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It is proved that, in a finite group G which is isomorphic to the group of automorphisms of the Chevalley
group Fi(2), there are only three possibilities for ordered pairs of primary subgroups A and B with
condition: AN BY # 1 for any g € G. We describe all ordered pairs (A, B) of such subgroups up to

conjugacy in the group G and in particular, we prove that A and B are 2-groups.
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1. Introduction and preliminaries

Let G be a finite group and A and B be its subgroups. By definition, M is the set of
subgroups that are minimal by inclusion among all subgroups of type AN B9, g € G, and m
consists of those elements of the set M whose order is minimal. Denote by Ming (A, B) (resp.
ming(A, B)) the subgroup, generated by the set M (resp. m). First this kind of groups was
introduced in [1]. Evidently, ming(A, B) < Ming(A, B) and the following three conditions are
equivalent: a) AN BY # 1 for any g € G; b) Ming(A, B) # 1; ¢) ming(A, B) # 1.

If S € Syl,(G) then subgroups ming (S, S) # 1 can be described in many interesting cases. It
give us a description of pairs of subgroups (A4, B) with the condition ming (A, B) # 1 for primary
subgroups and sometimes for nilpotent subgroups A and B. For example, in [2, Theorem 1] it is
proved that Ming (A, B) < F(G) for any pair of abelian subgroups A and B of G, where F(G)
is the Fitting subgroup of G (the greatest normal nilpotent subgroup of G).

It was proved in [3] that if G is an almost simple group with socle Ls(g), ¢ > 3, and
S € Syl,(G), then ming(S,S) = Ming(S,S) = S for the Mersenne prime ¢ = 2" — 1, and
the equalities ming(S,S) = Ming(S,S) = 1 hold for all others ¢, exception ¢ = 9. For ¢ = 9
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the subgroup ming(S,.S) is isomorphic to the dihedral group Dj¢ and it has index 2 in the
group S. The exceptional case is important for our paper, therefore we mention corresponding
result of [4].

Let socle of G be isomorphic to Ly(9) ~ Ag and S € Syl,(G). Then ming(S,S) = 1 for
p > 2, but for p = 2 the equality ming(S,S) = 1 holds for all G, exception G = Aut(4g). In
exception case ming(S,S) = (i,5) ~ Dig, i = j2 = 1, and |Cs(i)| = |Cs(j)| = 8, where i,
belongs to S\ SN Soc(G) and j (resp. 4) induces field (resp. diagonal) automorphism of the
group Soc(G).

We need some information about subgroups of the Chevalley group F4(2). Let ro and rg
be fundamental roots of the root system of type F; which generate subsystem of type Bs.
Denote by Py 3y the parabolic subgroup which is generated by monomial elements n.,, n,,
and unipotent subgroup U corresponding positive roots. The subgroup Py 3y is invariant under
graph automorphism 7 of order 2, its Levy subgroups L is isomorphic to the Chevalley group
B3(2). The product L(7) is isomorphic to the group Aut(Ag). We prove the following theorems.

Theorem 1. Let G be a finite group with socle Fy(2), S be a Sylow 2-subgroup of G and
Ming(S,S) # 1. Then G ~ Aut(F4(2)) and

minG(S, S) = OQ(P{2,3}) . minL<T>(51, Sl),
where S is a Sylow 2-subgroup of the group L(T) and ming,y(S1,S1) ~ Dis.

Theorem 2. Let A, B be p-subgroups of a finite group G with socle Fy(2) and S be a Sylow
2-subgroup of G. Then the following are equivalent:

1) Ming (A, B) # 1;

2)p =2, G~ Aut(Fy(2)) and up to conjugacy in the group G the ordered pair (A, B) lies
in the set {(S,5), (ming(S,S),S), (S,ming(S,S))}.

2. Notations and preliminary results

Further, G be a finite group, A and B be its subgroups. The sets M, m and the subgroups
Ming (A, B), ming (A, B) as in the introduction. Others notations are standard for group theory.
For example, Syl,(G) is the set of all Sylow p-subgroups of the group G, and Soc(G) is the socle
of G (the minimal normal subgroup of the group G).

