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We construct a class of integral representations for holomorphic functions in a polyhedron in C4,
associated with Hirzebruch surfaces. The kernels of the integral representations are closed differential
forms in C4 associated with volume forms on Hirzebruch surfaces.
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Introduction

The kernel of the Bochner-Martinelli integral representation in Cn+1 is well known to be
closely connected with the Fubini-Studi form for the projective space Pn = CPn as follows:

ω(z) =
1

2πi
dλ

λ
∧ ω0([ξ]) (1)

(see, for instance, [1, Ch. 3]; [2, Ch. 4]). Here ω is the Bochner–Martinelli form,

ω(z) =
n!

(2πi)n+1

n+1∑
k=1

(−1)k−1 z̄k
|z|2n+2

dz̄[k] ∧ dz,

dz = dz1 ∧ . . . ∧ dzn+1, and dz̄[k] results from deleting the differential dz̄ in dz̄k. The form
ω0([ξ]) is the volume form for the Fubini–Studi metric in Pn (see [3, p. 21])

ω0([ξ]) =
n!

(2πi)n
E(ξ) ∧ E(ξ)
|ξ|2(n+1)

, (2)

where

E(ξ) =
n+1∑
k=1

(−1)k−1ξkdξ[k]

is the Euler form and ξ = (ξ1, . . . , ξn+1) are the homogeneous coordinates of a point [ξ] ∈ Pn.
Moreover, ξ, z ∈ Cn+1 and λ ∈ C are connected by the relation z = λξ.

The Bochner–Martinelli form is a “canonical” form of degree 2n+ 1 in Cn+1 r {0}. The
latter set is a bundle over Pn whose fiber is the one-dimensional torus C∗. In other words,
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Pn = [Cn+1 r {0}]/G, where G = {(λ, . . . , λ) ∈ Cn+1 : λ ∈ C∗} is the transformation group
of diagonal matrices. The projective space is a particular instance of a toric variety. In the
general case, each n-dimensional toric variety is some quotient space (see [4, 5, 6])

X =
[
Cd r Z(Σ)

]
/G.

Here Z(Σ) is the union of some coordinate subspaces in Cd constructed from a fan Σ ⊂ Rn

with d generators and G is a group isomorphic to the torus (C∗)r, r = d− n, which is also
constructed from Σ.

In his report at the “Nordan” conference on complex analysis (Stockholm, April 1999)
A. K. Tsikh posed the problem of calculating the volume forms ω0([ξ]) on toric varieties Xk
(the Fubini–Studi forms) and the canonical forms ω(z) on Cd r Z(Σ) with the property

ω(z) ∼ 1
(2πi)r

dλ1

λ1
∧ . . . ∧ dλr

λr
∧ ω0([ξ]),

generalizing (1), where the sign ∼ means that the forms have the same residues with respect
to λ1 = . . . = λr = 0. Moreover, he noted that the forms ω may serve as kernels of integral
representations in Cd.

In the present work we consider a class of toric varieties of complex dimension 2 called
Hirzebruch surfaces. We construct volume forms for this class and canonical forms in C4 rZ ′

where the set Z ′ is, in general, not the same as the singular set Z(Σ). It is shown that the
constructed canonical forms define an integral representation in 4-circular polyhedraG ⊂ C4.
In [7] author considered toric varieties, defined by convex fans. Convexity of a fan provides
that the singular set of a canonical form ω coincides with Z(Σ). As we will see below in the
case of Hirzebruch surfaces fan fails to be convex if k > 2.

1. Hirzebruch Surfaces, Moment Maps and Integration
Cycles

Hirzebruch surface Xk is the toric variety defined by the 2-dimensional fan, spanned by the
vectors v1=(1, 0), v2=(0, 1), v3=(−1, 0), v4=(−k,−1), where k ∈ Z+.

v1

v2

v3

v4

Fig. 1. The fan of X2.

To each vector vj we assign a complex variable ζj so that ζ = (ζ1, ζ2, ζ3, ζ4) plays role
of homogeneous coordinates of Hirzebruch surfaces Xk. Each pair of nonneighboring vectors
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vi, vj (i.e., those not defining a two-dimensional cone) defines a coordinate plane in Z(Σ)
(see [7]) so that

Z(Σ) = {ζ1 = ζ3 = 0} ∪ {ζ2 = ζ4 = 0}.

