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We study the conormal symbol of the singular Bochner-Martinelli integral on a compact closed surface with
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Smooth manifolds with conical points are the simplest singular spaces in the hierarchy of
stratified varieties. Differential analysis on such manifolds was perhaps initiated by Kondrat’ev [1]
who invented the so-called conormal symbol of a differential operator at a singular point.

In the 1980s the analysis encompassed also pseudodifferential operators which has led to diverse
algebras of pseudodifferential operators on manifolds with conical points, see [4] and the references
given there. All the algebras start actually with the same typical differential operators which are
of Fuchs type.

When applied to the Cauchy integral on a plane curve with corners, conormal symbols can be
efficiently computed.

The work [5] was intended as an attempt to examine whether the cone theory still effectively
applies to higher dimensions. To this end, we study the singular Bochner-Martinelli integral on a
compact closed surface with conical points S in Cn and evaluate its conormal symbol at a conical
point. Our computation demonstrates rather strikingly that the conormal symbols are no longer
efficient for pseudodifferential operators in dimensions larger than 1.

The singular Bochner-Martinelli integral is of central importance in complex analysis in several
variables ([2]). In [3], the C∗ -algebra generated by this integral on a compact closed hypersurface
without singular points is described. In contrast to the singular case, the principal homogeneous
symbol is as explicit as the Bochner-Martinelli integral itself.

In this work we find the asymptotic expansion of conormal symbol.
As usual, we identify Cn with R2n under the complex structure zj = xj+ixn+j , for j = 1, . . . , n.
We will consider a smooth hypersurface S in Cn \ {0} with a singular point at the origin given

by
S = {(ϕ(r)x, r) ∈ R2n : x ∈ X, r ∈ [0, R)}, (1)

where ϕ ∈ C1[0, R) satisfies ϕ(0) = 0 and ϕ(r) > 0 for r ∈ (0, R), and the point x = (x1, . . . , x2n−1)
varies over a smooth compact hypersurface X in R2n−1 which does not meet 0.

For instance, X may be a (2n − 2) -dimensional sphere with the centre at the origin. In any
case we assume that X = {x ∈ R2n−1 : ρ(x) = 1}, where ρ is a C1 function on R2n−1 \ {0} with
real values, satisfying ∇ρ 6= 0 on X and ρ(λx) = λhρ(x) for all λ > 0 with some h > 0.

The origin is a singular point of S, for ϕ′(0) < ∞. If ϕ′(0) 6= 0 then 0 is a conical point of S.
In the case ϕ′(0) = 0 the point 0 is a cusp.
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Using (1) it is easy to determine a defining function of the smooth part of S. Indeed, write
ρ(x) = ρ(z′, xn), where z′ = (z1, . . . , zn−1). Then z ∈ S \ {0} readily implies

ρ
( z′

ϕ(Im zn)
,

Re zn
ϕ(Im zn)

)
= 1,

and so the homogeneity of ρ yields S = {z ∈ Cn : Im zn ∈ [0, R), %(z) = 0}, with

%(z) = ρ(z′,Re zn)− (ϕ(Im zn))h.

Given an integrable function f with compact support on S, the singular Bochner-Martinelli
integral of f is defined by

MSf (z) = p.v.
∫
S

f(ζ)U(ζ, z)

for z ∈ S, where

U(ζ, z) =
(n− 1)!
(2πi)n

n∑
j=1

(−1)j−1 ζ̄j − z̄j
|ζ − z|2n

dζ̄[j] ∧ dζ

and dζ = dζ1 ∧ . . . ∧ dζn, while dζ̄[j] is the wedge product of all differentials dζ̄1, . . . , dζ̄n but dζ̄j .
In the sequel, we drop the designation ‘p.v.’ for short.

The properties of the Bochner-Martinelli singular integral operator on the smooth hypersurfaces
are well understood. We are aimed at investigating this operator on the hypersurfaces with isolated
singular points. SinceMSf is smooth away from the support of f , one can certainly assume without
loss of generality that S is of the form (1).

We first represent U(ζ, z) in the local coordinates of S close to a singular point. Set

ν(y) =
∇yρ
|∇yρ|

,

for y ∈ X, and ν2n(y, s) = −h ϕ
′(s)
|∇yρ|

.

