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When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of
compact manifolds with boundary one is led to a boundary value problem for the Laplacian of the complex
which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of
sequences of differential operators on a compact manifold with boundary. These are sequences of small
curvature, i.e., bearing the property that the composition of any two neighbouring operators has order
less than two.
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Introduction

In the theory of elliptic linear partial differential equations the term coercive is used to describe
a certain class of boundary value problems for elliptic systems Lu = f, in which, for functions «
satisfying the boundary conditions, it is possible to estimate in relevant norm all the derivatives
of u of order equal to the order m of L in terms of the norm of Lu and in terms of suitable norms
for the given boundary data. That is, there is no loss in derivatives - in going from Lu to u we
gain precisely m derivatives. Nowadays such boundary value problems are called simply elliptic,
where the ellipticity refers to the invertibility of both interior and boundary symbols, the last
condition being also known as the Shapiro-Lopatinskij condition.

In connection with the study of inhomogeneous overdetermined systems of partial differential
equations, Spencer [16] proposed a method which leads in some cases to well determined elliptic
boundary value problems which are however not coercive. In case the systems consists of the
inhomogeneous Cauchy-Riemann equations for differential forms the resulting boundary value
problem is called the d-Neumann problem. Extending a basic inequality of [8] this problem was
solved in [6] for forms on strongly pseudo-convex domains on a complex manifold. The elliptic
operator L in the d-Neumann problem is of second order, and in going from Lu to u, in a
pseudo-convex domain, one gains only one derivative instead of two. This makes the problem
more difficult than a coercive one, the main difficulty occuring in the proof of regularity at the
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boundary. The regularity proof in [6] is rather complicated. A simpler proof was found in [§].
In [7] is also presented a simpler proof which yields a raher general theorem for elliptic equations,
Theorem 5 of Sec. 2. The result for the 0-Neumann problem is a very special case of this theorem.

In [7], the results are expressed in a fairly general form which may eventually prove useful in
carrying out Spencer’s attack on overdetermined equations. For functions v and v with values in
CF: or in a smooth vector bundle F* over a compact manifold with boundary X one considers a
sesquilinear form Q(u,v) which is an integral over X" of an expression involving derivatives of u
and v. For functions u, v lying in a linear space D determined by certain boundary conditions one
is looking for a solution u € D of Q(u,v) = (f,v) for all v € D, where f is a given function with
values in F* and (-,-) denotes the L? scalar product of sections in X. The form @ is primarily
assumed to be almost Hermitean and that R Q(u,u) > 0 for v € D. The paper [7] is aimed at
obtaining solutions that are regular in X up to the boundary. The solutions then lie in D and
satisfy also "free" or "natural" boundary conditions.

It was Sweeney, a PhD student of Spencer, who developed the approach of [7] within the
framework of overdetermined systems, see [11], [12-15]. A differential operator A° is said to be
overdetermined if there is a differential operator A! # 0 with the property that A' A% = 0. Then,
for the local solvability of the inhomogeneous equation A% = f it is necessary that the right-hand
side satisfies A'f = 0. The above papers deal with sesquilinear forms Q(f,g) = (A'f, Alg) +
(Ai=1*f Ai=1*g) + (f,g) called the Dirichlet forms. This work is intended as an attempt at
motivating an interesting class of perturbations of the Neumann problem after Spencer. It
corresponds to "small" perturbations of complexes of differential operators which are are known
as quasicomplexes, see [18§].

Assume that X is a compact n-dimensional manifold with boundary. For each nonnegative
integer i let F' be a vector bundle over X, and let A’ be a first order differential operator which
maps C* sections of F? to C™ sections of F**!. Suppose that the compositions A*’A*~! are all
of order not exceeding 1 so that the operators A? form a sequence

0 — 0=, FO) 2% o=, FYy A AN oo, PN 0 (0.1)

whose curvature A*A*~! evaluated in appropriate Sobolev spaces is compact at each step.

The assumption that all of A% have order 1 simplifies the notation essentially. This will
usually not be the case in practice. However, this assumptions is fulfilled for classical complexes
of differential operators which arise in differential geometry, see [17, Ch. 1].

As but one example of quasicomplexes of purely geometric origin we mention the sequence
related to any connection on a smooth vector bundle over X, see for instance [19, Ch. III].

Example 0.1. Let F' be a smooth vector bundle of rank k¥ on X. For ¢ =0,1,...,n, we denote
by 2¢(X, F) the space of differential forms of degree i with C°° coefficients on X taking on their
values in F. Pick a connection 0 on F'. Consider the sequence

0, F) L ol x, ) 200 onx, F) S o,

where 0° = 9, 0' is a natural extension of ° to one-forms under preservation of the Leibniz
rule, etc. Since 9'T197 is a differential operator of order 0, the sequence is a quasicomplex. The
principal symbols of the (formal) Laplacians A} are given by

0'2(A2))(.%‘,f) = IFI ® UQ(Ai)(xv§)7

where A’ are the Hodge-Laplace operators. We thus conclude that o?(A%)(z, €) is invertible for
all (x,&) € T*X \ {0}. Hence, A} is a second order elliptic differential operator on X.

Note that the quasicomplex of connections is a complex if and only if the associated bundle
is trivial.
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Another quasicomplex of great importance in complex analytic geometry is related to certain
“small” perturbations of the Dolbeault complex.

Example 0.2. Assume that X is a complex (analytic) manifold of dimension n. As usual, we
denote by 2%%(X) the space of all differential forms of bidegree (0,7) with C*° coefficients on X',
where 0 < 7 < n. Locally such a form can be written as

fe = > filz)de,
T=(jgserds)
1<j1<...<ji<n
where z = (2!,...,2") are local coordinates, dz’ = dz/t A...AdZz’ and f; are C* functions of z
with complex values. Analogously to the exterior derivative d one defines the Cauchy-Riemann
operator 0 which maps the differential forms of bidegree (0,4) to differential forms of bidegree
(0,3 + 1) on X, see for instance [17,19]. Moreover, 9% = 0, i.e., the spaces £2%/(X) are gathered
together to constitute a complex of first order differential operators on X called the Dolbeault
complex. This complex is proved to be elliptic in (the interior of) X. Choose any differential
form a of bidegree (0,1) with smooth coefficients on X and consider the sequence

00— .QO’O(X) gi; QO,l(X) %} . 5il> Qov”'(X) —0 (0.2)

which is equipped with differential 0 + a given by (0 + a)u = du + a A u for u € 2°9. Since

O+a)*u = (0+a)(0u+aAiu)
= 52u—|—5a/\u—a/\5u+a/\5u+a/\a/\u
= 5a/\u,

the curvature of sequence (0.2) is equal to Oa. Tt follows that (0.2) is a quasicomplex. Moreover,
it is a complex if the form a is 0-closed. The symbol sequence of (0.2) coincides with that of the
Dolbeault complex, and so the quasicomplex is elliptic in X.

