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In this paper we give a proof of an analog of the Kovalevskaya theorem about analytic solvability of
the Cauchy problem for a linear differential equation with constant coefficients. A major role in the
proof is played by the Borel transform and the Laurent expansion of the function P−1, where P is
the characteristic polynomial. This expansion produces an efficiently computable approximation of the
solution of the Cauchy problem. The method of the proof allows to consider equations not necessarily
resolved with respect to the highest derivative, however it imposes additional restrictions on the right
hand side.
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Introduction
Consider a Cauchy problem for a linear partial differential equation. In the traditional for-

mulation of the Cauchy-Kovalevskaya theorem it is assumed that the equation is resolved with
respect to the pure (not mixed) derivative of the highest order, for example, with respect to
∂m/∂xm

n , where m is the order of the differential equation. Namely, the equations considered
are of the form

∂my

∂xm
n

=
∑

|α|6m

′
aα(x)Dαy + f, (1)

where
aα(x) = aα1...αn(x1, . . . , xn), Dαy =

∂α1·...·αny

∂xα1
1 · . . . · ∂xαn

n
,

and the summation is taken over derivatives of orders |α| := α1+ · · ·+αn 6 m, except for
∂my

∂xm
n

.

In this case the initial data is usually the following

∂ky

∂xk
(x′, 0) = yk(x

′), k = 0, . . . ,m− 1, (2)

where x′ = (x1, . . . , xn−1).
Kovalevskaya proved [1] that for any analytic in a neighborhood of the origin coefficients,

aα(x), function f(x), and initial data (2) the problem (1), (2) has a unique analytic solution y(x).
In the case of constant coefficients we consider a more general equation than (1). Namely, let

P be a polynomial
P = zmn +

∑
α∈A

aαz
α, (3)
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where A ⊂ Zn−1
>0 ×{0, 1, . . . ,m− 1} is a fixed finite set of exponents. Then P as a characteristic

polynomial defines a differential operator P (D); we consider a differential equation

P (D)y = f (4)

with right hand side f =
∑

k∈Zn
>0

bkx
k given by a power series.

Note that the leading monomial of P with respect to variable zn has the form zmn , the degree
of zn in all other monomials is less than m, degrees of the remaining variables are arbitrary. For

equation (4) this implies that it contains the derivative
∂m

∂xm
n

, which is the highest with respect

to xn, but not necessarily the highest derivative in the equation. Then the Cauchy problem for
equation (4) consists in finding a solution y(x) of (4) with initial data of the form (2).

Note that we can always assume that the initial data vanish making the substitution y = ỹ+ϕ,
where

ϕ =
m−1∑
j=0

xj
nyj(x

′)

j!
. (5)

Then after substitution of ỹ + ϕ instead of y in the k-th equation of the system (2), k =
0, 1, . . . ,m− 1 we get the equality

∂k

∂xk
n

ỹ +
∂k

∂xk
n

m−1∑
j=0

xj
nyj(x

′)

j!
= yk(x

′).

After differentiation of the sum
m−1∑
j=0

xj
nyj(x

′)

j!
the first k − 1 summands will be zeroes, the k-th

summand will become yk(x
′), and the rest will vanish since they contain the vanishing factor xn.

Moving yk(x
′) to the left hand side of the equality and simplifying the expression, we get zero

initial data
∂k

∂xk
n

ỹ = 0, k = 0, 1, . . . ,m− 1. (6)

Since this transformation does not change the form of the equation, without loss of generality
we assume that we are given zero initial data from the beginning.

Now we can formulate the theorem that will be proved in the rest of the paper.

Theorem 1. If the right hand side f of equation (4) is an entire function of exponential
type then the Cauchy problem (4), (2) has a unique analytic solution.

The severe restriction on the right hand side f of the equation is dictated by the Borel
transform used in the proof. The condition of f being an entire function of exponential type
ensures that the Borel transform of f has a non-empty domain of convergence.

Note that for an arbitrary support A of summation in (3) the restrictions on the right hand
side of the equation become essential, which is demonstrated by the well-known example of
Kovalevskaya for the heat equation ([1], p. 22).

Thus, a more general form of the equation implies stricter conditions on the right hand
side. And vice versa, if an equation is in the generalized Kovalevskaya class then, as Korobeinik
showed [2], the existence of the solution is established even for more general classes of functions
than analytic.

Note that in relation to equations with constant coefficients of the form (1) the Borel transform
has been employed in [3] to obtain an integral representation for a solution of the corresponding
Cauchy problem.
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1. The Borel transform and properties of the characteristic
polynomial

Definition 1. Let the function

f(x) =
∑

k∈Zn
>0

bkx
k

be analytic in a neighborhood of the origin. The function

Bf (z) =
∑

k∈Zn
>0

bk · k!
zk+I

,

where I is the unit multi-index, is called the Borel transform of f [4].

