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In this paper we give a proof of an analog of the Kovalevskaya theorem about analytic solvability of
the Cauchy problem for a linear differential equation with constant coefficients. A magjor role in the
proof is played by the Borel transform and the Laurent expansion of the function P~', where P is
the characteristic polynomial. This expansion produces an efficiently computable approximation of the
solution of the Cauchy problem. The method of the proof allows to consider equations not necessarily
resolved with respect to the highest derivative, however it imposes additional restrictions on the right
hand side.
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Introduction

Consider a Cauchy problem for a linear partial differential equation. In the traditional for-
mulation of the Cauchy-Kovalevskaya theorem it is assumed that the equation is resolved with
respect to the pure (not mixed) derivative of the highest order, for example, with respect to
9™ [0x", where m is the order of the differential equation. Namely, the equations considered

are of the form

o™y / o
D SR W
" Jalsm
where
aal-..uany
aa(2) = day..a, (21, .., Tn), DY = m7
"y
and the summation is taken over derivatives of orders |a| := ag + - - - + a,, < m, except for Ik
Zm
In this case the initial data is usually the following "
oFy
W( "0)=ye(z), k=0,...,m—1, (2)

where 2’ = (z1,...,T5—1).
Kovalevskaya proved [1] that for any analytic in a neighborhood of the origin coefficients,
aq (), function f(z), and initial data (2) the problem (1), (2) has a unique analytic solution y(x).
In the case of constant coefficients we consider a more general equation than (1). Namely, let
P be a polynomial
P=z"+ Z aa 2, (3)
a€cA
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where A C Zggl x {0,1,...,m —1} is a fixed finite set of exponents. Then P as a characteristic
polynomial defines a differential operator P(D); we consider a differential equation

P(D)y=f (4)

with right hand side f = Zkezg brz"® given by a power series.
0

Note that the leading monomial of P with respect to variable z, has the form 2", the degree
of z, in all other monomials is less than m, degrees of the remaining variables are arbitrary. For
m

equation (4) this implies that it contains the derivative , which is the highest with respect

oxm
to x,,, but not necessarily the highest derivative in the equgtion. Then the Cauchy problem for
equation (4) consists in finding a solution y(z) of (4) with initial data of the form (2).

Note that we can always assume that the initial data vanish making the substitution y = y+¢,

where
¢ Z n y] . ( 5)

Then after substitution of § + ¢ instead of y in the k-th equation of the system (2), k =
0,1,...,m — 1 we get the equality

o 0" " why () :
k y + — k A =Yk (.’IJ )
oxk Oxh o 4!
nyj( )

After differentiation of the sum E r

7=0 J:
summand will become y (z'), and the rest will vanish since they contain the vanishing factor x,,.
Moving yi(z') to the left hand side of the equality and simplifying the expression, we get zero
initial data

the first £ — 1 summands will be zeroes, the k-th

k

Wg:(), k:O,l,...,mfl. (6)

Since this transformation does not change the form of the equation, without loss of generality
we assume that we are given zero initial data from the beginning.
Now we can formulate the theorem that will be proved in the rest of the paper.

Theorem 1. If the right hand side f of equation (4) is an entire function of exponential
type then the Cauchy problem (4), (2) has a unique analytic solution.

The severe restriction on the right hand side f of the equation is dictated by the Borel
transform used in the proof. The condition of f being an entire function of exponential type
ensures that the Borel transform of f has a non-empty domain of convergence.

Note that for an arbitrary support A of summation in (3) the restrictions on the right hand
side of the equation become essential, which is demonstrated by the well-known example of
Kovalevskaya for the heat equation ([1], p. 22).

Thus, a more general form of the equation implies stricter conditions on the right hand
side. And vice versa, if an equation is in the generalized Kovalevskaya class then, as Korobeinik
showed [2], the existence of the solution is established even for more general classes of functions
than analytic.

Note that in relation to equations with constant coefficients of the form (1) the Borel transform
has been employed in [3] to obtain an integral representation for a solution of the corresponding
Cauchy problem.

- 532 —



Alexander A.Znamenskiy A Refinement of Kovalevskaya’s Theorem on Analytic Solvability . ..