The purpose of this paper is to show how one obtains existence and regularity theorems for
the Neumann problem after Spencer, see (4.1), if an estimate of the form

1152 < e (1AM + AT 12 + 1LA1P)

holds for all smooth f satisfying certain boundary conditions. In the case of zero curvature, i.e.,
A'A*=! = 0, basic results are contained in [7]. If A’A"~! £ 0, however, the theorems of 7] do
not immediately apply. Our contribution rests on a detailed study of the boundary conditions
which settles the matter of "free boundary conditions".

A major part of the paper is concerned with solving equations of the type Q(u,v) = (f,v)
for all v € D. The form Q(u,v) is an integral of a sum of squares. In [7] also more general
forms are considered, admitting a mild non-Hermitean part. Since the problem is not assumed
to be coercive, one must be rather careful in handling the error terms which usually arise from
derivatives of the coefficients, when deriving estimates. On assuming that Q(u,u) > ||u||? for u
in a subspace D (after adding (u,v) to @), and that Q(u,u)'/? is compact with respect to the L?
norm, i.e., that any sequence (u,) with Q(u,,u,) bounded has a convergent subsequence in L?,
one shows that the equation can be solved, the space of solutions of the homogeneous equation is
finite dimensional, and that the solution operator is compact. On assuming a gain of derivatives
we present a regularity theorem for solutions.

Similarly to [7], our results are not complete in themselves, but are meant as a technical aid
in obtaining more definitive results. For no indication is given when a priori estimates hold.
Indeed it seems to be rather difficult to say in general when they can be established.
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It is very easy to prove the existence of a Hilbert space solution of the equation Q(u,v) = (f,v)
for all v € D. But we are interested in those solutions which are smooth in X. To do this we
derive a priori estimates for the L? norms of derivatives of u. Near the boundary we first estimate
derivatives in directions tangential to the boundary by essentially setting v equal to tangential
derivatives of w. To this end, we assume that the boundary conditions are, in some sense,
invariant with respect to translation along the boundary. Then, assuming the boundary to be
noncharacteristic, we estimate also the normal derivatives. Then we are faced with the standard
problem of going from a priori estimates of derivatives to the proof of their existence.

There is, as yet, no general theorem which states that whenever one has a priori estimates
for derivatives of a function then, in fact, these derivatives exist. In each individual case one
has to prove this separately, and this is often the most tedious and technical aspect of existence
theorems. One way which is often used is to apply a smoothing operator to the solution. In
order to apply the a priori estimates to the resulting functions it is necessary to handle the term
arising from the commutator of the differential operator and the smoothing operator. This is
sometimes rather complicated. This method is used extensively in the book [3], where a number
of special lemmas concerned with the commutators of differential and smoothing operators are
given.

In [7] another method of smoothing is used. It is more closely related to differential operators,
and has proved useful in a wide class of problems. It consists in adding e times an elliptic
operator so that the resulting equation becomes elliptic and coercive under the given boundary
conditions for € > 0, even if the original equation is not elliptic. Thus we rely on the fact
that the differentiability theorems are well known for such problems and we wish to reduce
the differentiability theorems to those for coercive elliptic problems. The new equation, being
coercive elliptic, has a smooth solution u. in X and, if the elliptic term has been added in a
suitable way, the method of obtaining a priori estimates applies as well to the new equation as
to the original one, and yields estimates for the derivatives of u. which are independent of .
Letting ¢ — 0 through a sequence ¢, it follows that a subsequence of the u.,, together with
derivatives, converges to a smooth solution of the original problem.

This method, therefore, does not show that a generalised solution u is smooth, but constructs
a smooth solution. If there is uniqueness among generalised solutions, then one may also infer
that u is smooth.

Part 1. The Neumann problem for quasicomplexes

1. Preliminaries

Corresponding to each point x € X and cotangent vector £ € T X there is associated with
(0.1) a sequence of linear mappings

0 s ;07RO g1 AN AU py g (1.1)
where F! is the fibre of the bundle F* over x and o'(A%)(x, ) the principal homogeneous symbol
of A% at (z,&). Since A’A*~! = 0 it follows that o*(A%)o! (A1) = 0, i.e., the symbol sequence
(1.1) constitutes a complex. A cotangent vector £ € TxX is said to be noncharacteristic for the
quasicomplex (0.1) if the symbol complex is exact.

In what follows, functional methods are used to study quasicomplex (0.1), and it will be
necessary to have L? norms defined for sections of the vector bundles F*. Accordingly, we shall
always consider X to have a Riemannian structure with volume element dv, and we shall assume
that each F' has a C°° Hermitean inner product (-,-), defined along its fibres. For arbitrary
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sections f,g € C®(X, F*), we define
(F.9)= [ (7@).g(e)do

and ||f|| = \/(f,f). Then L?(X,F?%) can be defined as the completion of C*°(X, F?) in the
norm || - ||.

In a similar way, we use the induced area element ds on the boundary S of A’ to introduce
the space L*(S, F*) with scalar product (,-)s and norm || - | s.

As usual, we write A*~* for the formal adjoint of A*~! as determined by the inner products
in the spaces L?(X, F*~!) and L?(X, F?). Thus A*~'* is the unique differential operator from

sections of F* to sections of F'~1 of order 1, such that (A*~tu,g) = (u, A*~1*g) whenever
u € C®°(X,Fi=1) and g € C*°(X, F*) have support in the interior of X.

We will also use the Sobolev norms || - || defined for sections of F?, where s is a real number.
Remark that if X the closure of an open set in R”, F* = X x C¥ and s is a nonnegative integer,
then the norm || - ||s on C*°(X, F%) is equivalent to the norm

1/2
Fo (3 1)
laf<s

where 0% = 97" ... 09",

The construction of Sobolev spaces on the compact closed manifold S is more direct. We
write || - ||s.s for the Sobolev norm on C*°(S, F*) and H*(S, F) for the corresponding function
space.

2. A boundary decomposition

The operators A = A A" + A*~1 A"=1* are called the Laplacians of (0.1). The unit normal
vector v(z) of the boundary 0X is noncharacteristic for the quasicomplex at step 4 if and only
if X is noncharacteristic for the Laplacian A" € Diff? (X; F") at #. Throughout the paper we
make the standing assumption that the conormal bundle of the boundary is noncharacteristic
for quasicomplex (0.1) at steps i — 1 and 3.

We can assume without loss of generality that X is embedded into a larger smooth manifold
X’ without boundary. Choose a smooth function g in a neighbourhood U of X in X’ which is
negative in U N (X \ 9X), positive in U N (X’ \ X) and whose differential does not vanish on 0X.
By shrinking U if necessary, we may actually assume that |dg(x)| = 1 holds for all € 90X, for
if not, we replace ¢ by o/|do|.

Lemma 2.1. For x € X, the cotangent vector do(z) € TrX is independent of the particular
choice of o.