The group G is determined by the relations
∑
j

µjvj = 0 on the vectors vj . The following

equations {
v1 + v3 = 0,

kv1 + v2 + v4 = 0,

are all linearly independent relations between the vectors vk. Consequently, the vectors
µ1 = (1, 0, 1, 0), µ2 = (k, 1, 0, 1) constitute a basis for the lattice of relations. The group G
is the 2-parameter surface {(λ1λ

k
2 , λ2, λ1, λ2) : λj ∈ C∗} ⊂ (C∗)4, so that

ζ ∼ η ⇔ ∃λ1, λ2 : ζ = (ζ1, ζ2, ζ3, ζ4) = (λ1λ
k
2η1, λ2η2, λ1η3, λ2η4).

The moment map (see, for instance, [5, 8]) µ : C4 → R4/R2 ' R2 looks like

µ(ζ1, ζ2, ζ3, ζ4) = (ρ1, ρ2),

where {
ρ1 = |ζ1|2 + |ζ3|2,
ρ2 = k|ζ1|2 + |ζ2|2 + |ζ4|2.

(3)

For a fixed ρ = (ρ1, ρ2) ∈ R2, the relations (3) define the set Γk0(ρ) = µ−1(ρ).
The Kähler cone (see, for instance, [5]) for Xk is defined by the following inequalities:{

ρ1 > 0,
ρ2 > kρ1.

(4)

The fact that the inequalities (4) hold provides that the integration cycle Γk0 does not
intersect the singular set Z(Σ).

2. A Canonical Form and a Volume Form

We write down a form ω in CdrZ(Σ) that is an analog of the Bochner–Martinelli form and
establish its basic properties.

The sought form has bidegree (4, 2) and looks like

ω(ζ) =
h(ζ̄) ∧ dζ
g(ζ, ζ̄)

. (5)

The numerator is a form of type (4, 2), where dζ = dζ1 ∧ dζ2 ∧ dζ3 ∧ dζ4, and

h(ζ) = ζ3ζ4dζ1 ∧ dζ2 − ζ2ζ3dζ1 ∧ dζ4 + ζ1ζ4dζ2 ∧ dζ3 + kζ1ζ3dζ2 ∧ dζ4 + ζ1ζ2dζ3 ∧ dζ4 (6)

is an analog of the Euler form. The denominator g is the function

g(ζ, ζ̄) = |ζ1|4|ζ2|4−2k + |ζ1|4|ζ4|4−2k + |ζ2|2k+4|ζ3|4 + |ζ3|4|ζ4|2k+4.
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Here we have to make one important remark.
Note that g may contain negative powers of ζ. In this case we define the form ω as in

(5), whose numerator and denominator are multiplied by the least power of ζ such that the
denominator of the resulting form contains no negative powers of ζ. This procedure does
not affect the transformation laws of the form ω that we will derive below.

However, the singular set Zω of the form ω depends on k. More precisely, we have the
following three cases:

1. If k = 0 or k = 1 then Zω coincides with Z(Σ) = {ζ1 = ζ3 = 0} ∪ {ζ2 = ζ4 = 0};

2. If k = 2 then Zω = Z ′ := {ζ1 = ζ3 = 0} ∪ {ζ1 = ζ2 = ζ4 = 0};

3. If k > 2 then Zω = Z ′′ := {ζ1 = ζ3 = 0}∪{ζ2 = ζ4 = 0}∪{ζ1 = ζ2 = 0}∪{ζ1 = ζ4 = 0}.

Each fixed element δ = (λ1λ
k
2 , λ2, λ1, λ2) ∈ G defines the mapping δ : C4 r Z(Σ) →

C4 r Z(Σ) by the formula ζ → δ · ζ, i.e.,
ζ1 → λ1λ

k
2ζ1,

ζ2 → λ2ζ2,

ζ3 → λ1ζ3,

ζ4 → λ2ζ4.

(7)

Proposition 1. The differential form ω is invariant under the action of δ.

Proof. By direct substitution, we obtain the following transformation laws for h(ζ̄), dζ,
and g(ζ, ζ̄):

h(ζ̄)→ λ̄2
1λ̄
k+2
2 h(ζ̄), dζ → λ2

1λ
k+2
2 dζ, g(ζ, ζ̄)→ (λ1λ̄1)2(λ2λ̄2)k+2g(ζ, ζ̄).

Inserting them in ω, we arrive at the assertion of the proposition. 2

We now describe the behavior of ω under the action of the group G :
(
C4 r Z(Σ)

)
×C2
∗ →

C4 r Z(Σ), defined by (7).

Lemma 1. The form dζ transforms as follows under the action of (7):

dζ → λ1λ
k+1
2 dλ1 ∧ dλ2 ∧ h(ζ) + ψ(λ, ζ),

where h is determined by (6), and the form ψ has higher degree in ζ than h(ζ).

Lemma 2. The form h(ζ̄) transforms by the following rule under the action of (7):

h(ζ̄)→ λ̄2
1λ̄
k+2
2 h(ζ̄).

