# On some Sufficient Condition for the Equality of Multi-clone and Super-clone 

Nikolay A. Peryazev*<br>Saint Petersburg State Electrotechnical University<br>Professor Popov, 5, Saint Petersburg, 197376<br>Russia<br>Ivan K. Sharankhaev ${ }^{\dagger}$<br>Institute of Mathematics and Informatics<br>Buryat State University<br>Smolin, 24a, Ulan-Ude, 670000<br>Russia

Received 05.04.2017, received in revised form 18.07.2017, accepted 28.09.2017
Multi-clones and super-clones are considered in this paper. They are generalizations of clones. To get a super-clone one need to add to a multi-clone the closure condition with respect to solvability of the simplest equation. The condition for identity of multi-clone and super-clone is proved.

Keywords: multi-operation, multi-clone, super-clone, superposition, operation, substitution. DOI: 10.17516/1997-1397-2018-11-1-97-102.

## Introduction

Clones are studied most actively in the theory of functional systems [1]. Clones are sets of operations that are closed with respect to superposition, and they contain all projection operators. Recently interest in generalizations of clones, namely, hyperclones, multiclones and superclones has been raised [2].

Multi-clone is a set of multi-operations which are closed with respect to superposition, and it contains all complete, empty and projection operations. A super-clone is obtained from a multi-clone by adding the closure condition with respect to solvability of the simplest equation. It is known that super-clones are closely related to clones. Complete Galois connection between them was established [3]. Condition of the equality of multi-clone and super-clone is obtained in this paper.

Let $A$ be an arbitrary finite set, and $B(A)$ be the set of all subsets of $A$ including $\varnothing$.
A mapping from $A^{n}$ into $A$ is described as an $n$-ary operation on $A$ (the case $n=0$ is possible). The set of all $n$-ary operations on $A$ is described as $P_{A}^{n}$, and the set of all operations on $A$ is described as

$$
P_{A}=\bigcup_{n \geqslant 0} P_{A}^{n} .
$$

A mapping from $A^{n}$ into $B(A)$ is described as an $n$-ary multi-operation on $A$ (the case $n=0$ is possible). The set of all $n$-ary multi-operations on $A$ is described as $M_{A}^{n}$, and the set of all

[^0]multi-operations on $A$ is described as
$$
M_{A}=\bigcup_{n \geqslant 0} M_{A}^{n} .
$$

Multi-operation $\theta^{n}$ of dimension $n$ is described as empty operation if for all elements $a_{1}, \ldots, a_{n}$ of $A$ relation

$$
\theta^{n}\left(a_{1}, \ldots, a_{n}\right)=\varnothing
$$

is true.
Multi-operation $\pi^{n}$ of dimension $n$ is described as a complete poperation if for all elements $a_{1}, \ldots, a_{n}$ of $A$ relation

$$
\pi^{n}\left(a_{1}, \ldots, a_{n}\right)=A
$$

is true.
Multi-operation $e_{i}^{n}$ of dimension $n$ is described as a projection multi-operation with respect to $i$-th argument if for all elements $a_{1}, \ldots, a_{n}$ of $A$ relation

$$
e_{i}^{n}\left(a_{1}, \ldots, a_{n}\right)=\left\{a_{i}\right\}
$$

is true.
Let us note that multi-operation $e_{i}^{n}$ can be also considered as operation on $A$.
Superposition for $f \in M_{A}^{n}$ and $f_{i} \in M_{A}^{m},(i=1, \ldots, n)$, described as

$$
\left(f * f_{1}, \ldots, f_{n}\right)
$$

is defined as follows

$$
\left(f * f_{1}, \ldots, f_{n}\right)\left(a_{1}, \ldots, a_{m}\right)=\bigcup_{b_{i} \in f_{i}\left(a_{1}, \ldots, a_{m}\right)} f\left(b_{1}, \ldots, b_{n}\right)
$$

for all $a_{1}, \ldots, a_{m}$ of $A$.
If $f, f_{1}, \ldots, f_{n}$ are operations then we have definition of operation superposition.
Every subset $K \subseteq P_{A}$ is described as a clone on $A$ if it contains all projection operations, and it is closed with respect to superpositions.