Proof. Let 01 and g2 be two functions with the properties described above. For each z € 90X
there is a neighbourhood U, of this point in X/, such that g2 = fp1 in U, with some smooth
function f in U,. It is clear that f is positive in U, \ 0X. Furthermore, we get dos = fdp1 on
U, NOX whence f =1 on U, NOX, as desired. O

Write o(x) for the principal homogeneous symbol of A? evaluated at the point (x,do(z)) of
T*X. This is a smooth section of the bundle Hom(F?, Fi*!) whose restriction to the surface
0X does not depend on the particular choice of p, the latter being due to Lemma 2.1. The
principal homogeneous symbol of A? evaluated at (x,do(z)) is o'(x)*o?(z) + o' H(z)o' L (z)*,
which we denote by ¢i(x) for short. Since the boundary is noncharacteristic for A?, the map
¢'(z) € Hom(F?) is invertible for all z in some neighbourhood of X in X’, and similarly for the
symbol £/~ (xz).
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Theorem 2.2. The restriction of the bundle F' to the surface OX splits into the direct sum
Fi lox=F &0 F,
where F{ = a*a'({)LF* [5x is a smooth subbundle of F* [ax.

Proof. For each x € X close to the boundary, any f € F! can be written in the form

f=tf)+ o @)n(f), (2.1)

where
t(f) = o'(x)o(x)(l’(x)"f,
n(f) = o Ha) (¢ (x)7'f

prove to satisfy tot =t¢,ton =n,not =0 and non = 0. This establishes the theorem. O

Note that if F* = A'T*X is the bundle of exterior forms of degree i over X then F} = /*F"
is the pullback of F'* under the embedding X — X. It follows that F} = A‘T*(9X).

3. Green formula

To describe natural boundary value problems for solutions of Au = f in X, one uses a
Green formula related to the Laplacian A’. Such formulas are well understood in general, see
for instance Lemma 3.2.10 in [17]. In this section we just compute explicitly the terms included
into this formula, to get it in the form we need.

Theorem 3.1 (Green formula). For all smooth sections u and v of F* over X it follows that
/ ((t(u),wn(Av))x — (vln(u), t(A*0)), + (L(A%u),n(v)), — (Mn(Au),t(v))I)ds =
ox
= / ((Au,v)x — (u, Av)m)dv,
X
where 1 = y/—1.

Proof. Let G 4(*g,u) be the Green operator for a differential operator A = A*, see § 2.4.2 of [17].
Here,  : Fi*t! — Fitl is the fibrewise Hodge star operator determined by (xg, f) = (f, g). for
all f € Fit!l. An easy computation shows that the pullbacks of differential forms G 4(xg,u) and
G 4+ (*u, g) under the inclusion X — X amount to

U Galrg,u) = (H(u),ln(g))ads,
U Gax(xu,g) = —(n(g),t(u)).ds

on OX for all smooth sections g and w of Fi*! and F?, respectively, cf. § 3.2.2 ibid. Applying
Corollary 2.5.14 of [17] establishes the formula. O

Theorem 3.1 shows immediately that the quadrupel ¢(u), n(u), t(A*u) and n(Au) gives a
representation of the Cauchy data of w on the surface 0X relative to the Laplacian A. The
tangential part of the Cauchy data, (¢t(u),t(A*u)), is usually referred to as the Dirichlet data,
and the normal part of the Cauchy data, (n(u),n(Au)), is referred to as the Neumann data. This
designation is due rather to the whimsical development of mathematics than to well-motivated
choice, for, at the last step of the quasicomplex, the data (t(u),t(A*u)) reduce to t(A*u), which
is the classical Neumann data, and (n(u),n(Au)) reduce to n(u), which is the classical Dirichlet
data.
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4. The Neumann problem

In his paper [16], Spencer proposed a method of studying the cohomology of an elliptic
complex similar to (0.1) at step 4. The main step involves the boundary value problem

Ay = f in X,
nfu) = 0 on OJ0X, (4.1)
n(Au) = 0 on 0X,

where f is a given section of F"* over X.

Example 4.1. In the special case of the de Rham complex and i = 0 problem (4.1) reduces to
the classical Neumann problem. For n(du) amounts to the normal derivative of u at 0X.

Even in the classical case, (4.1) is not solvable unless f satisfies additional conditions. Since
(4.1) is a boundary value problem symmetric with respect to the Green formula, it is solvable
only if f is orthogonal in the L? sense to the space H!(X) of all h € C°°(X, F?) satisfying the
corresponding homogeneous problem, i.e., A%h = 0 in X and n(h) = 0, n(Ah) = 0 on OX. The
sections of H*(X) are called harmonic.

Lemma 4.2. A section h € C®(X, F?) is harmonic if and only if Ah =0, A*h =0 in X and
n(h) =0 on OX.

Proof. The point here is that the boundary conditions of (4.1) allow us to integrate by parts
without introducing integrals on the boundary. The sufficiency is obvious. To show the necessity,
pick a section h € H'(X). On integrating by parts we readily obtain

0= (A'h,h) = ||A'h|* + | A"~ "R,

and the lemma follows. O

The main step in the approach of [16] is to establish that H!(X) is finite-dimensional and if
f € C>(X, F?) is orthogonal to H*(X) then (4.1) can be solved for u € C>°(X, F*). Suppose that
these solvability properties for problem (4.1) have been established. We introduce the subspace
N (X) of C®(X, F') consisting of those sections u which satisfy the boundary conditions in
(4.1), i.e., n(u) = 0 and n(Au) = 0 on dX. Given any f € C°(X, F), we denote by H'f the
orthogonal projection of f into H!(X). The difference f — H'f still belongs to C*°(X, F'*) and
is orthogonal to H!(X'), hence there is a section u € N*(X) such that Alu = f — H'f in X. Set
Nif :=u — H'u, thus obtaining a linear operator from C>(X, F*) to N*(X). This operator is
well defined, for from wuy,us € N*(X) and Alu; = Alus it follows that u; — Hiuy = us — H'us.
We see that any section f € C*°(X, F") can be written as

F=Hf+A*A N f+ A1 41 Nif (4.2)

in X.

If the curvature of quasicomplex (0.1) vanishes at step i, i.e., A’A*~t = 0, then the terms on
the right-hand side of (4.2) are mutually orthogonal, as is easy to check. In this case formula
(4.2) furnishes an isomorphism between the cohomology of (0.1) at step i and the space H!(X)
of harmonic sections, see [17, 4.1] for more details.

- 480 —



Azal Mera, Nikolai Tarkhanov The Neumann Problem after Spencer

Part 2. Subelliptic estimates

5. The main theorem

Quasicomplex (0.1) is said to be elliptic at step 4 if the symbol complex (1.1) is exact at step
i for each x € X and for each cotangent vector £ € T X" different from zero. This is equivalent
to the fact that the Laplacian A® is a second order elliptic operator on X'.

Theorem 5.1. Suppose (0.1) is elliptic at steps i — 1 and i and there is a constant ¢ such that
lull )2 < e (A l® + 1A ull* + Jlul?) (5.1)

holds for all u € C®(X,F?) satisfying n(u) = 0. Then H (X) is finite-dimensional, and if
f € C®(X,F) is orthogonal to H'(X) then there exists u € C°°(X, F*) satisfying (4.1).

As is mentioned in the introductory remarks, this theorem is contained in [7] if the curvature
of (0.1) vanishes at step i.