Let us assume that the Taylor coefficients bk of f decrease rapidly to ensure that the domain
of convergense of the series Bf is not empty. For example, entire functions of exponential type
have this property. By Abel’s lemma such a domain of convergence must contain the set |z1| >
R1, . . . , |zn| > Rn. Therefore the series converges uniformly on the torus |z1| = R1, . . . , |zn| = Rn,
and by term-wise integration we get

1

(2πi)n

∫
|z1|=R1

. . .

∫
|zn|=Rn

Bf (z)e
⟨z,x⟩ dz1 ∧ . . . ∧ dzn = f(x). (7)

Let ∆ be a polytope, i.e. the convex hull of a finite set of points in Rn.

Definition 2. The dual cone of the polytope ∆ at the point p ∈ ∆ is the set

Cp = Cp(∆) = {q ∈ (Rn)
∗
: max
α∈∆

⟨q, α⟩ = ⟨q, p⟩}.

Thus, the dual cone Cp consists of all functionals q whose maximal values on ∆ are attained at
the point p [5].

Definition 3. Let P =
∑
α∈A

aαx
α be a polynomial. The Newton polytope ∆P of P is the

convex hull in Rn of the set A ⊂ Zn ⊂ Rn of exponents α such that aα is not zero.

By C̊ we shall denote the interior of the set C ∈ Rn.

Lemma 1. Let v be a vertex of the Newton polytope ∆P of the polynomial P , and Cv be the
dual cone of ∆P at the vertex v. Then for any c ∈ C̊v the torus

Tρ = {|z1| = ρc1 , . . . , |zn| = ρcn}

does not intersect the hypersurface V = {z : P (z) = 0} for ρ ≫ 1.

Proof. Let P (z) =
∑
α∈A

aαz
α. The restriction of P (z) on Tρ is

P |Tρ =
∑
α∈A

aαe
i⟨θ,α⟩ρ⟨c,α⟩. (8)

Since c ∈ C̊v and v is a vertex of ∆P , the maximum on ∆P of the scalar product ⟨c, α⟩ is attained
at the only point v. This means that for sufficiently big ρ the monomial(

ave
i⟨θ,v⟩

)
ρ⟨a,v⟩

dominates in absolute value the remaining monomials as well as their sum. Therefore, the
restriction (8) does not vanish for ρ ≫ 1.
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Let now P be a polynomial of the form (3). It is obvious that the point v = (0, . . . , 0,m) is
a vertex of ∆P .

Lemma 2. For v = (0, . . . , 0,m) there exists c ∈ C̊v such that for sufficiently big ρ ≫ 1 the
torus Tρ lies in the domain of convergence of the series Bf and does not intersect the hypersurface
{z : P (z) = 0}.

Proof. Let us show that the dual cone C̊v(∆P ) at the vertex v = (0, . . . , 0,m) contains a vector
c = (c1, . . . , cn) with positive coordinates. The vector c we shall find in the form (ε, . . . , ε, 1),
where ε is real positive.

The fact of c lying in the interior C̊v(∆P ) is expressed by the condition that the maximum

max
α∈∆P

⟨c, α⟩ (9)

is attained at the only point α = v.
The value of the function ⟨c, α⟩ for α = v is equal to m. For all other points α ∈ ∆P

⟨c, α⟩ = (ε(α1 + . . .+ αn−1) + αn), (10)

and αn < m. Since the function α1+ . . .+αn−1 is bounded on the compact set ∆P , the maximal
value of (10) is less than m provided ε is sufficiently small. Thus, the existence of c is proved.

Now by Lemma 1, for ρ ≫ 1 the torus Tρ = {|z1| = ρc1 , . . . , |zn| = ρcn} does not meet the
zero set of the polynomial P (z). For sufficiently large ρ the torus Tρ lies within the domain
convergence of the series Bf .

2. The proof of Theorem 1
Introduce the following integral with parameter x:

y(x) =
1

(2πi)n

∫
|z1|=R1

. . .

∫
|zn|=Rn

Bf (z)e
⟨z,x⟩

P (z)
dz1 ∧ . . . ∧ dzn :=

∮
Bf (z)e

⟨z,x⟩

P (z)
dz. (11)

Note that for Rj = ρcj , where ρ ≫ 1, this integral is well-defined: according to Lemma 2 in
this case the set of integration does not intersect the zeroes of the integrand’s denominator.