Every subset $R \subseteq M_{A}$ is described as a multi-clone on $A$ if it contains all empty, complete multi-operations, projection multi-operations, and it is closed with respect to superpositions.

## 1. Super-clones

Solvability with respect to $i$-th argument for an $n$-ary multi-operation $f$ is such a multioperation $\left(\mu_{i} f\right)$ that for all $a_{1}, \ldots, a_{n}$ of $A$ relation

$$
\left(\mu_{i} f\right)\left(a_{1}, \ldots, a_{n}\right)=\left\{a \mid a_{i} \in f\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right)\right\}
$$

is satisfied.
Substitution of a multi-operation $g$ into the place of $i$-th argument of a multi-operation $f$ is such multi-operation $\left(f *_{i} g\right)$ that relation

$$
\left(f *_{i} g\right)\left(a_{1}, \ldots, a_{n+m-1}\right)=\bigcup_{b \in g\left(a_{i}, \ldots, a_{i+m-1}\right)} f\left(a_{1}, \ldots, a_{i-1}, b, a_{i+m}, \ldots, a_{n+m-1}\right)
$$

is satisfied.
Identification of $i$ and $j$ arguments of a multi-operation $f$ is such a multi-operation $\left(\Delta_{i, j} f\right)$ that for all $a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}$ of $A$ relation

$$
\left(\Delta_{i, j} f\right)\left(a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, a_{j-1}, a_{i}, a_{j+1}, \ldots, a_{n}\right)
$$

is satisfied.
Intersection of multi-operations $f$ and $g$ from $M_{A}^{n}$ is such a multi-operation $(f \cap g)$ that for all $a_{1}, \ldots, a_{n}$ of $A$ relation

$$
(f \cap g)\left(a_{1}, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, a_{n}\right) \cap g\left(a_{1}, \ldots, a_{n}\right)
$$

is satisfied.
Let us note that by analogy with clones multi-clone can be defined as any subset $R \subseteq M_{A}[4]$. A multi-clone contains all empty, complete multi-operations, projection multi-operations, and it is closed with respect to substitutions and identifications.
Lemma 1. For a set of multi-operations $A$ that contains all empty, complete multi-operations, projection multi-operations the following conditions are equivalent:

1) $A$ is closed with respect to superpositions and solvabilities;
2) $A$ is closed with respect to substitutions, solvabilities and identifications;
3) $A$ is closed with respect to substitutions, solvabilities and intersections.

Proof. Equivalence of 1) and 2) follows from representation of superposition in terms of substitutions and identifications of arguments, and permutation of arguments $i$ and $j$ of a multioperation $f$ is expressed as

$$
\mu_{i}\left(\mu_{j}\left(\mu_{i} f\right)\right)
$$

Equivalence of 2) and 3) follows from equality

$$
\Delta_{i, j} f^{n}=\left(\left(\left(\pi^{1} *_{1}\left(e_{i}^{n} \cap e_{j}^{n}\right)\right) \cap f^{n}\right) *_{j} \pi^{0}\right)
$$

Equivalence of 3) and 1) follows from identity

$$
(f \cap g)=\left(f_{\cap} * f, g\right), \text { где } f_{\cap}=\left(e_{1}^{2} * e_{1}^{2},\left(\mu_{2} e_{1}^{2}\right)\right)
$$

A set is described as a super-clone if it satisfies one of the equivalent conditions of Lemma 1.

## 2. Semi-identity of superposition solvability

To prove the equality of super-clones and multi-clones one should transfer solvability operators through superposition. However, the possibility of such operation is still not proved. In the following lemma we give only the identity inclusion (semi-identity) and show that the identity is not satisfied.
Lemma 2. The following semi-identity is satisfied:
$\mu_{i}\left(f^{n} * g_{1}^{m}, \ldots, g_{n}^{m}\right) \subseteq \bigcap_{j=1}^{n}(\mu_{i} g_{j}^{m} * e_{1}^{m}, \ldots, e_{i-1}^{m},(\mu_{j} f^{n} * \pi^{m}, \ldots, \pi^{m}, \underbrace{e_{2}^{m}}_{j}, \pi^{m}, \ldots, \pi^{m}), e_{i+1}^{m}, \ldots, e_{m}^{m})$.
If $f$ is unary multi-operation then the following identity is satisfied:

$$
\mu_{i}\left(f * g^{m}\right)=\left(\mu_{i} g^{m} * e_{1}^{m}, \ldots, e_{i-1}^{m},\left(\mu f * e_{i}^{m}\right), e_{i+1}^{m}, \ldots, e_{m}^{m}\right)
$$