Lemma 2.1 ( [4]). Let Soc(G) = Ag, S € Syl,(G) and ming(S,S) # 1. Then G = Aut(As),
p =2 and ming(S, S) = (i,j) ~ Dig, where i? = j2> =1, |Cs(i)| = |Cs(j)| = 8, the order of each
elements of m is equal to 2 and the subgroup (i,j) cowers quotient groups G/G'.

Lemma 2.2 ([4]). Let A, B be p-subgroups of G, Soc(G) = A, S € Syl,(G) and ming (A, B) #1.
Then G = Aut(Ag), p=2 and (A, B) € {(S,5), (ming(S,5),S), (S,ming(S,5))}.

Lemma 2.3 ([1]). Let G > G1 > Gs, G1 > A, G > B. Suppose thaEGg N B" =1 for some
h € G and in the quotient group G, = G1/Go we have AN (G1 N B")f =T for some f € G;.
Then AN B9 =1 for some g € G.

In conclusion of this part we note a simple example the group G with subgroups A and B for
which Ming (A, B) # ming (A, B).

Let G be the symmetric group on the four symbols and S € Syla(G). Then S ~ Dg and
O2(G) ~ Zy X Z3. Take the subgroup S as A and as B we take the subgroup of order four of
S, which not belongs to O3z(G). Then |B N O2(G)| = 2 for any g € G. Since AN B = B and
|ANBf| =2 for B/ £ A, then M = {B,B/ n 02(G), B N 05(@)}, where |f| = 3. Therefore
Ming(A, B) = S # O2(G) = ming (A, B).
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3. Some properties of the group Aut(Fy(q))

Further, ® is a reduced indecomposable root system, IT = {rq, ..., 7} is its set of fundamental
roots, ®* is the positive root system respect to II, and also ®~ = —®™.

Denote by ®(¢) an adjoint Chevalley group of type ® of rank ! over the finite field F, of
the order ¢ = p", where p is a prime. The group ®(q) is generated by the root subgroups
X, = (z,(t) | t € Fy), r € ®, where x,(t) is the corresponding root element in the group
®(q). We will need the following natural subgroups of the group ®(g): the unipotent subgroups
U=(X,|re®"), V= (X,|re®), the monomial subgroup N = (n,(t) | 7 € ®, t € F}), the
diagonal subgroup H = (h,(t) | r € ®, t € F;) and the Borel subgroup B = UH. Here, I} is the
multiplicative subgroup of the field F, and n,(t) = z,.(t)x_ (=t~ )z, (t), hy(t) = n,(t)n,(-1).
We set also I = {1,2,...,1}.

Overgroups of the Borel subgroup B and conjugate with them are called parabolic. Due to
familiar result of J.Tits, parabolic subgroups containing subgroup B are Py = (B,n,,(1) | j € J),
where J C I.

Lemma 3.1 ( [5], Lemma 5). Fiz a monomial element ng with condition U™ =V and a positive
integer i € I. Set n =ngn,,(1). Then UNU™ = X,,.

For [ = 1 the root subgroup X,, coincides with a Sylow p-subgroup of the group ®(g) and in
this case in the Lemma 3.1 the element n is diagonal.

Further, IT = {ry,79,73,74} is a fundamental root system of type Fy, moreover ry, ro are
short roots and 79 + 73 is a root. The graph automorphism 7 of the Chevalley groups Fy(2) is
defined correctly by symmetry of order 2 of the Coxeter graph of type Fj, which induces the
bijection r — T of the root system of type Fy to itself such that —r = —7 [6, Lemma 12.3.2].
Note, by the way, that root system of type Fj is the union subsystems ®; and ®, of type By
and Oy respectively and ®; = ®5 (see, for Example, [7]).

Lemma 3.2. Let U, V be the unipotent subgroups of the group Fy(2) with the graph auto-
morphism T of order 2 as above. Then S = U X (1) is a Sylow 2-subgroup of the group
Aut(Fy(2)) = F4(2)(T) and there is an unique monomial element ng such that SN S™ = (7).

Proof. Just the last equality requires justification. In the group Fy(2) there is an unique

monomial element ng such that U™ = V. Since X/ = X_,, X7 = X7 and —r = —F, then

noT=7ng. Hence, SN S™ = (7). O

Lemma 3.3. Let S be as in Lemma 3.2. Then in the group Fy(2) there is a monomial element
n such that SN S™ = X,,.