Lemma 1 ([5]). The restriction of the Bochner-Martinelli kernel to the hypersurface S has the
form

U(ζ, z) =
1
σ2n

〈(ν(y), ν2n(y, s)), (ϕ(s)y − ϕ(r)x, s− r)〉
(|ϕ(s)y − ϕ(r)x|2 + (s− r)2)n

(ϕ(s))2n−2ds dσ(y)−

−i 1
σ2n

〈iνc(y, s), (ϕ(s)y − ϕ(r)x, s− r)〉
(|ϕ(s)y − ϕ(r)x|2 + (s− r)2)n

(ϕ(s))2n−2ds dσ(y),

where dσ is the area form on X induced by the Lebesgue measure in R2n, σ2n the area of the
(2n− 1) -dimensional sphere, and iνc = (−νn+1, . . . ,−ν2n, ν1, . . . , νn).

The vector iνc is the vector lying in the tangent space to S and such that it is orthogonal to
complex tangent space to S. It indicates to what extent the surface S fits to the complex structure
of Cn, see [3].

From now on, we restrict our discussion to the hypersurfaces S ⊂ Rn with conical points.
Let D be a bounded domain in Cn, with n > 1. The boundary of D is assumed to be of the

form Y ∪ (S1 ∪ . . . ∪ SN ), where Y is a smooth hypersurface and each Sν is diffeomorphic to a
conical hypersurface S as above. Thus, ∂D is a smooth hypersurface with a finite number of conical
points. Since the analysis at singular points is local, one can assume without loss of generality that
N = 1, i.e., ∂D = Y ∪ S where

S = {z ∈ Cn : z = (rx, r), x ∈ X, r ∈ [0, R)},

cf. (1).
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For the function f ∈ Ccomp(∂D \ {0}) we define the norm

‖f‖L2,γ(∂D) :=
( ∫
∂D

|z|−2γ |f |2 dΣ
)1/2

, (2)

where γ ∈ R. Denote by L2,γ(∂D) the completion of Ccomp(∂D \ {0}) with respect to this norm.
It is clear that the weight factor |z|−2γ affects the behaviour of functions in L2,γ(∂D) merely

at the conical point 0.
According to ∂D = Y ∪ S, the norm (2) can be splitted into two seminorms. The first of the

two corresponds to integration over ∂D \ S and controls the behaviour of functions on the smooth
part of the boundary. The second seminorm corresponds to integration over S and specifies the
behaviour of functions close to the singular points. Under the parametrisation (1), the hypersurface
S is identified with the cylinder X × [0, R). In this manner the second seminorm actually stems
from the norm

‖f‖L2,γ−n+1/2(X×[0,R)) :=
( R∫

0

r−2(γ−n+1/2) ‖f‖2L2(X)

dr

r

)1/2

on the functions f ∈ Ccomp(X × (0, R)).
Introduce a function k(x, y; t) defined for (x, y) ∈ X ×X and t > 0 by the equality

k(x, y; t) =

=
1
σ2n

〈(ν(y), ν2n(y)), (y − tx, 1− t)〉
(|y − tx|2 + (1− t)2)n

− i

σ2n

〈iνc(y), (y − tx, 1− t)〉
(|y − tx|2 + (1− t)2)n

.

Using this kernel, we can rewrite the singular Bochner-Martinelli integral in the form

MSf (x, r) =

∞∫
0

ds

s

∫
X

k
(
x, y;

r

s

)
f(y, s) dσ(y), (3)

where (x, r) and (y, s) are identified with z = (rx, r) and ζ = (sy, s), respectively. Note that the
integral over X is singular, for k(x, y; r/s) has a singularity at y = x provided s = r.

Theorem 1 ([5]). Integral (3) induces a bounded linear operator in L2,γ(X × [0, R)) provided
1− 2n < γ < 0.

Denote byMr 7→λ the Mellin transform defined on functions f(r) on the semi-axis. It is given
by

Mr 7→λf =

∞∫
0

r−iλf(r)
dr

r

for λ ∈ C.
Composing the singular Bochner-Martinelli operator (3) with the Mellin transform yields

Mr 7→λMSf(x, r) =

∞∫
0

r−iλ
dr

r

∞∫
0

ds

s

∫
X

k
(
x, y;

r

s

)
f(y, s) dσ(y) =

=

∞∫
0

ds

s

∫
X

( ∞∫
0

r−iλ k
(
x, y;

r

s

)dr
r

)
f(y, s) dσ(y)

where (x, r) and (y, s) are identified with the points z = (rx, r) and ζ = (sy, s) of S, respectively.
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In the integral over r ∈ (0,∞) we change the variables by r = st, where t runs over (0,∞).
This gives