The first step in proving the theorem is to extend the Laplacian A? to a closed operator L’
on the Hilbert space L?(X,F'). To this end we apply a classical method of (Kurt) Friedrichs,
cf. [2]. In functional analysis, by the Friedrichs extension is meant a canonical self-adjoint
extension of a nonnegative densely defined symmetric operator. This extension is particularly
useful in situations where an operator may fail to be essentially self-adjoint or whose essential
self-adjointness is difficult to show. The definition of the Friedrichs extension is based on the
theory of closed positive forms on Hilbert spaces. If T is a nonnegative operator in a Hilbert
space H, then Q(u,v) = (u,Tv) + (u,v) is a sesquilinear form on Dom T and Q(u,u) > |jul]?.
Thus @ defines an inner product on DomT'. Let H; be the completion of Dom T with respect
to . This is an abstractly defined space. For instance its elements can be represented as
equivalence classes of Cauchy sequences of elements of DomT'. It is not obvious that all elements
in H; can be identified with elements of H. However, the canonical inclusion DomT — H
extends to an injective continuous map H; — H. We regard H; as a subspace of H. Define
an operator 17 in H whose domain consists of all v € Hy such that v — Q(u,v) is a bounded
conjugate-linear functional on H;. Here, bounded is relative to the topology of H; inherited
from H. Pick u € DomTj. By the Riesz representation theorem applied to the linear functional
v — Q(u,v) extended to all of H, there is a unique f € H such that Q(u,v) = (f,v) for all
v € Hy. Set Tyu := f. Then T} is a nonnegative self-adjoint operator in H, such that T — I
extends 7. The operator T7 — I is called the Friedrichs extension of T

The operator A® in L2(X, F*) with domain N(X) is nonnegative, densely defined and sym-
metric. The sesquilinear form Q(u,v) = (u, A%) + (u,v) on N*(X) reduces readily to

D(u,v) := (A'u, Av) + (A" u, A1) + (u,v),

which is known as the Dirichlet scalar product on C*° (X, F*). When completing N*(X) in the
norm D(u) := /D(u,u), one can scarcely retain the boundary condition n(Au) = 0 at OX.
Hence, one disregards this condition from the very beginning and considers the Dirichlet inner
product on the subspace of C°°(X, F'") which consists of all u satisfying n(u) = 0 on dX. We
write D' for its completion to a Hilbert space. It is not difficult to see that D can be thought
of as a subspace of L?(X, F"). We now define L + I to be the operator whose domain consists
of all u € D such that v — D(v,u) extends to a bounded linear functional on L?(X, F?) and
whose rule of correspondence is given by D(u,v) = ((L* + I)u,v), for all sections v € D?. Then
L? + I is a self-adjoint operator on L?(X, F?), and (L + I)u = (A* + Iu if u € N (X). Also,
L? + I is surjective, and (L* + I)~! is bounded as an operator from L?(X, F%) to D*. It follows
by (5.1) and Rellich’s theorem that (L* + I)~! is a compact operator from L?(X, F?) to itself,
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and hence L' = (L* + I) — I must have closed range and finite-dimensional null space. Since
L7 is self-adjoint, its null space is the orthogonal complement of the range of L. Hence, any
f € L2(X, F%) can be written in the form f = h + Liu, where h belongs to the null space of L°
and v is in the domain of L?. The proof of Theorem 5.1 will now be complete when we establish
two facts. The first of the two is that if u lies in the domain of L? and if Liu is C*°, then u is C°.
The second fact is that every smooth section u in the domain of L’ must satisfy the boundary
conditions n(u) = 0 and n(Au) = 0 on OX. If f is C°°, then the first statement will imply that
the sections h and u in f = h + Liu are C*. Its proof will occupy the next three sections. The
second statement will then imply that h is in H*(X), that u is in N(X), and that Liu = Au.
We turn to the proof of the second statement right now.

Lemma 5.2. Every C™ section u in D° satisfies the boundary condition n(u) =0 on OX.

Proof. Since u € D*, there exists a sequence {u;} in C*°(X, F*) such that n(u;) = 0 on dX
and D(u —u;) — 0 as j — oo. Since n(u;) = 0 on OX, integration by parts yields the equality
(A*uj, ) = (uj, Ap) for every p € C°(X, F'~1). Since D(u — uj) — 0, we may pass to the
limit in the equality to obtain (A*u, ¢) = (u, Ap) for every ¢. In view of the integration-by-parts
formula (see the proof of Theorem 3.1), this means that

/ (n(u),t(p))zds =0
ox

for all ¢ € C°°(X, F'~1). Hence the lemma holds. O

Lemma 5.3. Suppose the boundary is noncharacteristic for quasicomplex (0.1) at step i — 1.
Then every u € C®(X, F') which belongs to the domain of L' satisfies n(Au) =0 on 0X.

Proof. If u € C>(X, F*) belongs to the domain of L?, then for every C'> section v in D' we get
0 = D(u,v)— ((L'+ Iu,v)
— ((A‘u, sz) _ (A”Aiu,v)) + ((Ai—l*u7Ai—1*v) _ (Ai_lAi_l*u,U))
= / (n(Au), t(v)), ds 7/ (t(A*u),2ln(v)), ds,
ox

ox

the last equality being due to the integration-by-parts-formula. Since n(v) = 0 on the surface
0X, the second term on the right-hand side vanishes, which gives readily

/ (Un(Au),t(v))zds =0
ox

for all v € C*°(X, F') satisfying n(v) = 0 on dX. On applying Theorem 2.2 we conclude that
n(Au) =0 on 90X, as desired. O

6. A priori estimates

To complete the proof of Theorem 5.1 we must prove that v is C*°, whenever Liu is. In this
section we derive certain a priori estimates which help establish this result. In what follows, ¢
will denote a generic constant.

We shall need the norms || f|| . sy when f is a C°° function with compact support in the closed
half-space Rgo consisting of all x € R™ with ™ > 0. For the definition of these norms in terms of
Fourier transform we refer to Section 2.5 of [3]. We only remark that if » and s are nonnegative
integers, then || - || ) is equivalent to the norm

o (X [ rserae)”

la|<rts
anp <7
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So || f |l (r,s) controls the L? norms of those partial derivatives of f which are of total order < r+s
and are of order < r in the normal derivative 9/9z™. We list the main properties of the norms

Il Ml in

Lemma 6.1. As defined above, the scale || - ||(r,s) bears the following properties:

) [ fller0) = I f NI, the Sobolev r-norm on R%;

9) [ Fllons) < flowwy 7 < 7" andr+5< 7 4 s';

) IPfll(r,s) < |l fll(r4m,s) holds with some constant c independent of f, if P is a differential
operator of order m;

4) 1 fllir,s) < cUIPflltr—m,s) + | fllrr,sy) holds with a constant c independent of f, if P is an
elliptic differential operator of order m and r +s =1+ s';

5) 1 flls,s < I fll(1,s—1), where || - ||s,s is the Sobolev s -norm on {z" = 0};

6) 2R (f,9) < Ifll¢0.9)l9ll(0,~s) for any s.