Proof. Let a monomial element ng be as in Lemma 3.1 and n = ngn,,(1). By Lemma
3.1 we have U N U™ = X,,. Now using the equalities ng7=7ng (see proof of Lemma 3.2) and
Ny, (D700, (1) = 1y, (1)ny, (1)7 we obtain the assertion of lemma SN S™ = X, . i

Lemma 3.4. Leti =1 or4 and P = Pp (33 be a mazimal parabolic subgroup of the group Fy(q).
Then (XU) = O,(P).

Proof. Let P = Pp (4. Then we have equality
Op(P) = (X, | r=cprr+---+cars, 1<k <4, ¢521).

Further, for a root r = ary + bra + cr3 + dry we will use the notation abed. Using this compact
representation of roots and the table VIII for the root system of type Fy in [8], we have equality

O0,(P) = (X, | re W),
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where
¥ = {0001,0011,0111,1111,0211,0221,1211,1221, 2211, 1321, 2221, 2321, 2421, 2431, 2432}.

Evidently, Xoo01 € M. For any ¢, u € F, the commutator formula of Chevalley gives the equalities

[20001 (%), Too10(u)] = woo11 (Htu), (22211 (1), Too10(u)] = w2921 (Ftu),
[20001 (1), To210(u)] = o211 (Ftu), (o221 (L), T1000(w)] = T1221 (Ftu)z 2221 (Ft0?),
[z0211(t), Tooro(u)] = o221 (tu), (21211 (t), Zoo10(w)] = T1221 (Ftu)T 2432 (£t20),
[20011 (1), Zo100(w)] = o111 (Ftw)woor1 (Ftu?),  [@1221 (L), Tor00(u)] = $1321(itu),
[zo111 (1), T1000(w)] = w1111 (Ftu), (21321 (1), T1000(1)] = w2321 (Ftu),
[z1111(2), To100(u)] = w1211 (Ftu), [22211 (1), To210(u)] = w2421 (Ftu),
(20211 (t), T1000(w)] = T1211 (Ftw)Taz11 (Ftu®),  [w2021(2), To210(1)] = T2a31 (Ftu).

Using these equalities, we successively obtain the inclusions X, C Op(P) for all » € ¥. The
conclusion of the lemma is also true for i = 1 by the equality PIT\ = Pr1y- O

4. Some properties of Sylow p-subgroups of the groups
of Lie type over fields of characteristic p

Analogues of the subgroups X, U, V, N, H, B, Py of the Chevalley group ®(q) in Section 3
are also defined for twisted Chevalley group "®(g). In this section, G(q) is a group of Lie type
over a finite field of order g of characteristic p, where G = ® or "®. It is well known that
any parabolic subgroup P; of the group G(q) is a semidirect product with kernel O,(Py) and a
noninvariant factor L. A subgroup L is called a Levi factor and it is isomorphic to the central
product of groups of Lie type of smaller ranks over the initial field.

We will need the following strengthening of Lemma 3.13 from [3].

Lemma 4.1. The number of orbits under the action of conjugation by elements of U on the set
of subgroups U9 of G(q) with the condition UNUY =1, g € G(q), is equal to one. Moreover, the
length of this single orbit is |U| and it consists of subgroups of the form V", uw e U.

Proof. Any element g € G(gq) can be uniquely represented in the form g = un,v, where
u,v € U, ny, € N, and ny,on,t € V. Let UNUY = 1. Then UNU™ = 1. Since X = Xw(rys
then w(®T) = —®*. Thus, any subgroup UY with the condition U N UY = 1 has the form V*
for some u € U. Since Ng(4) (V) = HV, then the number of subgroups of the form V*, u € U,
with the condition U N V* =1 is equal to |U]. O

Lemma 4.2. V' N O,(Py) =1 and the subgroup V covers the Sylow p-subgroup in the quotient
group Py = P;/O,(Py).

Proof. Since Op(Py) C U, and UNV = 1, then O,(P;) NV = 1. By virtue of the Levi
decomposition |Syl,(Py)| = |P;NV/|. Consequently, the subgroup V covers the Sylow p-subgroup
of the quotient group P; = P;/O,(Py). O

5. The proof of the Theorem 1

Further in the proof, we use the notations of the Section 3 for subgroups and elements of the
group Aut(Fy(2)).
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So, by the hypothesis of the theorem, G is a finite group, Soc(G) ~ F4(2), S € Syla(G) and
Ming(S,S) # 1. Since Aut(Fy(2)) = F4(2)(7) then it is possible only two cases: 1) G = F4(2);
2) G = F(2)(7).

