaces. For ε > 0 we consider the Hermitian form ε > 0 on the space
[C1(D,S)]k: (u, v)+,ε = ε (u, v)[L2(∂D)]k + (Au,Av)[L2(D)]k . If (u, v)+,1 is an inner product on
[C1(D,S)]k, then we write H+(D,S) for the completion of [C1(D,S)]k with respect to the norm
∥ · ∥+,1 induced by the scalar product (·, ·)+,1. Obviously, in this case the norms ∥u∥+,ε and
∥u∥+,δ are equivalent for any positive ε and δ. Everywhere below we assume that H+(D,S)

is embedded continuously to [L2(D)]k; then let ι be the natural (continuous) embedding: ι :

H+(D,S) → [L2(D)]k. Clearly problem (1) can be treated as the investigation of the bounded
linear operator

A : H+(D;S) → [L2(D)]k. (2)

Lemma 1. Let ∂D ∈ C∞. If the interior of S on ∂D is non empty then the null-space of the
operator (2) is trivial. If the interior of ∂D\S on ∂D is non empty then the range of the operator
(2) is dense in [L2(D)]k.

Proof. Follows from the Uniqueness theorem for the Cauchy problem for elliptic systems A and
A∗ [4, Theorem 10.3.5].

Thus we have described the closure of the image of the map (2). Description of the image of
the map (2) itself is a more difficult task. However, we note that a function u ∈ H+(D,S) is a
solution to problem (1) if and only if for all v ∈ H+(D,S)

(Au,Av)[L2(D)]k = (f,Av)[L2(D)]k . (3)

Taking into account this observation, perturbed Cauchy problem:

Problem 2. Fix ε ∈ (0, 1]. Given any f ∈ [L2(D)]k, find an element uε ∈ H+(D,S), which for
all v ∈ H+(D,S) will be satisfying

(Auε, Av)[L2(D)]k + ε (uε, v)[L2(∂D\S)]k) = (f,Av)[L2(D)]k . (4)

The difference between Problems 1 and 2 is that the last one is well-posed in H+(D,S).

Lemma 2. For every ε > 0 and f ∈ [L2(D)]k there exists an unique solution uε(f) ∈ H+(D,S)
to Problem 2. Moreover, it satisfies ∥uε(f)∥+,ε 6 ∥f∥[L2(D)]k .

Proof. The proof follows from Schwarz inequality and Riesz theorem.

Lemma 3. For every ε ∈ (0, 1] there are positive numbers {λ(ε)
k }k∈N and functions {b(ε)k }k∈N ⊂

H+(D,S) such that(
Ab

(ε)
k , Av

)
[L2(D)]k

+ ε
(
b
(ε)
k , v

)
[L2(∂D\S)]k

= λ
(ε)
k

(
b
(ε)
k , v

)
[L2(D)]k

(5)

for all v ∈ H+(D,S). The system {b(ε)k }k∈N яis an orthonormal basis H+(D,S) (with respect to
(·, ·)+,ε), it is also an orthogonal basis in [L2(D)]k.
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Proof. See [3, Lemma 3.1]. 2

The behaviour of the family {uε(f)}ε>0 reflects on the solvability of problem (1).

Theorem 1. The family {∥uε(f)∥+,1}ε∈(0,1] is bounded if and only if there exists u ∈ H+(D,S)
satisfying (3). Under this conditions limε→+0 ∥Auε(f) − f∥[L2(D)]k = 0 and even {uε(f)}ε∈(0,1]

converges weakly in H+(D,S), when ε → +0, to the solution u ∈ H+(D,S) of problem (1).
Moreover, it converges to u in [Hs(D)]k for every s < 1/2 and also in the space [H1

loc(D ∪ S)]k.

Proof. Follows from Lemma 2, cf. [2, Theorem 3.1] for the Cauchy-Riemann system. 2

Finally, we obtain a formula for solutions to Problem 1.

Corollary 1. For any function u ∈ H+(D,S) we have:

(u, v)+,1 = lim
ε→+0

lim
N→+∞

((
Au,AG(N)

ε (z, ·)
)
[L2(D)]k

, v(z)
)
[L2(D)]k

,

for all v ∈ H+(D,S), where G(N)
ε (z, ζ) =

N∑
k=1

b
(ε)
k (z)b

(ε)
k (ζ)

∥b(ε)k ∥[L2(D)]k

.
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Регуляризация задачи Коши
для эллиптических операторов
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Россия

Некорректная задача Коши для матричного эллиптического дифференциального оператора A ре-
гуляризована с помощью решений смешанных задач для его Лапласиана A∗A, зависящих от ма-
лого параметра ε > 0 в граничных условиях.
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