1. The Borel transform and properties of the characteristic
polynomial

Definition 1. Let the function
flz) = Z bra”
kEZ;O
be analytic in a neighborhood of the origin. The function
by - k!
Bi(2)= Y~
keZL,
where I is the unit multi-indezx, is called the Borel transform of f [4].

Let us assume that the Taylor coefficients by, of f decrease rapidly to ensure that the domain
of convergense of the series By is not empty. For example, entire functions of exponential type
have this property. By Abel’s lemma such a domain of convergence must contain the set |z1| >

Ri,...,|zn| = Ry. Therefore the series converges uniformly on the torus |z1| = Ry,...,|2n| = Rn,
and by term-wise integration we get
1
By(2)e*® dzy A ... ANdzy = f(x). 7
T | Bt "= (@) (7

|21|:R1 ‘Zn‘=Rn
Let A be a polytope, i.e. the convex hull of a finite set of points in R™.

Definition 2. The dual cone of the polytope A at the point p € A is the set
Cp = Cp(A) ={g € (R")": max(g, @) = (¢,p)}
Thus, the dual cone Cp, consists of all functionals ¢ whose mazimal values on A are attained at
the point p [5].
Definition 3. Let P = Y aq,x® be a polynomial. The Newton polytope Ap of P is the
convex hull in R™ of the set ;leé Z™ C R™ of exponents a such that ay is not zero.

By C we shall denote the interior of the set C' € R".

Lemma 1. Let v be a vertex of the Newton polytope Ap of the polynomial P, and C, be the
dual cone of Ap at the vertex v. Then for any c € C, the torus

T, ={lal =9 |zl = p}
does not intersect the hypersurface V.= {z: P(z) = 0} for p > 1.

Proof. Let P(z) = > aqz®. The restriction of P(z) on T}, is
acA

P|r, = Z ag e plee), (8)
acA

Since ¢ € CO'U and v is a vertex of Ap, the maximum on Ap of the scalar product {c, o) is attained
at the only point v. This means that for sufficiently big p the monomial

(avei(e,v>) pla)

dominates in absolute value the remaining monomials as well as their sum. Therefore, the
restriction (8) does not vanish for p > 1. O
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Let now P be a polynomial of the form (3). It is obvious that the point v = (0,...,0,m) is
a vertex of Ap.

Lemma 2. Forv = (0,...,0,m) there exists ¢ € C, such that for sufficiently big p>1 the

torus T), lies in the domain of convergence of the series By and does not intersect the hypersurface
{z: P(z) = 0}.

Proof. Let us show that the dual cone C,(Ap) at the vertex v = (0,...,0,m) contains a vector
¢ = (c1,...,c,) with positive coordinates. The vector ¢ we shall find in the form (e,...,¢,1),
where ¢ is real positive.

The fact of ¢ lying in the interior C,,(Ap) is expressed by the condition that the maximum

9
Jnax {c, a) (9)

is attained at the only point oo = v.

The value of the function (¢, a) for o = v is equal to m. For all other points « € Ap

(e, = (e(lag + ...+ an_1) + an), (10)

and «a,, < m. Since the function ay +...+ a,_1 is bounded on the compact set Ap, the maximal
value of (10) is less than m provided ¢ is sufficiently small. Thus, the existence of ¢ is proved.

Now by Lemma 1, for p > 1 the torus T, = {|z1| = p°*,...,|2n| = p°*} does not meet the
zero set of the polynomial P(z). For sufficiently large p the torus T, lies within the domain
convergence of the series By. O

2. The proof of Theorem 1

Introduce the following integral with parameter z:

1 Bf(z)e<z””) ; . By(z)el) ;
y(x) = (27ri)”| l[R ...| |[R 7}3(2) dz1 A...Nd ”'_%713(2) dz. (11)

Note that for R; = p®, where p > 1, this integral is well-defined: according to Lemma 2 in
this case the set of integration does not intersect the zeroes of the integrand’s denominator.
Differentiating the integral, we see that (11) satisfies equation (4):

z ef#e)
P(D)y(z) = ]{ Bl )1138) dz = jfo(z)eW> dz = f(z).