It is not hard to prove lemmas 1 and 2 by direct substitution of the action of G into the
forms dζ and h(ζ̄).

Let us note that since the denominator g is a function (not differential form), it transforms
by the same rule as in Proposition 1 under the action of (7).

We thus come to the following
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Theorem 1. Under the action of (7) the form ω transforms as follows:

ω → dλ1

λ1
∧ dλ2

λ2
∧ ω0 + ω1 (8)

with the positive form

ω0 =
h(ζ̄) ∧ h(ζ)
g(ζ, ζ̄)

of homogeneity degree zero under the action of the group G and with some form ω1, involving
no conjugate differentials dλ̄i and having at most one differential dλj in each summand.

The form ω0 is an analog of the Fubini–Studi form (2) for the projective space.
Recall that Γk0 = Γk0(ρ) is the set (3). We now treat it as an integration cycle. The cycle

Γk0 foliates over Xk with fibers isomorphic to the real tori T2 (T = {z ∈ C : |z| = 1}), i.e.,

Γk0(ρ)/GR = Xk, (9)

where GR := {(λ1λ
k
2 , λ2, λ1, λ2) : |λj | = 1, j = 1, 2} (see [5, Theorem 4.1]). From this

and Theorem 1 we see that the form ω0 depends only on the orbits of the group G and
consequently is well defined on Xk. Moreover, Γk0 is not homologous to zero in C4 r Z(Σ).

At this point let us note that if k > 2 then the singular set Zω does not coincide with
Z(Σ). (This happens because the fan Σ is not strictly convex.) If k = 2 then the singular
set Zω is a subset of Z(Σ), and therefore the cycle Γk0 does not intersect Zω. If k > 2 then
the cycle Γk0 can intersect the planes {ζ1 = ζ2 = 0} и {ζ1 = ζ4 = 0}. In this case we need to
prove the following

Proposition 2. The form ω is bounded in the neighborhood of the planes {ζ1 = ζ2 = 0}
and {ζ1 = ζ4 = 0}.

Proof. Let us show that the form ω is bounded in the neighborhood of the plane
{ζ1 = ζ2 = 0}. Let |ζ1| = ε1, and |ζ2| = ε2. Equalities (3) imply |ζ3|2 = ρ1 − ε2

1 >
ρ1

2
and

|ζ4|2 = ρ2 − kε2
1 − ε2

2 >
ρ2

2
when ε1 and ε2 are sufficiently small. Note that for such |ζk| we

have that g >
ρ2

1ρ
k+2
2

2k+4
, and the numerator h(ζ̄) ∧ dζ is bounded. Therefore, the form ω is

bounded in the neighborhood of {ζ1 = ζ2 = 0}. Similarly one can show that ω is bounded
in the neighborhood of {ζ1 = ζ4 = 0}. 2

Proposition 2 implies that the form ω is integrable over the cycle Γk0 .

Corollary 1. The equality
∫

Γk0
ω = C holds, where C is some nonzero constant.

Proof. (8) and (9) imply∫
Γk0

ω =
∫
|λ1|=1

dλ1

λ1

∫
|λ2|=1

dλ2

λ2

∫
Xk
ω0 = (2πi)2

∫
Xk
ω0.

The last integral is a positive number by positivity of the form ω0, as required. 2

Now, we prove the following

Proposition 3. The form ω is closed.
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Proof. In fact we have to demonstrate that (g/g̃)∂̄h− ∂̄(g/g̃)∧h = 0. This would imply
that

(g/g̃)d(h∧dζ)−d(g/g̃)∧(h∧dζ) = (g/g̃)dh∧dζ−d(g/g̃)∧h∧dζ = ((g/g̃)∂̄h−∂̄(g/g̃)∧h)∧dζ = 0,

i.e., the form ω is closed. By direct calculation of ∂̄h and ∂̄(g/g̃) we get the statement of the
proposition. 2

Proposition 4. Let f(ζ) be a holomorphic function in a neighborhood U about the origin and
let ρ1, ρ2 be small enough to guarantee Γk0 ⊂ U . Then the following integral representation
is valid:

f(0) =
1
C

∫
Γk0

f(ζ)ω(ζ), (10)

where C is the normalization constant:
∫

Γk0
ω = C 6= 0.

Proof. Since the form fω is ∂̄-closed, the integral in (10) is independent of ρ1, . . . , ρr.
We rewrite it as ∫

Γk0

f(ζ)ω(ζ) =
∫

Γk0

f(0)ω(ζ) +
∫

Γk0

(f(ζ)− f(0))ω(ζ) =

= Cf(0) +
∫

Γk0

(f(ζ)− f(0))ω(ζ).