Proof. Assertion 4) is Lemma 2.1.1 in [5]. The rest of the lemma is contained in Sec. 2.5 of [3]. O

Let U be a coordinate neighbourhood in X such that the bundles F*~!, F? and F*t! are
trivial over U. Assume that the coordinate x = (z!,...,2") on U maps U into the closed half-
space RY,. Then any C*° function with support in U can be considered as a function on R%,,
and hence the norms || f|(,,s) are defined for f € Cg5,,,(U). Now fix a frame in F'|y, that is,
choose sections eq, ..., e, in C°(U, F*) with the property that for each x € U the elements
e1(x),. .., exi(2) form a basis for the fibre over z. Then each u € CZ,,(U, F*) has component
functions defined by

1 K,
u=ue +...+u e,

and we may define

Koo 1/2
ullrs) = (2 HuJH?T’s)) .
j=1

It is easy to check that the assertions in Lemma 6.1 continue to hold for these norms.

1
Let D' = (D1,...,Dy,—1), where D; = g . Consider the pseudodifferential operator

/1027

2
A5 = x(D') (14 D))"
on R"~! where y € C*°(R""1) is 0 on a neighbourhood of the origin and 1 outside a slightly
larger set. On letting A® act along the first n — 1 coordinate directions we define A° f when f is
a C*® function on X with compact support in U. And with a fixed choice of frame in F? over
U we can define A%u for u € Cog,, (U, F*) by letting A* act on the component functions of u as

determined by the frame. If ¢ € C%(U) and

comp
T° = pA°p. (6.1)

then T is an operator which acts on C°°(X) and also, with a choice of local frame, an arbitrary
smooth sections of F~!, F? or Fitl,

If an appropriate frame is used to define T on sections of F, then T becomes a formally
self-adjoint operator. In fact, let €f,...,€,, € C(X,F") be such that for each # € U the
elements €} (x),...,e};(x) form an orthonormal basis for the fibre, and let the volume element
be given by dv = v(x)dz in the coordinate x on U. Then define ¢; = ¢’;/\/v, for j =1,..., k*, so
that if u = ujej and v = vjej have support in U, then

ki
(u,v):/UZui(x)mdx.
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If we define Tu = (T*uf)e; for u = uwe; € C®(U, F?), then (T*u,v) = (u,T%v) for all C>®
sections u and v. When letting T operate on sections of a bundle, we shall assume that the
frame being used makes T° self-adjoint.

Lemma 6.2. Suppose ¢, ¥, w are C*° functions with compact support in U and ¢ = 1 on the
support of w, ¥ =1 on the support of . Let T* be the operator defined by (6.1). Then,

1) for each r, t there is a constant c such that ||T° f||.+) < cl|flrt+s);

2) if moreover P is a differential operator of order m, then for each r, t there exists a constant

¢ such that
NPT fllrey < ell¥fllremotrs—1)s
T T fll ey < clloflramair2s—2);

3) for each t there is a constant ¢ such that

lwfll©e+6) < (1T Fllco,ey + I Flles-1) -
As usual, the bracket [P, Q] of two operators denotes their commutator PQ) — QP.

Proof. Assertions 1) and 2) are well-known properties of classical pseudodifferential operators.
3) holds because T is tangentially elliptic on the support of w, see Theorem 4.7 in [4]. O

Lemma 6.3. Assume that quasicomplex (0.1) is elliptic at F* and let u € C*°(X,F') satisfy
n(u) =0 on OX. Then there exist v,u',u" € C(U, F*) with support in supp ¢ such that

1) TsT*u =v+ T 4+ u”;

2) n(v) =0 on 0X;

3) for each t there is a constant ¢ such that

[y < cllvullairs—,
[l < clldullairas—2)-

Proof. We follow the proof of Lemma 4 in [12]. Theorem 2.2 shows immediately that the homo-
topy formula o n(u) +n(cu) = u holds for all u € C(9X, F*), where n? = 0. Hence, the results
of [12] apply with A =n, B=n and R = o(z). Consider

w = o(x)n(T°Tu)
o(x)T°[n, T°lu+ o(z) [n, T°]T u
Tsw/ + w//7

where w’ = 20(z) [n, T%]u and
w” = [o(@)[n,T°], T°lu+ [o(z), T%] [n, T%u
= o(x)[[n,T°], T°u+2[o(x), T°] [n, T?u.

Using Lemmata 6.1, 6.2 and inequality ||o(z)ul|s,s < ¢||lulls,s with ¢ a constant independent of
u, we infer

cllln, T°Julls 14172

<
< cllvulls irs—1/2
< cllvullirs—1y

lw'(| s t41/2

and

Jlw”|

< c(||[[n,T8],TS]u||37t+1/2 + ||[n,TS]u||57t+s_1/2)
< c(lYulls,i+2s—3/2 + [Yul
<

C ||¢U||(1,t+2572)-

S,t+1/2

S,t+2573/2)
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By Theorem 2.5.7 in [3] we can choose u/,u” € C° (U, F*) such that

comp

S
|
S

on the boundary of X and

W'l < cllw|lsri/2
<

||UHH(1,t) c Hw”||s,t+1/2~

In view of the estimates for w’ and w” which have already been obtained we get

W'l < cllvull@ts—1),
lu"l[1.e) < cllullir2s—2),

as required. Since

Tsu/ +u// — TSw/ +w//
= o(x)n(T°T?u)
on OX, we can define v = T%T%u — T*u’ — v”, and the proof is complete. O

In [7] the boundary condition n(u) = 0 on dX is assumed to be invariant with respect to action
in the directions parallel to the boundary. This means, in particular, that if n(u) = 0 on X then
also n(T°u) = 0, in which case Lemma 6.3 is trivial. How can the condition o(z)*u = 0 imply
o(z)*T® = 0 on the boundary? This can be achieved only in the case if n(u) = 0 just amounts
to saying that several components of the section u of F vanish on OX. Since quasicomplex
(0.1) is elliptic at the step ¢, this can certainly be achieved by choosing special local frames
for the bundle F. The decomposition of Theorem 2.2 actually gives such a vector bundle F}
which is a direct summand of F?. Technically this means that all norms under consideration
are independent up to equivalent norms of the particular choices of local frames, which is an
ungrateful exercise in functional analysis of sections of smooth vector bundles over 0X.

Lemma 6.4. For all u € C®(X, F?),
D(u, T°T*u) = D(T*u, T*u) + O (|[Yul|(1,5-1) -

Proof. Since T* is formally self-adjoint, the lemma reduces to Lemma 3.1 in [7]. The proof is
essentially algebraic, using only self-adjointness and those properties of T which are mentioned
in Lemma 6.2. O

Lemma 6.5. Assume that quasicomplex (0.1) is elliptic at steps i — 1 and i. Let the estimate
Hu||%/2 < e D(u,u) hold for allu € C*° (X, F?) satisfying the boundary condition n(u) = 0 on OX.
Then for each s > 1/2 there is a constant ¢ with the property that

|1 T*ull? 5 < e D(T*u, T*u) < e ([|(A + Dull3_ )5 + [ull3) (6.2)
holds for all w € C>°(X,F?) in the domain of L*.