Mr 7→λMSf(x, r) =

∞∫
0

s−iλ
ds

s

∫
X

( ∞∫
0

t−iλ k(x, y; t)
dt

t

)
f(y, s) dσ(y) =

=
∫
X

Mt 7→λk(x, y; t)Ms7→λf(y, s) dσ(y)

for x ∈ X and λ ∈ C. It follows that

MSf(r) =M−1
λ 7→ra(λ)Mr′ 7→λf(r′), (4)

where f(r) := f(x, r) is thought of as a function of r ∈ (0,∞) with values in functions of x ∈ X,
and a(λ) is a family of singular integral operators on X parametrised by λ varying on a horizontal
line in the complex plane. The action of a(λ) is specified by

a(λ)f(x) =
∫
X

Mt 7→λk(x, y; t) f(y) dσ(y).

The family a(λ) is usually referred to as the conormal symbol of the pseudodifferential operator
(3) based on the Mellin transform. To evaluate it more explicitly, we denote by Z the unique root
of 〈y − tx, y − tx〉+ (1− t)2 = 0 in the upper half-plane, i.e.,

Z =
1 + 〈x, y〉+ i

√
|y − x|2 + |x|2|y|2 − 〈x, y〉2

1 + |x|2
. (5)

Lemma 2 ([5]). In the strip 0 < Imλ < 2n− 1, the Mellin transform of k(x, y; t) has the form

Mt 7→λk(x, y; t) =

= πi
(−1)n−1

(n− 1)!
expπλ
sinhπλ

n−1∑
j=0

(2n− 2− j)!
j! (n− 1− j)!

(iλ+ 1)(iλ+ 2) . . . (iλ+ j − 1)×

× ((iλ+ j)A− iλZB)Z−iλ−j−1 + (−1)j−1((iλ+ j)A− iλZ̄B)Z̄−iλ−j−1

(1 + |x|2)n (Z − Z̄)2n−1−j ,

where

A =
1
σ2n
〈(ν(y), ν2n(y)), (y, 1)〉 − i

σ2n
〈iνc(y), (y, 1)〉,

B =
1
σ2n
〈(ν(y), ν2n(y)), (x, 1)〉 − i

σ2n
〈iνc(y), (x, 1)〉.

The Lemma is based on the formulas

res(f ;Z) + res(f ; Z̄) =

=
(−1)n

(n− 1)!

n−1∑
j=0

(2n− 2− j)!
j! (n− 1− j)!

p(p− 1) . . . (p− j + 1)
(−1)j+1Zp−j + Z̄p−j

(Z − Z̄)2n−1−j ,

(6)

where
f(t) =

tp

(t− Z)n(t− Z̄)n
(7)

and

∫ ∞
0

t−ıλk(x, y; t)
dt

t
= πi

expπλ
sinhπλ

(
res(t−ıλ−1k(x, y; t);Z) + res(t−ıλ−1k(x, y; t); Z̄)

)
. (8)
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We denote

G(t) = t−ıλ−1k(x, y; t) =
1
an

At−ıλ−1 −Bt−ıλ

(t− Z)n(t− Z̄)n
.

We are now in a position to specify the inverse Mellin transform in the representation formu-
la (4).

Theorem 2 ([5]). For |γ| < n− 1/2 the singular Bochner-Martinelli integral admits the represen-
tation

MSf (r) =
1

2π

∫
Imλ=(n−1/2)−γ

riλa(λ)Mr′ 7→λf(r′) dλ. (9)

We first find asymptotics of the sum of residues of the function f(t) given by the formula (7).

Lemma 3. The sum of residues of the function f(t) at Z and Z̄ has no singularity as ImZ → 0,
and

lim
ImZ→0

(
res(f ;Z) + res(f ; Z̄)

)
=
p(p− 1) . . . (p− 2n+ 2)

(2n− 1)!
Zp−2n+1.

Moreover,
res(f ;Z) + res(f ; Z̄) =

=
1

2(n− 1)!

∞∑
s=0

p · · · (p− 2n− s+ 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)

(
Z̄p−2n−s+1 + (−1)sZp−2n−s+1

)
.

Proof. Set Σ = res(f ;Z) + res(f ; Z̄). By the formula (6),

Σ =

=
(−1)n

(n− 1)!

n−1∑
j=0

(2n− 2− j)!
j! (n− 1− j)!

p(p− 1) . . . (p− j + 1)Zp−2n+1
(−1)j+1 +

( Z̄
Z

)p−j
(

1− Z̄

Z

)2n−1−j
.