Differentiating the integral, we see that (11) satisfies equation (4):

P (D)y(x) =

∮
Bf (z)P (D)e⟨z,x⟩

P (z)
dz =

∮
Bf (z)e

⟨z,x⟩ dz = f(x).

Here we use the equality P (D)e⟨z,x⟩ = P (z)e⟨z,x⟩.
Represent the polynomial P (z) as P (z) = zmn − θ(z). Then

1

P (z)
=

1

zmn − θ(z)
=

1

zmn (1− θ(z)
zm
n
)
=

1

zmn

∞∑
l=0

(
θ(z)

zmn

)l

;

this series converges since the monomial zmn on Tρ dominates in absolute value the sum of the
remaining monomials, as follows from the proof of Lemma 1. It follows that the integral (11) is
given by the following series

y(x) =

∮
Bf (z)e

⟨z,x⟩

zmn
dz︸ ︷︷ ︸

v0(x)

+

∮
θ(z)

zmn

Bf (z)e
⟨z,x⟩

zmn
dz︸ ︷︷ ︸

v1(x)

+

∮
θ(z)

zmn

θ(z)

zmn

Bf (z)e
⟨z,x⟩

zmn
dz︸ ︷︷ ︸

v2(x)

+ . . . . (12)
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Let us show that the solution y(x) satisfies homogeneous initial data (6). In order to do this
it is enough to show that each term of the sequence vν satisfies the conditions (6). We have

∂s

∂zsn
vν(x

′, 0) =

∮ (
θ(z)

zmn

)ν
Bf (z)e

⟨z′,x′⟩

zm−s
n

dz =

=

∮ (
θ(z)

zmn

)ν

e⟨z
′,x′⟩ ∑

k∈Zn
>0

bk · k!
(z′)k′+I′ · zk+1+m−s

n

dz.

Here the degree of zn in each summand
bk · k!

(z′)k′+I′ · zk+1+m−s
n

does not exceed −2, since s < m,

k > 0 and therefore k+ 1+m− s > 2 . The degree of zn in the expression
(
θ(z)

zmn

)ν

can not be

positive. Taking into account that ∮
dz

zj
=

{
1, if j = I,

0, otherwise,

we obtain
∂s

∂zsn
vν(0) = 0, m− 1 > s > 0.

Now we construct a sequence of functions convergent to a solution of (4). Denote by D−m
n f

an antiderivative of f of order m with respect to variable xn. Such antiderivatives are defined
up to polynomials of degree m− 1. For instance, if a function f(x) is given by a series

f(x) =
∑

k∈Zn
>0

bkx
k,

then its antiderivative D−m
n f(x) is given by the series

∞∑
kn=−m

∑
′k∈Zn−1

>0

bk
(kn +m)!

(x′)k
′
xkn+m
n .

We shall only choose antiderivatives such that bk = 0 for all kn < 0. This implies that the
solution satisfies the homogeneous initial data.

Thus, we have a sequence

v0(x) = D−m
n f,

v1(x) =
(
D−m

n θ(D)
)
D−m

n f,

. . .

vν(x) =
(
D−m

n θ(D)
)νD−m

n f,

. . . .

For the partial sum yν(x) =
ν∑

k=0

νk(x) we obtain

Dm
n yν(x) = Dm

n

(
D−m

n f +D−m
n θ D−m

n f + · · ·+
(
D−m

n θ
)νD−m

n f
)
= f(x) + θ (D) yν−1(x).

Passing to the limit as ν → ∞, we get Dm
n y(x)− θ (D) y(x) = f(x).

It is necessary to note that this iteration coincides with the iteration from a well-known
theorem of Hörmander [6]. However its convergense is established there differently. Using this
iteration we can consider (as a series (12)) equation (4) with variable coefficients (and even some
non-linear equations).
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Одно уточнение теоремы Ковалевской об аналитической
разрешимости задачи Коши

Александр А. Знаменский
Институт математики и фундаментальной информатики

Сибирский федеральный университет
Свободный, 79, Красноярск, 660041

Россия

В статье приводится доказательство аналога теоремы Ковалевской об аналитической разреши-
мости задачи Коши для линейного дифференциального уравнения с постоянными коэффициента-
ми. В этом доказательстве важную роль играют преобразование Бореля и разложение Лорана
функции P−1, где P — характеристический многочлен. Такое разложение продуцирует рацио-
нально вычислимую аппроксимацию решения задачи Коши. Этот метод доказательства позво-
ляет рассматривать уравнения, не обязательно разрешенные относительно производной стар-
шего порядка, однако накладывает ограничение на правую часть уравнения.

Ключевые слова: задача Коши, преобразование Бореля, многогранник Ньютона, разложение Ло-
рана.
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