Proof. Let $a \in \mu_{i}\left(f^{n} * g_{1}^{m}, \ldots, g_{n}^{m}\right)\left(b_{1}, \ldots, b_{m}\right)$. It follows from the definition of solvability that

$$
b_{i} \in\left(f^{n} * g_{1}^{m}, \ldots, g_{n}^{m}\right)\left(b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{m}\right)
$$

Then it follows from the definition of superposition that there are $x_{1}, \ldots, x_{n}$ such that

$$
\begin{aligned}
& b_{i} \in f^{n}\left(x_{1}, \ldots, x_{n}\right), \\
& x_{j} \in g_{j}^{m}\left(b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{m}\right),
\end{aligned}
$$

for $j=1, \ldots, n$.
Using solvabilities with respect to various arguments, we obtain

$$
\begin{aligned}
& a \in \mu_{i} g_{j}^{m}\left(b_{1}, \ldots, b_{i-1}, x_{j}, b_{i+1}, \ldots, b_{m}\right), \\
& x_{j} \in \mu_{j} f^{n}\left(x_{1}, \ldots, x_{j-1}, b_{i}, x_{j+1}, \ldots, x_{n}\right),
\end{aligned}
$$

for $j=1, \ldots, n$.
Then

$$
a \in(\mu_{i} g_{j}^{m} * e_{1}^{m}, \ldots, e_{i-1}^{m},(\mu_{j} f^{n} * \pi^{m}, \ldots, \pi^{m}, \underbrace{e_{i}^{m}}_{j}, \pi^{m}, \ldots, \pi^{m}), e_{i+1}^{m}, \ldots, e_{m}^{m})\left(b_{1}, \ldots, b_{m}\right),
$$

for every $j=1, \ldots, n$.
Thus we have

$$
a \in \bigcap_{j=1}^{n}(\mu_{i} g_{j}^{m} * e_{1}^{m}, \ldots, e_{i-1}^{m},(\mu_{j} f^{n} * \pi^{m}, \ldots, \pi^{m}, \underbrace{e_{i}^{m}}_{j}, \pi^{m}, \ldots, \pi^{m}), e_{i+1}^{m}, \ldots, e_{m}^{m})\left(b_{1}, \ldots, b_{m}\right) .
$$

Obviously, when $n=1$ all reverse consequences are satisfied, and hence the identity holds.
The following example shows that the reverse inclusion is not always true. Let us use vector representation of multi-operations [3].
Let $f^{2}=(501042013), g_{1}^{1}=(465), g_{2}^{1}=(736)$. Then

$$
\begin{gathered}
\mu_{1}\left(f^{2} * g_{1}^{1}, g_{2}^{1}\right)=(752) \\
\left(\mu_{1} g_{1}^{1} *\left(\mu_{1} f^{2} * e_{1}^{1}, \pi^{1}\right)\right) \cap\left(\mu_{1} g_{2}^{1} *\left(\mu_{2} f^{2} *, \pi^{1}, e_{1}^{1}\right)\right)=(756)
\end{gathered}
$$

We obtain

$$
\mu_{1}\left(f^{2} * g_{1}^{1}, g_{2}^{1}\right) \subset\left(\mu_{1} g_{1}^{1} *\left(\mu_{1} f^{2} * e_{1}^{1}, \pi^{1}\right)\right) \cap\left(\mu_{1} g_{2}^{1} *\left(\mu_{2} f^{2} *, \pi^{1}, e_{1}^{1}\right)\right)
$$

## 3. Equality of multi-clone and super-clone

Below identities for the transfer of the solvability operator inside the term are found. This is appropriate for terms over intersection and substitution. In what follows brackets that are uniquely recovered are removed.