The first case is not possible, because the Sylow 2-subgroups U and V of the group G = F4(2)
have the unite intersection.

Let G = Fy4(2)(r). Without loss of generality, we can assume that S = U(r). Let g € G.
Then g = ujnusf, where uj,us € U, n € N and 6 € (). If n # ng then UNUY # 1 and,
consequently , SN SY #£ 1. If n = ng, then we have SN SY = (7) by Lemma 3.2. Thus SNSY # 1
for each g € G and moreover any element (subgroup) of the set m for A = B = S has order 2.
Set

P=Ppa.

By Lemma 3.1 there is a monomial element n € Fy(2) such that SN S™ = X,,. By Lemma 3.4
(X7) = Oa(Pr(3y)

for i = 1 or 4. Since (O2(Pp\f3}), OQ(P}-\{Z»})> = O3(P), then O3(P) < ming(S, S).
Let
N = Ng(P) = P{r).
Then O2(N) = Oz(P) and
N = N/Oy(N) ~ Aut(As).

We choose an element € G such that the intersection of cardinality 2
D=SNnS*em

does not lie in O2(N). (Such an element certainly exists, for example, as x, we can take the
element ng from Lemma 3.1.) Since O3(N) C S, then Oz(N) N S* = 1. Set

S1=NnNS*
By Lemma 4.3, the subgroup U®, and therefore by definition, the subgroup
Uy =PnNnU*< S,
covers a Sylow 2-subgroup of the factor group

ﬁ = P/OQ(P) ~ Sp4(2).

Socle of the group Sp4(2) is isomorphic to Ag, but Sps(2) % Aut(Ag). Therefor ming(U,Up) =1
by Lemma 2.1. Hence, also miny(U,U;) = 1, since [N : P| =2 and U,U; < P.

We show that S; # U;. Suppose the contrary, let S; = U;. Then in the quotient group N
we have

min(S, S1) = ming(S,U1) = ming(U,U;) = 1.

Moreover, to obtain the second equality, we also use the fact that U, covers a Sylow 2-subgroup of
P and [N : P| = 2. Now, by Lemma 2.3, with G = G, G; = N, Go = O3(N) and A = B = S, by
O2(N)N S* =1, we have SN SY =1 for some y € G. That is, ming (S5, S) = 1. A contradiction.

So, S # U;. Therefore, and by [N : P| = 2, the subgroup S; covers a Sylow 2-subgroup
of N. Since O2(N) < ming(S,S), to describe the subgroup ming(S, S) it is necessary to know
its image ming (S, S) in N = N/O5(N). We show that ming(S, S) = ming(S, S).
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Suppose that D = SN S* € m does not lie in the preimage of Sy in the NV of the subgroup
minﬁ(g, S), which by virtue of Lemma 2.1 is isomorphic to the dihedral group of order 16. Then
SoNSy =1, since S2 < S, and S < S”. From here ming (S, S)NS; = 1. But this is impossible,
because S1 € Syla(N). Thus, D < S, and, consequently, ming (S, S) < ming (S, S).

On the other hand, each element D € 7 is of order 2 by Lemma 2.1 and by definition
D=25n g?f for some 77 € N. Therefore, for the preimage D < S of the subgroup D we have
|D : O3(N)| = 2. Hence, D < SYO5(N) and D £ Oy(N), otherwise S N'S] = 1. Therefore,
|DNSY| = 2. Further, DNSY = DN(NNS*)¥ = DNS®¥. We show that DNS*¥ = SNS*Y. Indeed,
from |D N SY| = 2, we obtain D = (d)O2(N), where d is an involution. Since S*Y N O2(N) = 1,
then the image in S of the intersection Dy = S N S®Y contains isomorphic to D, copy D;.
Obviously, D; is also contained in the intersection N N S* = (N N S*)¥ = SY, and subgroup
SY is isomorphic to its image S} € Syla(N). Therefore, D; ~ Dy < D. Since [D| = 2, then
|D1] =2 = |D;| = |S N S*|. Hence DN S*™ = SN S% € m. So, we have the correspondence
D — (d)y = DnNS{ =8NS*™ € m. Therefore the subgroup ming(9,S) covers the subgroup
ming (S, S). Hence, min (S, S) < ming(S, S).