Proof. Since u is in the domain of L!, we have D(u,v) = ((A + I)u,v) for all v € C*(X, F?)
satisfying the boundary condition n(v) = 0 on 0X. Hence, this equality holds in particular for
the section v = T*T%u — T%u' — u” described in Lemma 6.3. Thus,

D(u, T°T*u) = D(u, T*u’) + D(u,u”) + (A + Du, T°T*u) + ((A + Du, T*u +u").  (6.3)
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We shall treat the terms on the right of (6.3) one by one.
To treat the first term we first claim that

D(u,T*u') = D(T*u,u') + O(|[ullty s_1))- (6.4)
In fact, to prove this we must majorise two terms like
(Au, AT*u') — (AT*u, Au') = (Au, [A, T*u) + ([T*, Alu, Au'),
and by the preceding lemmata this expression is bounded by

Al 0,5 lITA T [ 0,—s1) + [T, AJul [|[AW]| - < ellypulla,s—yllv'll a0
< cllullty -1y

Therefore, (6.4) holds, and since

|D(T%u,v)| < /D(Tu,Tsu)\/D(u/,u')
1

< DT T u) + el
1
< ZD(T%TSu)JrCHibUH?qu)v

we get

1
[D(u, T*u')] < 3 D(T*u, T*u) + ¢ [[ulty o).

As for the second term in (6.3) we claim that |D(u,u”)| < ¢ ||’(/JUH%1 s—1)- In fact, for a typical

term, we have

(Au, A" < e AW 0,smn) 1"l =y
< CH?/WH%Ls—l)y

and hence the above estimate holds.
The third term in (6.3) is majorised as

[((A+ Du, T°T*u)

[(T°(A 4+ Du, T?u)|

1T (A 4 Dullo,—1/2) 1 T*ul| 0,1 /2)
c|[(A+ Dulls—1/2l|T%ull1 2

c (I T?ull} )y + e 1(A + Dull?_, )
ce?D(T%u, T*u) + ce2||(A + I)u||§71/2,

NN NN

1
where € > 0 is taken so small that ce? < .

The remaining term in (6.3) can now be estimated by

I((A+ Du, T*u' 4+ u")| 1A + Dullo,s—1/2) | T + 1" (0,—s+1/2)

<
< e(l(A+Duli sy + 1Yullty o)),

and thus we have proved that
S S 1 S S
D(u, T*T*u) < 5 D(T*u, T*u) + e ([(A + Dull3_y 5 + [Yullfy s-1))-
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1
On using Lemma 6.4 and substracting the term 5 D(T?u,T?u) from both sides we get

1 s s
5 DT u, Tu) < e ([(A+ Dull_y o + 1ullfy o-1y)-

To complete the proof it suffices to show that ||wu||%1 s—1y is majorised by the right-hand side

of (7.1). But since quasicomplex (0.1) is elliptic at step i, the operator A+ I is elliptic, and so,
by part 4) of Lemma 6.1,

[bullfi sy < e((A+ Dpullt_y oy + llull?)
< (A +Dulls_z ) + [lull?)
< e(l(A+DullZ_g o + A, WIullZ_5/5 + llull?)
< e(l(A+DullZ_g ) + llul?),
as desired. 0

Recall that by w we mean a C*° function with compact support in U, such that ¢ = 1 on
the support of w.

Lemma 6.6. Suppose the quasicomplex (0.1) is elliptic at step i. Then for each s > 1/2 there
is a constant ¢ such that

lwulls+1/2 < (T ully2 + [[(A + Dulls—3/2 + llulls—1/2)
holds for all uw € C>=(X, F").

Proof. Since quasicomplex (0.1) is elliptic at step i, the operator A? + I is elliptic, and part 4)
of Lemma 6.1 yields

lwullsrre < e(l(A+ Dwulls—zsa + wullo,s+1/2))
< (A + Dulls—s/2 + I[A, wlulls—3/2 + [lwull0,s+1/2))
< (A + Dulls—s/2 + [[ulls—1/2 + llwull0,s+1/2))-
The desired estimate now follows from part 3) of Lemma 6.2. O

Theorem 6.7. Assume that quasicomplex (0.1) is elliptic at steps i — 1 and i. Let the estimate
Hu||%/2 < e D(u,u) hold for allu € C*° (X, F?) satisfying the boundary condition n(u) = 0 on OX.
Then for each s > 1/2 there is a constant ¢ such that the estimate

llulls41/2 < cll(A+ Dulls—1/2 (6.5)
holds for all w € C>(X,F?) in the domain of L.

Proof. Choose a finite covering {U, } of X’ by coordinate neighbourhoods of the form used above.
For each v, let w,, ¢, ¥, and TS be as described in Lemma 6.2. We can assume that {w,}
forms a partition of unity on X. Then, by Lemmata 6.5 and 6.6, we get

lullorryz < e (X0 MK ullye + (A + Dullu-s/z + lulls-1/2)

< (A + Dulls—1/2 + [[ulls)
for all smooth w in the domain of L?. Using the interpolation inequality

lulls < ellullstryz + Cle) [ul
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with € > 0 sufficiently small, we obtain

1
[ulls1/2 < e(I(A + Dulls—r72 + Cle) lull) + 5 llullsr1/2
whence
[ulls+1/2 < e([(A+ Dufls—1/2 + [[ul)- (6.6)

Since
Jull> < D(u,u) = (A + Du,u) < [[(A+ Dull[Jul]

for all u in the domain of L?, we obtain
[ull < (A + Dull < (A + Dulls—1/2.

Estimate (7.1) now follows from (6.6) and the last inequality, as desired. O

7. Elliptic regularisation

Following [7], we use the techniques of elliptic regularisation in this section to prove that u
is C>° whenever Lu is C*°. This will complete the proof of Theorem 5.1.

Choose a bundle F and a differential operator 9 : C®° (X, F") — C*®(X, F) of order 1 such
that [|Ou| > ||ul|; for all u € C*°(X, F?). Define

Al = A'@ed: C®(X,F') — C®(X,F™) @ C™(X,F)

for € > 0. Except for the fact that the composition ALA*~! need not be of order 1 when ¢ > 0,
the operators A*~! and A% share most of the properties of A*~! and A’ which were used in the
last two sections. In particular, we can use the sesquilinear form

Do(uv) = (Alu, Alv)+ (A0, A7) + (u,0)
D(u,v) + &* (du, dv)
to define a self-adjoint operator L¢ on L?(X, F*) such that D (u,v) = ((LL 4 I)u,v) for all u in
the domain of L and all C* sections v satisfying n(v) = 0 on 9X.
We still give D, (u,v) the domain that consists of all u,v € C°°(X, F'¥) whose normal parts
vanish on 0X. The only problem is on the additional boundary condition for Alu for smooth

sections u € C°(X, F%) lying in the domain of L. An easy verification using the Green formula
shows that this free boundary condition reduces to

(2)n(Au) 4 (o (9) (z, do(x)))*Ou = 0
on 0X.