Let us show that the last integral vanishes. By substituting ζ → τζ, we obtain:
ζ1 → τk+1ζ1,

ζ2 → τζ2,

ζ3 → τζ3,

ζ4 → τζ4.

Then the cycle Γk0 goes into the cycle Γkτ :{
|τk+1ζ1|2 + |τζ3|2 = ρ1,

k|τk+1ζ1|2 + |τζ2|2 + |τζ4|2 = ρ2.

The integral goes to∫
Γk0

(f(ζ)− f(0))ω(ζ) = lim
τ→0

∫
Γkτ

(f(ζ)− f(0))ω(ζ) = lim
τ→0

∫
Γk0

(f(ζτ)− f(0))ω(ζτ).

By Proposition 1 the form ω is invariant under the substitution ω(ζτ) = ω(ζ). Since all sk
are positive, we have lim

τ→0
f(ζτ) = f(0). Thus

lim
τ→0

∫
Γk0

(f(ζτ)− f(0))ω(ζτ) = lim
τ→0

∫
Γk0

(f(ζτ)− f(0))ω(ζ) = 0.

The proof of the proposition is now completed. 2
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3. Integral Representation

We now consider the question of finding a domain D, such that the following integral rep-
resentation is valid for every point z ∈ D

f(z) =
1
C

∫
µ−1(ρ)

f(ζ)ω(ζ − z). (11)

Consider the domain D = Dρ:{
|ζ1|2 + |ζ3|2 < ρ1,

|ζ2|2 + |ζ4|2 < ρ2 − kρ1.
(12)

We will show that it is the required domain. Note thatD is nonempty if the Kähler conditions
(4) are satisfied.

Denote by Zz(Σ) the translate z + Z(Σ):

Zz(Σ) = {ζ1 − z1 = ζ3 − z3 = 0} ∪ {ζ2 − z2 = ζ4 − z4 = 0},

and let Γkz be the translate z + Γk0 :

Γkz :
{
|ζ1 − z1|2 + |ζ3 − z3|2 = ρ1,

k|ζ1 − z1|2 + |ζ2 − z2|2 + |ζ4 − z4|2 = ρ2.

Denote by W = Wρ 2-circular polyhedron defined by the system{
|ζ1|2 + |ζ3|2 < ρ1,

k|ζ1|2 + |ζ2|2 + |ζ4|2 < ρ2.
(13)

By W2ρ we denote the domain like (13), where the right-hand sides of the inequalities are
2ρ1, 2ρ2.

Lemma 3. For each z ∈ D the cycle Γkz lies in W2ρ. Moreover, if the Kähler conditions (4)
are satisfied then the homology Γz ∼ Γk0 holds in the domain W2ρ r Zz(Σ).

Proof. Consider the following homotopy of the cycles Γk0 and Γkz :{
|ζ1 − tz1|2 + |ζ3 − tz3|2 = ρ1,

k|ζ1 − tz1|2 + |ζ2 − tz2|2 + |ζ4 − tz4|2 = ρ2,
(14)

where 0 6 t 6 1. We will prove that the cycle (14) is disjoint from Zz(Σ) for any t in the
interval [0, 1].

Let us show that the cycle (14) is disjoint from the plane {ζ1 − z1 = ζ3 − z3 = 0} in
Zz(Σ). Substituting it to (14) we get (1 − t)2(|ζ1|2 + |ζ3|2) = ρ1. The last equality is false
since (1− t)2 6 1 and |ζ1|2 + |ζ3|2 < ρ1.

Similarly we show that the cycle (14) is disjoint from the plane {ζ2 − z2 = ζ4 − z4 = 0}
in Zz(Σ). Substituting it to (14) we get k|ζ3 − tz3|2 = −(ρ2 − kρ1) + (1 − t)2(|ζ2|2 + |ζ4|2)
that never holds since (1− t)2 6 1 and |ζ2|2 + |ζ4|2 < ρ2 − kρ1. This completes the proof of
the lemma. 2
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We have thus proven the integral representation (11) for functions holomorphic in W2ρ.
Note that it suffices to take the holomorphy domain of the function f(z) in (11) to be
W = Wρ, since the latter is a convex domain whose boundary contains the cycle Γk0 . It follows
from convexity of W that a function holomorphic in W and continuous in the closure of W
can be approximated by polynomials in the closure ofW for which the integral representation
(11) is proven. Thus, we arrive at the following

Theorem 2. Suppose that f(ζ) is a holomorphic function in the domain W defined by (13)
and f is continuous in the closure of W . Then the integral representation (11), with the
cycle Γk0 defined by (3) is valid in the domain D defined by (12).

The author was supported by Grants MK-914.2007.1 and NSh-2427.2008.1 from the Pres-
ident of Russian Federation.
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