Thus, we have established that ming(S,S) = ming(S,S). Now Theorem 1 follows from
Lemma 2.1.

Theorem 1 is proved.

6. The proof of the Theorem 2

So, by the hypothesis of the theorem, G is a finite group, Soc(G) ~ Fy(2), A, B are primary
p-subgroup of G, and S is a Sylow 2-subgroup of G.

(1) = (2). Let Ming (A, B) # 1. Then also ming(A, B) # 1. In view of Theorem B(2) of [3],
G ~ Aut(F4(2)) and the subgroups A and B are 2-groups. Without loss of generality we can
assume that A and B lie in S. Let the set m corresponds to the subgroup ming(S,S) # 1. As
shown in the proof of Theorem 1, all elements of the set m have order 2. Therefore, if an element
of the m is not in ming(A, B), then ming(A, B) = 1, but this is impossible by assumption.
Hence, ming(S,S) < ming(A, B). Since A and B are 2-groups and |S : ming(S,S)| = 2 by
Theorem 1, then the subgroups A and B coincide with the subgroups S or ming (S, S).

We show that the pair (4, B) = (ming(S,S), ming(S,5)) is excluded. Again, in view of
Theorem 1

ming (S, S) = Oa(Py2,33) - ming ;) (S1,51) < O2(P2,33) N L(7),

where S; is a Sylow 2-subgroup of the group L(r) ~ Aut(As), and mingy(S1,S1) ~ Dis.
By Lemma 3.2, SN S™ = (7), therefore, ming (S, S) N (ming(S,5))™ < (7). In particular,
O2(Pr2,3y) N O2(P23)™ = 1. Since ngt = 7ng, then (L(7))"® = L(r). Summarizing all of
the above and applying Lemma 2.2, we obtain the existence of an element g € L(r) such that
ming(S,5) N (ming (S, S))9 = 1.

(2) = (1). If (A, B) = (S5, 5), then Ming (A, B) # 1 in view of Theorem 1.

Let (A, B) = (ming(S, S), S). Suppose that Ming (A4, B) = 1. Then also ming (4, B) = 1.
Therefore, S N (ming(S,.5))Y = 1 for some y € G and |S N SY| # 1 since ming(S,S) # 1. As
noted above, |S : ming(S,S)| = 2 by Theorem 1. Moreover, it follows from Theorem 1 that
S = ming(S,S) X (i) for any involution ¢ € S\ming(S,S). Therefore, |S N SY| = 2, otherwise
SN (ming (S, 5))Y # 1. Thus, SNSY € m and SN SY < ming(SY, SY) = (ming(S,5))Y. This is

a contradiction.
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The case (4, B) = (S, ming(S,.9)) is considered similar to the case (4, B) = (ming(S5, S), S).
Theorem 2 is proved.
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O mepeceuyeHusix mpumMapHbix moarpynna B rpyime Aut(F4(2))

BuxkTop . 3enkoB

WMucturyr matemaruku u mexanuku ¥ pO PAH
Kogausesckoit, 16, Exarepuabypr, 620990
Poccusa

Axos H. Hyxun

WMucturyT matemaTuku u GyHIaMEHTATIBHON HNHMOPMATHKHI
Cubupckuii deepaibHblil YHUBEPCUTET

Csobonmsrit, 79, Kpacuosipck, 660041

Poccusa

IHoxaszaro, umo 6 woHnewnol epynne G, usomopProl epynne ecex asmomoppuamos zpynno. Illesanne
Fu(2), cywecmeyrom auwb mpu muna ynopadowernu nap npumaphux nodzpynn A u B ¢ yciosuem:

AN BY # 1 dan mobozo g € G. IIpusedeno onucanue ecex ynopadowernuxr nap (A, B) maxux noo-

epynn ¢ mownocmwio do conpascennocmu 6 epynne G, 6 wacmuocmu, dokazarno, wmo A u B asasomcs
2-epynnamu.

Karouesvie caosa: xKonewHnas 2pynna, novwmu npocmas 2pynna, npumapHai, nodepynna.
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