Lemma 7.1. Assume that quasicomplex (0.1) is elliptic at steps i — 1 and i. Let the estimate
||u||:{/2 < ¢ D(u,u) hold for allu € C°°(X, F*) satisfying the boundary condition n(u) = 0 on OX.
Then for each s > 1/2 there is a constant ¢ with the property that

[ullsg12 < e (LE+ Dulls—1 2 (7.1)
holds whenever u € C (X, F*) is in the domain of Li and 0 < e < 1.

Proof. All the arguments used to prove (7.1) continue to be valid when A? is replaced by A%, and
it is easy to see that the constant ¢ in each of the various estimates can be chosen independently
of . O
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The reason for introducing A’ is that when £ > 0 then the coercive estimate
*[lull§ < De(u,u) (7.2)
e llully < Delu,u :

holds for all u € C°(X, F*), and it is fairly easy to obtain a regularity theorem for Li. In fact,
we have

Theorem 7.2. Suppose that quasicomplez (0.1) is elliptic at steps i — 1 and i. Let the estimate
Hu||§/2 < ¢ D(u,u) hold for all u € C*°(X, F?) sati;fying the boundary condition n(u) = 0 on
OX and let 0 < e < 1. Then for every f € C*°(X, F") there is a unique section u € C*°(X, F*)
in the domain of L such that (LL + Iu = f.

Proof. The operator L! was constructed in such a way that L + I automatically maps its domain
onto L2(X, F*) in a one-to-one fashion. Hence, to prove the theorem, it will suffice to show that
if u is in the domain of L! and if (LL 4 I)u is C*°, then u is also C>°. We shall use the method
of difference quotients which occurs, e.g., in [9] and [1].

If f is a function on the closed upper half-space in R", if 1 < j < n and h > 0, then we write

1 f(at,..,27 +hyooo2™) — f(ab .o 28 — kL 2™)
V=1 2h

and, for any multi-index o = (a1, ..., o) with o, = 0, we set 6§ = 65 ... 8, "",. After choosing
a coordinate system x : U — R"™ on X', which maps U into the closed upper half-space, and after

choosing a function ¢ € Cg,,,(U) we can use a local orthonormal frame to define

On,jf(x) =

Tilu = ¢ (pu),

when u is a section of one of the vector bundles F? or of F. For details we refer to the discussion
just above Lemma 6.2.

If, in Lemma 6.2, the operator T** is replaced by the operator T}* with |a| = s, then statements
1), 2), and 3) continue to hold even if the constants ¢ are required to be independent of i for
0 < h < 1. Consequently, Lemmata 6.3 and 6.4 also hold for the operators T}*, where again
the constants can be chosen independent of h. Using (7.2) and the arguments in the proof of
Lemma 6.5, one can show that for each € > 0 and every integer s > 1 there is a constant ¢ such
that

T3 ully < e (I (L2 + Dullo,s-1) + lula,s-1) (7.3)

provided |a| = s, 0 < h < 1, u belongs to the domain of L%, yu € H*~V(X, F?) and (L +1)u €
C>=(X,F*"). Now, if o and u satisfy these conditions, then (7.3) shows that (Tu)o<n<1 is a
bounded subset of H*(X, F). Hence, there is a sequence h, converging to zero such that T3 u
converges weakly to some element f of H*(X, F'). Since T} u converges in the distribution sense
to D*(pu) as h — 0, we infer that f = ¢D*(pu) an hence pD*(pu) € H (X, F"). Thus, if
¢ =1 on the support of w € €25, (U), we conclude that wu € H1) (X, FY).

Now let u be in the domain of L¢, such that (L. + Iu € C®(X, F*), and let p be a fixed
point of X. Then the argument just given shows that if u is in H(*~1 on a neighbourhood
U of p, then u is in H*) on a slightly smaller neighbourhood. Thus, for each integer s there
exists a function w € Cgy,,,(U) such that wu € H®9) (U, F') and hence, by Theorem 2.5.7 in [3],
the restriction of wu to the boundary belongs to H*(0X, F*). It follows that u € H*(0X, F?)
for each s, and so u [gx must be C* by Sobolev’s lemma. Since both (L% + I)u and u [gx are
C, the regularity theorem for the Dirichlet problem implies that u is C° also (see for instance
Theorem 9.9 in [1]). The proof of the theorem is thus complete. O
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Corollary 7.3. Suppose that quasicomplex: (0.1) is elliptic at steps i — 1 and i. Let the estimate
||u||%/2 < ¢ D(u,u) hold for allu € C=(X, F?) satisfying the boundary condition n(u) = 0 on X
and let u belong to the domain of L*. Then,

1) wis C* if (L' + Iu is C°;

2)u € HSTY (X, FY) if (LP+ Iu € HS(X, FY);

3)u€ HTHX, FY) if L'u € H3(X, FY);

4) u is C™ if Liu is C.

Proof. To prove 1) assume that (L + I)u is C° and for each 0 < ¢ < 1 let u. be the unique
C* section satisfying (L. + Iu. = (L' + Iu. If s > 1/2, then (7.1) shows that (uc)o<e<i is
bounded in the norm ||...[[s11/2, and by Rellich’s theorem there is a sequence &, converging to
zero, such that wu., converges in the norm || - ||s to an element uy of H*(X, F"). On passing to
the limit in D.(u.,v) = ((L* + I)u,v) we obtain

D(ug,v) = ((L' + Iu,v)

for all v € C>°(X, F'") satisfying n(v) = 0 on the boundary. Thus, u is in the domain of L* and
(L*+1)ug = (L*+I)u. Since L'+ I is one-to-one, we conclude that ug = u and so u € H*(X, F?).
Since s > 1/2 can be arbitrarily large, it follows that u is C*°.

To prove 2), let s > 0 and assume (L + I)u is in H*(X, F?). Choose a sequence f, of C*
sections which converges to (L* + I)u in the norm || - ||s, and let u, be the unique C* section
satisfying (L + I)u, = f,. Then, by (7.1), the sequence u, converges in the norm || - ||s1+1 to
some element ug of H*TH(X, F?). Since L' + I has closed graph, we get (L' + Iug = (L' + I)u
and hence u = ug. Thus, u belongs to H*T1 (X, F), as required.

If s =0, then 3) follows immediately from 2). Let m be a positive integer and assume that
3) holds for all s with 0 < s <m —1. Let m — 1 < s < m, and assume that Liu is in H*(X, F?).
Then, since Liu € H*~*(X, F'), we conclude that u € H*(X, F?) by the inductive hypothesis,
and so (L* + I')u belongs to H*(X, F*). Thus, by 2), we see that u is in H*T1(X, F*), as desired.

The assertion 4) follows obviously from 3) by Sobolev’s lemma, and the proof is complete. [J

8. A regularity theorem

In this section we assume that the curvature of quasicomplex (0.1) vanishes at step i, i.e.,
A?A=1 = (. In this case, the inhomogeneous equation A" 'u = f might be locally solvable only
for those f which satisfy A°f = 0. This is a starting point of [16].

