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Computer simulation of bilayer structures with dipolar interlayer interaction was performed. Equilibrium
properties were considered for systems with various thicknesses of magnetic layers and distances between

the layers. Non-equilibrium behavior was simulated for high- and low-temperature initial states.
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Introduction

Thin magnetic films and multilayer structures are objects of intensive study due to their
promising applications in memory devices [1], magnetic field sensors [2], and other electronic
and spintronic devices. Multilayer structures consist of alternating magnetic and non-magnetic
layers. Properties of the structures significantly vary with thicknesses and the number of magnetic
and non-magnetic layers. Theoretical study of interactions responsible for these variations can
be carried out by a computer simulation. Interaction between magnetic layers separated by
non-magnetic material should have a long-range character. This work deals with Monte Carlo
simulation of a structure with two magnetic layers and dipolar interlayer interaction.

1. The model of bilayer magnetic structure with dipolar
interaction

A magnetic layer of the structure presents a set of spins situated in cites of a simple cubic
lattice with linear size L in X- and Y-directions and N < L in Z-direction. N characterizes a
thickness of the magnetic layer. The system Hamiltonian H = Hi + Hs + Hy2. Hamiltonians of
the first and the second magnetic layers (Hy=1,2) and Hamiltonian Hio determining interaction
between the layers have the following form
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where S; is a spin (a unit vector in a tree-dimensional space). The first term in H, corresponds
to the exchange interaction, (..) denotes that the summation is conducted only for nearest neigh-
bouring spins. The second term corresponds to uniaxial anisotropy with an axis parallel to
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Z-direction, or perpendicular to the layer surface. Hamiltonian Hpo has a form of dipolar in-
teraction. Summation is conducted for all pairs of spins with one spin belonging to the first
magnetic layer and the other to the second layer. The distance between magnetic layers S cor-
responds to a thickness of non-magnetic intermediate layer in a real structure. The Hamiltonian
parameters were set to be: A =0.10J, D = 0.01J.

2. Equilibrium behaviour of bilayer structures
1

The basic characteristics of the system are the total magnetization m = N (M; + Mz), and
S

1
the staggered magnetization my, = N (M; — My), where Ny = 2L x L x N is the number
of spins in all magnetic layers, and Ml,s M, are magnetic moments of the first and the second

layers, which equal to a vector sum of all spins in the corresponding magnetic layer.

Hamiltonian H, describes a ferromagnetic anisotropic film, with all spins parallel to Z-
direction in the ground state. Dipolar interaction leads antiparallel orientation of magnetic
moments of the layers to be energetically preferable at low temperatures. In this case the stag-
gered magnetization tends to unity and the total magnetization to zero at low temperatures.
Temperature transition in such ordered state is demonstrated in Fig. 1(a). The transition tem-
perature increases with the thickness of the magnetic layers, as it does in thin ferromagnetic
films. Increasing of distance between the magnetic layers leads to weakening of interaction be-
tween them. As a result there is an increase of the number of tests with the system appearing
in a metastable state with magnetic moments of both layers being parallel. This is responsible
for increasing of the total magnetization and decreasing of the staggered magnetization with S
at the same low temperature, which can be seen in Fig. 1(b).
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Fig. 1. Temperature dependence of the total m and the staggered m;, magnetization for systems
with linear size L = 16 (a) with different thicknesses of the magnetic layers N and the distance
between the layers S = 1, (b) for systems with N = 1 and different S

3. Non-equilibrium behaviour of bilayer structures

Investigation of non-equilibrium behaviour of bilayer structures was based on time dependence
of the autocorrelation function

Citot) = <i§si(t)si(tw)> = <]$SM(t)> <J\1]SM(tw)> ,
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where t,, is a waiting time. The system with linear size L = 64, thickness of the magnetic layers
N =1 and the distance between the layers S = 1 was considered.

Non-equilibrium behaviour of the system significantly depends on the initial state. Simula-
tion was carried out for the high- and low-temperature initial states. In the case of the high-
temperature initial state spins have random orientations, the initial total magnetization m® < 1,
and the initial staggered magnetization mgtg < 1. In the case of the low-temperature initial state
spins in the first layer are aligned in a positive direction of Z-axis and spins of the second layer
are aligned in a negative direction, and m® = 0, mgtg = 1. Fig. 2 shows time dependence of the
autocorrelation function for different waiting times at the temperature 7' = 0.9. The autocor-
relation function relaxation process slows down with the waiting time for the high-temperature

initial state and accelerates for the low-temperature initial state.
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Fig. 2. Time dependence of the autocorrelation function C(t,t,,) for different waiting times t,,
for (a) high- and (b) low-temperature initial state

For the case with the waiting time ¢,, = 50 MCS/S (Monte Carlo steps per spin) simulation
was carried out with changing of the temperature during the relaxation process. Simulation
starts at the temperature 7' = 0.9, at the time ¢t = ¢,, the temperature is changed by AT = 0.2
and at the time t = 2t,, it is returned to its initial value. The results of simulation are shown in
Fig. 3. One can see that when the temperature is changed the autocorrelation function deviates
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Fig. 3. Time dependence of the autocorrelation function C(t,t,,) for the waiting time ¢,, = 50
MCS/S for (a) high- and (b) low-temperature initial state. Simulation is conducted at T' = 0.9,
at the time ¢t = ¢, the temperature is decreased (AT = —0.2) or increased (AT = 0.2), at
the time t = 2t¢,, the temperature is returned to the initial value. Central curves denote the
behaviour at the constant temperature.
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from the behaviour at the constant temperature (central curves) upward when the temperature is
decreased, and downward when the temperature is increased. When the temperature is returned
to the initial value the autocorrelation function behaviour also returns to the initial one. This
demonstrates that the system has a memory about the initial state.

Conclusions

Simulation of bilayer magnetic structures with dipolar interaction has revealed such phenom-
ena as a transition to the low-temperature ordered state with antiparallel orientation of magnetic
moments of the layers, effects of slowing down or accelerating of the autocorrelation function with
the waiting time and memory effects.
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JIByXcjioliHble MAarHUTHbIE CTPYKTYPbI C AUTIOJIb-IUIIOJIbHBIM
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Poccus

B pabome nposedero modeauposarue 08YrcaotUHot CMPYKMYPsvl ¢ OUNOAD-OUNOALHBM MEHCCAOEEHIM 63a-
umodeticmeuem. PaccmMompeno 6auAnUuE MOAUUHDL MAZHUMHOLL CAOES U DACCTNOAHUA MENHCOY CAOAMU
HA PABHOBECHDBIE TAPAKMEPUCTNUKY cmpykmypo.. IIposedeno modeauposarue HEPABHOBECHO20 NOGEICHUS
CMPYKMYPvL NPU CMAPME U3 HAYANDHOLL BBICOKO- U HUSKOMEMNEPAMYPHOL0 COCTNOAHUL.

Karoueswie caosa: 08yrcaotinbie maznummvie Cmpykmypvl, ounosb-0unoisvHoe 63aumodeticmeue.
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