Lemma 3. The following identities are satisfied:

1) $\mu_{i}(f \cap g)=\mu_{i} f \cap \mu_{i} g$;
2) $\mu_{i}\left(f^{n} *_{j} g^{m}\right)=\left(\mu_{i} f^{n} *_{j} g^{m}\right)$ for $i \in\{1, \ldots, j-1, j+m, \ldots, n+m-1\}$;
3) $\mu_{i}\left(f^{n} *_{j} g^{m}\right)=\alpha^{n+m-1}\left(\mu_{i} g^{m} *_{i} \mu_{j} f^{n}\right)$ for $i \in\{j, \ldots, j+m-1\}$, where $\alpha^{n+m-1}$ is some transposition of arguments.

Proof. 1) Let for all $a_{1}, \ldots, a_{n}$ relation

$$
a \in \mu_{i}(f \cap g)\left(a_{1}, \ldots, a_{n}\right)
$$

is satisfied. According to the definition of $\mu_{i}$, there is a relationship

$$
a_{i} \in(f \cap g)\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right)
$$

Then we have $a_{i} \in f\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right)$ and $a_{i} \in g\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right)$, and also $a \in \mu_{i} f\left(a_{1}, \ldots, a_{n}\right)$ and $a \in \mu_{i} g\left(a_{1}, \ldots, a_{n}\right)$. Thus, we obtaine the following condition

$$
a \in \mu_{i} f\left(a_{1}, \ldots, a_{n}\right) \cap \mu_{i} g\left(a_{1}, \ldots, a_{n}\right)
$$

This condition is equivalent to the original condition, and equality 1 ) is proved.
2) Let for all $a_{1}, \ldots, a_{n+m-1}$ relation

$$
a \in \mu_{i}\left(f^{n} *_{j} g^{m}\right)\left(a_{1}, \ldots, a_{n+m-1}\right)
$$

is satisfied, where $i \in\{1, \ldots, j-1, j+m, \ldots, n+m-1\}$. According to the definition of $\mu_{i}$, relation

$$
a_{i} \in\left(f^{n} *_{j} g^{m}\right)\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n+m-1}\right)
$$

is also satisfied. According to the definition of $*_{j}$, there is an element $a_{0}$ such that $a_{0} \in$ $g^{m}\left(a_{j}, \ldots, a_{j+m-1}\right)$ and $a_{i} \in f^{n}\left(a_{1}, \ldots, a_{j-1}, a_{0}, a_{j+m}, \ldots, a_{n+m-1}\right)$, where $i \in\{1, \ldots, j-1, j+$ $m, \ldots, n+m-1\}$. These conditions are equivalent to the following conditions:

$$
a_{0} \in g^{m}\left(a_{j}, \ldots, a_{j+m-1}\right) \text { and } a \in \mu_{i} f^{n}\left(a_{1}, \ldots, a_{j-1}, a_{0}, a_{j+m}, \ldots, a_{n+m-1}\right)
$$

Thus, we obtain

$$
a \in\left(\mu_{i} f^{n} *_{j} g^{m}\right)\left(a_{1}, \ldots, a_{n+m-1}\right) .
$$

This condition is equivalent to the original condition. Equality 2) is proved.
3) Let for all $a_{1}, \ldots, a_{n+m-1}$ relation

$$
a \in \mu_{i}\left(f^{n} *_{j} g^{m}\right)\left(a_{1}, \ldots, a_{n+m-1}\right)
$$

is satisfied, where $i \in\{j, \ldots, j+m-1\}$. According to the definition of $\mu_{i}$, relation

$$
a_{i} \in\left(f^{n} *_{j} g^{m}\right)\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n+m-1}\right)
$$

is also satisfied. According to the definition of $*_{j}$, there is an element $a_{0}$ such that $a_{0} \in$ $g^{m}\left(a_{j}, \ldots, a_{i}, \ldots, a_{j+m-1}\right)$ and

$$
a_{i} \in f^{n}\left(a_{1}, \ldots, a_{j-1}, a_{0}, a_{j+m}, \ldots, a_{n+m-1}\right)
$$

Hence we have $a \in \mu_{i} g^{m}\left(a_{j}, \ldots, a_{i}, \ldots, a_{j+m-1}\right)$ and

$$
a_{0} \in \mu_{j} f^{n}\left(a_{1}, \ldots, a_{j-1}, a_{i}, a_{j+m}, \ldots, a_{n+m-1}\right)
$$