Setting Q := 1− Z̄/Z we rewrite Σ in the form

(−1)n

(n− 1)!

n−1∑
j=0

(2n− 2− j)!
j! (n− 1− j)!

p(p− 1) . . . (p− j + 1)Zp−2n+1 (−1)j+1 + (1−Q)p−j

Q2n−1−j ,

which splits into two sums

Zp−2n+1 (−1)n

(n− 1)!

n−1∑
j=0

(2n− 2− j)!
j! (n− 1− j)!

p(p− 1) . . . (p− j + 1)
(−1)j+1

Q2n−1−j ,

Zp−2n+1 (−1)n

(n− 1)!

n−1∑
j=0

(2n− 2− j)!
j! (n− 1− j)!

p(p− 1) . . . (p− j + 1)

∞∑
k=0

(
p− j
k

)
(−Q)k

Q2n−1−j .

The binomial series in the latter sum converges only for |Q| < 1. If |Q| = 1 it should be replaced
by a Taylor polynomial of sufficiently large degree N along with a remainder O((ImZ)N+1).

Set l = j + k in the second sum and transform it. We obtain

Zp−2n+1 (−1)n

(n− 1)!

n−1∑
j=0

∞∑
l=j

(2n− 2− j)!
j! (n− 1− j)!

p(p− 1) . . . (p− l + 1)
(l − j)!

(−1)l−jQl

Q2n−1
.

Interchanging the order of summation and substituting j for l and k for j immediately yields

Zp−2n+1 (−1)n

(n− 1)!

n−1∑
j=0

(
p

j

)
(−1)jQj

Q2n−1

j∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

+

+ Zp−2n+1 (−1)n

(n− 1)!

∞∑
j=n

(
p

j

)
(−1)jQj

Q2n−1

n−1∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

.
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Summarizing we get

Σ = Zp−2n+1 (−1)n

(n− 1)!

n−1∑
j=0

(2n− 2− j)!
j! (n− 1− j)!

p(p− 1) . . . (p− j + 1)
(−1)j+1

Q2n−1−j +

+ Zp−2n+1 (−1)n

(n− 1)!

n−1∑
j=0

(
p

j

)
(−1)jQj

Q2n−1

j∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

+

+ Zp−2n+1 (−1)n

(n− 1)!

∞∑
j=n

(
p

j

)
(−1)jQj

Q2n−1

n−1∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

.

Lemma 3 will be proved once we prove the lemma below. The latter is of an independent
interest.

Lemma 4. We have

j∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

=
(2n− 2− j)!
(n− 1− j)!

, if j = 0, 1, . . . , n− 1;

n−1∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

= 0, if j = n, n+ 1, . . . , 2n− 2;

n−1∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

= (−1)n−1(n− 1)!, if j = 2n− 1,

n−1∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

=

=
j∑

l=2n−1

(−1)l+n(l − 2n+ 2) · · · (l − n)
l!(j − l)!

, if j > 2n− 1.

Proof. Consider the function

F (z) =
j∑

k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

zn−1−k.

A trivial verification shows that

F (z) =
( ∂
∂z

)n−1
j∑

k=0

(−1)k
(
j

k

)
z2n−2−k =

=
( ∂
∂z

)n−1

z2n−2
(

1− 1
z

)j
=

=
( ∂
∂z

)n−1 (
z2n−2−j(z − 1)j

)
.

For z = 1 we then get

j∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

=
(
n− 1
j

)
j! (2n− 2− j)(2n− 3− j) . . . n =

=
(2n− 2− j)!
(n− 1− j)!

whenever j = 0, 1, . . . , n− 1.
In just the same way we evaluate the second sum. Suppose j = n, n + 1, . . . , 2n − 2. Consider

the function

F (z) =
n−1∑
k=0

(−1)k
(
j

k

)
(2n− 2− k)!
(n− 1− k)!

zn−k−1
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which is actually equal to ( ∂
∂z

)n−1 (
z2n−2−j(z − 1)j

)
,

as it is easy to check. Hence we readily deduce that F (1) = 0, as desired.
Let us prove the third equality corresponding to j = 2n − 1. For this purpose, consider the

function

F (z) =
n−1∑
k=0

(−1)k
(

2n− 1
k

)
(2n− 2− k)!
(n− 1− k)!

zn−k−1.