Let T denote the operator from L?(X, F'~1) to L?(X, F') obtained by closing the graph of
A:C®(X,Fi=t) — C°(X, FY). Thus, u is in the domain of T and Tu = f if and only only if
there is a sequence (u,) in C°(X, F*~!) such that u, — u and Au, — f in the L?-norm. Our
aim in this section is to prove

Theorem 8.1. Assume that the quasicomplex (0.1) is elliptic at steps i — 1, i and i + 1, and
assume that the estimate Hf||?/2 < ¢D(f, f) holds for all f € C(X,F?) satisfying n(f) = 0

on 0X. Letu be in the domain of T, let u be orthogonal to the kernel of T, and let Tu € H* (X, F?)
for some s > 0. Then u belongs to H*+t1/2(X, Fi~1).

Such a theorem has proved useful in studying counterexamples for a priori estimates like
112, < e D(f, f), see, e, [10].

Lemma 8.2. Under the assumptions of Theorem 8.1, for each s there is a constant ¢ such that
lwAulls + lwA™ulls < e (lwAullo,s) + lwA ull(0,6) + [ Aulls—1 + [|ulls) (8.1)

is valid for all u € C(X, F?).
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Proof. Using the ellipticity of the quasicomplex at F*~! and F*t!, one checks readily that
(9,h) = (A*g, Ag + A"h, Ah)

is an elliptic operator from sections of F*~! @ F*+! to sections of F'~2 @ F' @ F*2. Hence, by
Lemma 6.1, part 4),

lwA ul[s + [wAulls < ¢ (lwA™ull(0,s) + [lwAul0,5)+
+ A (@A) [s1 + [AwA ) + A% (wAu) |51 + [A(wAu)[|s-1),

and since the commutators [A*,w], [4,w], etc., have order zero, and the operators A*A* AA
have order one, we get

[A* (@A u)l[s-1 < clulls,
[A(wA ™) + A" (wAu)[ls—1 < e(|Aufsa + [lulls)
<

[A(wAu)[s -1 ¢ lulls-
Estimate (8.2) now follows. O

Lemma 8.3. Under the assumptions of Theorem 8.1, for each s > 1/2 there is a constant ¢
such that
[A%ulls < cl[(A+ Dulls—1/2 (8.2)

holds for each u € C*°(X, F*) in the domain of L.

Proof. By Lemma 6.2 and Lemma 8.2 we have
lwA 2 < e (koA ul . + lodullfy + 1 Aul2oy + ul?)

c(IT°A%ul* + |7 Aul® + || Aul[Fy + [[ull?)

<
< (DT u, Tu) + | AulZy + ull?)

for all u € C°(X, F"). If u belongs to the domain of L?, then by Lemma 6.5

JoAsulz < e (I(A+Dul2y o+ lul?)
< cll(A+ Dul2

Now cover X with a finite number of neighbourhoods U, of the kind used in Lemma 6.2 and
choose the corresponding functions w, to form a partition of unity on X. Then

14 ulls < o A*ulls < ell(A + Dulls-ry2

for all u € C°(X, F*) in the domain of L?, as desired. O

Lemma 8.4. Under the assumptions of Theorem 8.1, let u € L?(X, F*) belong to the domain of
L, and assume that L'u € H*~Y/2 for some s > 1/2. Then u is in the domain of T* and T*u
belongs to H*(X, Fi~1).

Proof. In view of part 2) of Corollary 7.3 we get u € H*t'/2(X, F') and hence (L' + Iu €
H*=Y/2(X, F?%). Choose a sequence (f,) in C*(X, F*) which converges to (L’ 4 I')u in the norm
| - 1ls—1/2 and let u, € C*°(X, F*) be the unique solution to

(L' + Duy, = f,.
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Then by (7.1) the sequence (u,) converges in the norm || - ||s11/2, and since L' + I gas closed
graph, the limit must be u. Now Lemma 5.2 and the Green formula show that each u, is in the
domain of T*, and T*u, = A*u,. The estimate (8.2) now implies that (7T"u,) converges in the
norm || - ||s. Since T™* has closed graph, we conclude that u = lim v, is in the domain of T and
T*u = lim T*u,, is in H*(X,Fi~1). The proof is complete. O

As is remarked in Section 5., any f € L?(X, F*) can be written as f = h + L'u, where h lies
in the null space of L and u is in the domain of L?. If we require that u be orthogonal to the null
space of L?, then f determines u uniquely and the correspondence f + u defines an operator
N : L?(X,F') — L*(X, F?) which, as one easily sees, is self-adjoint and bounded.

Proof of Theorem 8.1. Let u be in the domain of T~!, let u be orthogonal to the kernel of T,
and assume that Tw is in H*(X, F?) for some s > 0. Then, since Tu = h + L{(NTu), where
h € H{(X) is C* on X, Lemma 8.4 shows that NT'u is in the domain of T* and T* NTu belongs
to H*+1/2(x, F'~1). To complete the proof we show that

u=T*NTu.

In fact, if v € C°(X, F'~1) is an arbitrary section with support in the interior of X', then
Av = h+ AN Av, where h € H(X). Hence,

Av — AA*NAv = h + A*AN Av.

Since A’A*~1 =0, the terms on the right-hand side of this equality are orthogonal to the terms
on the left-hand side. It follows that A(I — A*NA)v = 0 and so (I — A* NA)v is in the null space
of T'. Since u is orthogonal to the null space of T, we obtain

0 = (u,(I—A*NA)v)
(I =T*NT)u,v),

and v = T*NTwu now follows. O

The first author gratefully acknowledges the financial support of the Ministry of High Educa-
tion of Iraq.
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3amaya Heiimana nmo Criencepy

A3zan Mepa

Hukomait TapxanoB
Ilorcmamckuit yuuBepcureT
Kapu-JIubkuexr-11Itp., 24/25, Torcaam, 14476

T'epmanus

IHonvmexa pacnpocmparums meoputo X00ca OAA INNUNMULECKUT KOMNAEKCOE HA KOMNAKMHLET 3AMKHY-
ML MHO2000PASUAT HA CAYUAT KOMNAKMHOT MH02000pa3ull ¢ Kpaem npueodum K xpaesoti 3a0ave OAA
AANAACUAHA KOMNAEKCA, KOMOPGA 00biuH0 Hadvieaemca 3adayvet Hetimarna. Mo usyvwaem s3adawy Hetimara
0ns bonee WUPOKo20 KAACCA NOCAe008AMENOHOCTNEY JUPHEPEHUUAAOHOIT ONEPAMOPOS HA KOMNAKIMHOM
MH02000pa3UL C KPAEM. DMO NOCAEIOBAMEALHOCTNU MAAOT, KPUBUSHDL, M.e. 00AadaroUue C8OTUCMBOM,
YMO KOMNOUUUA AOODIT 08YT COCCIHUT ONEPAMOPOS UMEEM, NOPAJOK MEHLWUT, “wem 086a.

Karouesvie cao6a: aaisunmuieckue KOMNAEKCs, MHo2000pasus ¢ eparuyeti, meopus Xodoca, 3adava Hed-
MAHGE.
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