Then

$$
a \in\left(\mu_{i} g^{m} *_{i} \mu_{j} f^{n}\right)\left(a_{j}, \ldots, a_{i-1}, a_{1}, \ldots, a_{j-1}, a_{i}, a_{j+m}, \ldots, a_{n+m-1}, a_{i+1}, \ldots, a_{j+m-1}\right) .
$$

Thus, we obtain

$$
a \in\left(\mu_{i} g^{m} *_{i} \mu_{j} f^{n}\right)\left(a_{j}, \ldots, a_{i-1}, a_{1}, \ldots, a_{j-1}, a_{i}, a_{j+m}, \ldots, a_{n+m-1}, a_{i+1}, \ldots, a_{j+m-1}\right) .
$$

This condition is equivalent to the original condition for transposition of elements $a_{1}, \ldots, a_{n+m-1}$. Equality 3) is proved.

Theorem. Let us assume that a set of multi-operations $R$ contains multi-operation $e_{1}^{2}$ and it is closed with respect to solvabilities. If multi-clone and super-clone are generated by $R$ then they are equal.

Proof. In what follows we use standard concept of term over the set $\left\{*_{i}, \mu_{i}, \cap\right\}$. The notation $\Phi\left[f_{1}, \ldots, f_{k}\right]$ means that term $\Phi$ depends on $f_{1}, \ldots, f_{k}$.

Let us assume that an arbitrary multi-operation $g$ is represented by term $\Phi\left[f_{1}, \ldots, f_{k}\right]$ in a super-clone, where $f_{s} \in R, s=1, \ldots, k$. Using identities of Lemma 3, we transform term $\Phi$ into term $\Psi\left[h_{1}, \ldots, h_{r}\right]$ in which $\mu_{i}$ can occur only for $h_{j}$, where $h_{j} \in R, j=1, \ldots, r$. According to conditions of the theorem, $\mu_{i} h_{j} \in R$. Since $\left(\mu_{2} e_{1}^{2}\right) \in R$ the intersection is expressed by a term because $(f \cap g)=\left(f_{\cap} * f, g\right)$, where $f_{\cap}=\left(e_{1}^{2} * e_{1}^{2},\left(\mu_{2} e_{1}^{2}\right)\right)$. Thus, we obtain representation of $g$ by the term over $R$ without the use of the condition of closure with respect to solvability.

The work of the second author was supported by the grant of the Buryat State University.

## References

[1] D.Lau, Function Algebras on Finite Sets, Springer-Verlag, Berlin YeideWater Resourses Research, 2006.
[2] N.A.Peryazev, Clones, co-clones, hyperclones and superclones, Uchenie Zapiski Kazan. Univer. Ser. Fiz. Matem. Nauki, 151(2009), no. 2, 120-125 (in Russian).
[3] N.A.Peryazev, I.K.Sharankhaev, Galois theory for clones and superclones, Diskr. mat., $\mathbf{2 7}$ (2015), no 4, 79-93 (in Russian).
[4] A.I.Maltsev, Iterative algebras and Post varieties, Algebra i Logika, 5(1966), no. 2, 5-24 (in Russian).

## Об одном достаточном условии равенства мультиклона и суперклона

Николай А. Перязев<br>Санкт-Петербургский государственный электротехнический университет Попова, 5, Санкт-Петербург, 197376<br>Россия

## Иван К. Шаранхаев

Институт математики и информатики Бурятский государственный университет Смолина, 24а, Улан-Удэ, Респ. Бурятия, 670000

[^1]Ключевые слова: мультиоперачия, мультиклон, суперклон, суперпозичия, операция, подстанов$\kappa$.


[^0]:    *nikolai.baikal@gmail.com
    †goran5@mail.ru
    (C) Siberian Federal University. All rights reserved

[^1]:    Рассматриваются мультиклоны и суперклоны, которые являются обобщениями таких стандартных объектов, как клоны. Суперклон получается из мультиклона добавлением условия замкнутости относительно разрешимости простейшего уравнения. В статье доказано условие, при котором мультиклон и суперклон совпадают.