An easy computation shows that

F (z) =
( ∂
∂z

)n−1 n−1∑
k=0

(−1)k
(

2n− 1
k

)
z2n−2−k =

=
( ∂
∂z

)n−1 ( 2n−1∑
k=0

(−1)k
(

2n− 1
k

)
z2n−2−k − (−1)2n−1 1

z

)
=

=
( ∂
∂z

)n−1 ( (z − 1)2n−1

z

)
+
( ∂
∂z

)n−1 1
z

=

=
( ∂
∂z

)n−1 ( (z − 1)2n−1

z

)
+ (−1)n−1 (n− 1)! z−n.

For z = 1 the first term vanishes, and so F (1) = (−1)n−1 (n− 1)!
Consider the last equality corresponging to j > 2n− 1. We have

F (z) =
( ∂
∂z

)n−1 ( n−1∑
l=0

(−1)lz2n−l−2

l!(j − l)!

)
=

=
( ∂
∂z

)n−1 ( j∑
l=0

(−1)lz2n−l−2

l!(j − l)!
−

j∑
l=2n−1

(−1)lz2n−l−2

l!(j − l)!

)
=

=
( ∂
∂z

)n−1 (z2n−j−2(z − 1)j
j!

)
+
( ∂
∂z

)n−1 ( j∑
l=2n−1

(−1)l+1z2n−l−2

l!(j − l)!

)
.

Therefore

F (1) =
j∑

2n−1

(−1)l+n(l − 2n+ 2) · · · (l − n)
l!(j − l)!

,

which proves the lemma. 2

We are now in a position to complete the proof of Lemma 3. To this end, we observe that
the first and the second sums in the expression for Σ cancel. In the third sum only the terms
corresponding to j > 2n− 1 do not vanish. Hence it follows that

lim
ImZ→0

Σ = Zp−2n+1 (−1)n

(n− 1)!

(
p

2n− 1

)
(−1)2n−1Q2n−1

Q2n−1
= (−1)n−1(n− 1)!

=
(

p

2n− 1

)
Zp−2n+1.

Then by Lemma 4

Σ = Zp−2n+1
∞∑

j=2n−1

(−1)jp(p− 1) · · · (p− j + 1)Qj−2n−1

j∑
l=2n−1

(−1)l+n(l − 2n+ 2) · · · (l − n)
l!(j − l)!

.

Substituting j = k + 2n− 1 and l = s+ 2n− 1, we get

Σ = Zp−2n+1
∞∑
k=0

(−1)k+1p · · · (p− k − 2n+ 2)Qk
k∑
s=0

(−1)s+n−1(s+ 1) · · · (s+ n− 1)
(s+ 2n− 1)!(k − s)!

=
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= Zp−2n−1
∞∑
s=0

∞∑
k=s

(−1)k+s+np · · · (p− k − 2n+ 2)(s+ 1) · · · (s+ n− 1)Qk

(s+ 2n− 1)!(k − s)!
=

= Zp−2n+1
∞∑
s=0

(−1)s+n(j + 1) · · · (j + n− 1)
(s+ 2n− 1)!

∞∑
k=s

(−1)kp · · · (p− k − 2n+ 2)Qk

(k − s)!
=

= Zp−2n+1
∞∑
s=0

(−1)s+n(j + 1) · · · (j + n− 1)
(s+ 2n− 1)!

∞∑
m=0

(−1)s+mp · · · (p− s−m− 2n+ 2)Qs+m

m!
=

= Zp−2n+1
∞∑
s=0

(−1)n(j + 1) · · · (j + n− 1)Qs

(s+ 2n− 1)!

∞∑
m=0

(−1)mp · · · (p− s−m− 2n+ 2)Qm

m!
.

The sum
∞∑
m=0

(−1)mp · · · (p− s−m− 2n+ 2)Qm

m!
=

= p · · · (p− s− 2n+ 2)
∞∑
m=0

(−1)m(p− 2n− s+ 1) · · · (p− s−m− 2n+ 2)Qm

m!
=

= p · · · (p− s− 2n+ 2)(1−Q)p−2n−s−1.

Therefore,

Σ = Zp−2n+1
∞∑
s=0

(−1)n(s+ 1) · · · (s+ n− 1)p · · · (p− 2n− s+ 2)Qs(1−Q)p−2n−s+1

(s+ 2n− 1)!
=

= (−1)n · Zp−2n+1 · (1−Q)p−2n+1
∞∑
s=0

(s+ 1) · · · (s+ n− 1)p · · · (p− 2n− s+ 2)Qs(1−Q)−s

(s+ 2n− 1)!
.

Since Q = 1− Z̄/Z, then 1−Q = Z̄/Z and

Q

1−Q
=
Z − Z̄
Z̄

.