Here we use the equality P(D)e(**) = P(z)ef*),
Represent the polynomial P(z) as P(z) = z" — 6(z). Then

1 _ 1 _ 1 BRSO
P(Z)_Z’"9(2)_Z,T(1—9<Z>)_zmz<zz”>’

n
m
P =0

this series converges since the monomial z;;' on 7, dominates in absolute value the sum of the
remaining monomials, as follows from the proof of Lemma 1. It follows that the integral (11) is
given by the following series

o) = § By, JO) BT | f 00 000) Byleleln

m m m m m m

dz4.... (12

vo(x) v1 (@) va(z)
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Let us show that the solution y(x) satisfies homogeneous initial data (6). In order to do this
it is enough to show that each term of the sequence v, satisfies the conditions (6). We have

_ 9(2) Y 2z’ by, - k!

kEZgO

by - k!

Here the degree of z,, in each summand )T A iTms
n

does not exceed —2, since s < m,

0(2)

k > 0 and therefore k + 1+ m — s > 2 . The degree of z, in the expression <> can not be
Zm

j{dz_ 1, if j=1,
2 0, otherwise,

88
0z
Now we construct a sequence of functions convergent to a solution of (4). Denote by D, ™ f

an antiderivative of f of order m with respect to variable x,. Such antiderivatives are defined
up to polynomials of degree m — 1. For instance, if a function f(x) is given by a series

Z bkxk,

keZY,

positive. Taking into account that

we obtain
v,(00=0, m—-1>s2>0.

then its antiderivative D, f(z) is given by the series

Z Z (kp +m)! +m (x,)k/xﬁ"m'

kn=—m ezl *

We shall only choose antiderivatives such that by = 0 for all k, < 0. This implies that the
solution satisfies the homogeneous initial data.
Thus, we have a sequence

vo(z) =D, ™f,
vi(z) = (D, ™0(D)) D™ f,

vy (z) = (D,™8(D)) D, ™ f,

v
For the partial sum y, () = > vx(x) we obtain
k=0

Diyy(x) = Dy (D" f+ D, "0 Dy f+--- 4+ (D,0) D, f) = f@) + 0(D) yo—1(2).

Passing to the limit as v — oo, we get D'y(z) — 0 (D) y(x) = f(x).

It is necessary to note that this iteration coincides with the iteration from a well-known
theorem of Hormander [6]. However its convergense is established there differently. Using this
iteration we can consider (as a series (12)) equation (4) with variable coefficients (and even some
non-linear equations).
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OpaHo yrouHeHmne TeopemMbl KoBajieBckoii 00 aHAJIMTUIECKOM
pa3pemuMocTn 3aa4un Kormn

Anekcanap A.3HamMeHcKUit

MucTuryT MaTeMaTuky U GyHIAMEHTAIBHON HH(MOPMATUKY
Cubupckuii deilepalibHbli YHUBEPCUTET

Csobomnsrii, 79, KpacHosipck, 660041

Poccus

B cmamuve npusodumcs dokaszameavcmeo ananoza meopemuv, Kosanesckoli 06 anasumuveckol paspewiu-
mocmu 3adayvu Kowu 0as aunetinozo duddepenyuarvrnozo ypasHerus ¢ NOCMOAHHbLMU KodPPuyuerma-
Mmu. B amom doxazamenvcmee sasicnyro poas uezparom npeobpadosanue Bopeas u pasaootcerue Jlopara
pyrxyuu P, 2de P — zapaxmepucmuneckuti mnozovaen. Taxoe pazroscerue npodyuupyem payuo-
HAADHO BLIYUCAUMYIO ANNPOKCUMAUUI0 peuterus 3adawu Kowu. mom memod dokaszamenvcmea no3eo-
AAEM PACCMAMPUBAMD YPLEHEHUA, HE 00AZAMEALHO PA3PEUEHHBIE OMHOCUMENDHO NPOU3BOOHOT CMAD-
wezo NopAdKa, 00HAKO HAKAAODIBAEM 02PAHUYERUE HA NPABYIO YACTND YDASHEHUA.

Karoweswie caosa: 3adavwa Kowu, npeobpasosanue Bopeas, mmozoepannukx Horomowna, padaoorcenue Jlo-
pana.
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