From here

Σ = (−1)nZ̄p−2n−1
∞∑
s=0

p · · · (p− 2n− s+ 2)
s!(s+ n) · · · (s+ 2n− 1)

· (Z − Z̄)s

Z̄s
.

Hence

res(f ;Z) + res(f ; Z̄) =
Z̄p−2n+1

(n− 1)!

∞∑
s=0

p · · · (p− 2n− s+ 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)Z̄s
=

=
1

2(n− 1)!

∞∑
s=0

p · · · (p− 2n− s+ 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)
·
(
Z̄p−2n−s+1 + (−1)sZp−2n−s+1

)
,

as desired. 2

Theorem 3. The functionMt7→λk(x, y; t) admits an asymptotic expansion

Mt7→λk(x, y; t) =

= π
(iλ+ 1) . . . (iλ+ 2n− 2)

(2n− 1)!
expπλ
sinhπλ

((iλ+ 2n− 1) ImA− iλReZ ImB)Z−iλ−2n

(1 + |x|2)n
+

+ O(ImZ)

as ImZ → 0.
Moreover,

Mt 7→λk(x, y; t) =
iπ

2(2n− 1)!
expπλ

(1 + |x|2)n sinhπλ

∞∑
s=0

(iλ+ 1) · · · (iλ+ 2n+ s− 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)
×

×
(
(−1)s+1Z̄−iλ−2n−s(iλBZ̄ +A(iλ+ 2n+ s− 1))− Z̄−iλ−2n−s(iλBZ +A(iλ+ 2n+ s− 1))

)
.
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Proof. Using Lemma 2 and Lemma 3 we obtain

lim
ImZ→0

Mt 7→λk(x, y; t) =

= −πi (iλ+ 1) . . . (iλ+ 2n− 2)
(2n− 1)!

expπλ
sinhπλ

((iλ+ 2n− 1)A− iλZB)Z−iλ−2n

(1 + |x|2)n
.

Let us estimate the sum B + B̄. Since 〈∇yρ, y〉 = h it follows that the real part of B is

B + B̄

2
=

2
σ2n

〈∇yρ, x〉 − h
|∇yρ|

=
2
σ2n

〈∇yρ, x− y〉
|∇yρ|

,

which is O(ImZ) as ImZ → 0. On the other hand, A is purely imaginary, for

〈(ν(y), ν2n(y)), (y, 1)〉 = 0.

This establishes the first formula.
Consider the last formula. Since

res(G;Z) + res(G; Z̄) =

=
B

2(n− 1)!an

∞∑
s=0

(−iλ) · · · (−iλ− 2n− s+ 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)
(
Z̄−iλ−2n−s+1 + (−1)sZ−iλ−2n−s+1

)
+

+
A

2(n− 1)!an

∞∑
s=0

(−iλ− 1) · · · (−iλ− 2n− s+ 1)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)
(
Z̄−iλ−2n−s + (−1)sZ−iλ−2n−s) =

=
1

2(n− 1)!an

∞∑
s=0

(−iλ+ 1) · · · (−iλ− 2n− s− 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)
×

×
(
(−1)s+1(iλBZ̄−iλ−2n−s+1 +A(iλ+ 2n+ s− 1)Z̄−iλ−2n−s) −

− (iλBZ−iλ−2n−s+1 +A(iλ+ 2n+ s− 1)Z−iλ−2n−s)
)

=

=
1

2(n− 1)!an

∞∑
s=0

(−iλ+ 1) · · · (−iλ− 2n− s− 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)
×

×
(
(−1)s+1Z̄−iλ−2n−s(λBZ̄ +A(iλ+ 2n+ 3− 1))−

−Z−iλ−2n−s(λBZ +A(iλ+ 2n+ 3− 1))
)
.

Then, using the equality (8), we get∫ ∞
0

t−ıλk(x, y; t)
dt

t
= πi

expπλ
sinhπλ

(
res(G(t);Z) + res(G(t); Z̄)

)
=

=
iπ expπλ

2(n− 1)!an sinhπλ

∞∑
s=0

(−iλ+ 1) · · · (−iλ− 2n− s− 2)(Z − Z̄)s

s!(s+ n) · · · (s+ 2n− 1)
×

×
(
(−1)s+1Z̄−iλ−2n−s(λBZ̄ +A(iλ+ 2n+ 3− 1))−

−Z−iλ−2n−s(λBZ +A(iλ+ 2n+ 3− 1))
)
.
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