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When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of
compact manifolds with boundary one is led to a boundary value problem for the Laplacian of the complex
which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of
sequences of differential operators on a compact manifold with boundary. These are sequences of small
curvature, i.e., bearing the property that the composition of any two neighbouring operators has order
less than two.
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Introduction
In the theory of elliptic linear partial differential equations the term coercive is used to describe

a certain class of boundary value problems for elliptic systems Lu = f , in which, for functions u
satisfying the boundary conditions, it is possible to estimate in relevant norm all the derivatives
of u of order equal to the order m of L in terms of the norm of Lu and in terms of suitable norms
for the given boundary data. That is, there is no loss in derivatives - in going from Lu to u we
gain precisely m derivatives. Nowadays such boundary value problems are called simply elliptic,
where the ellipticity refers to the invertibility of both interior and boundary symbols, the last
condition being also known as the Shapiro-Lopatinskij condition.

In connection with the study of inhomogeneous overdetermined systems of partial differential
equations, Spencer [16] proposed a method which leads in some cases to well determined elliptic
boundary value problems which are however not coercive. In case the systems consists of the
inhomogeneous Cauchy-Riemann equations for differential forms the resulting boundary value
problem is called the ∂̄ -Neumann problem. Extending a basic inequality of [8] this problem was
solved in [6] for forms on strongly pseudo-convex domains on a complex manifold. The elliptic
operator L in the ∂̄ -Neumann problem is of second order, and in going from Lu to u, in a
pseudo-convex domain, one gains only one derivative instead of two. This makes the problem
more difficult than a coercive one, the main difficulty occuring in the proof of regularity at the
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boundary. The regularity proof in [6] is rather complicated. A simpler proof was found in [8].
In [7] is also presented a simpler proof which yields a raher general theorem for elliptic equations,
Theorem 5 of Sec. 2. The result for the ∂̄ -Neumann problem is a very special case of this theorem.

In [7], the results are expressed in a fairly general form which may eventually prove useful in
carrying out Spencer’s attack on overdetermined equations. For functions u and v with values in
Cki or in a smooth vector bundle F i over a compact manifold with boundary X one considers a
sesquilinear form Q(u, v) which is an integral over X of an expression involving derivatives of u
and v. For functions u, v lying in a linear space D determined by certain boundary conditions one
is looking for a solution u ∈ D of Q(u, v) = (f, v) for all v ∈ D, where f is a given function with
values in F i and (·, ·) denotes the L2 scalar product of sections in X . The form Q is primarily
assumed to be almost Hermitean and that ℜQ(u, u) > 0 for u ∈ D. The paper [7] is aimed at
obtaining solutions that are regular in X up to the boundary. The solutions then lie in D and
satisfy also "free" or "natural" boundary conditions.

It was Sweeney, a PhD student of Spencer, who developed the approach of [7] within the
framework of overdetermined systems, see [11], [12–15]. A differential operator A0 is said to be
overdetermined if there is a differential operator A1 ̸= 0 with the property that A1A0 ≡ 0. Then,
for the local solvability of the inhomogeneous equation A0u = f it is necessary that the right-hand
side satisfies A1f = 0. The above papers deal with sesquilinear forms Q(f, g) = (Aif,Aig) +
(Ai−1∗f,Ai−1∗g) + (f, g) called the Dirichlet forms. This work is intended as an attempt at
motivating an interesting class of perturbations of the Neumann problem after Spencer. It
corresponds to "small" perturbations of complexes of differential operators which are are known
as quasicomplexes, see [18].

Assume that X is a compact n -dimensional manifold with boundary. For each nonnegative
integer i let F i be a vector bundle over X , and let Ai be a first order differential operator which
maps C∞ sections of F i to C∞ sections of F i+1. Suppose that the compositions AiAi−1 are all
of order not exceeding 1 so that the operators Ai form a sequence

0 −→ C∞(X , F 0)
A0

−→ C∞(X , F 1)
A1

−→ . . .
AN

−→ C∞(X , FN ) −→ 0 (0.1)

whose curvature AiAi−1 evaluated in appropriate Sobolev spaces is compact at each step.
The assumption that all of Ai have order 1 simplifies the notation essentially. This will

usually not be the case in practice. However, this assumptions is fulfilled for classical complexes
of differential operators which arise in differential geometry, see [17, Ch. 1].

As but one example of quasicomplexes of purely geometric origin we mention the sequence
related to any connection on a smooth vector bundle over X , see for instance [19, Ch. III].

Example 0.1. Let F be a smooth vector bundle of rank k on X . For i = 0, 1, . . . , n, we denote
by Ωi(X , F ) the space of differential forms of degree i with C∞ coefficients on X taking on their
values in F . Pick a connection ∂ on F . Consider the sequence

0 → C∞(X,F )
∂0

−→ Ω1(X,F )
∂1

−→ . . .
∂n−1

−→ Ωn(X,F ) → 0,

where ∂0 = ∂, ∂1 is a natural extension of ∂0 to one-forms under preservation of the Leibniz
rule, etc. Since ∂i+1∂i is a differential operator of order 0, the sequence is a quasicomplex. The
principal symbols of the (formal) Laplacians ∆i

∂ are given by

σ2(∆i
∂)(x, ξ) = IFx ⊗ σ2(∆i)(x, ξ),

where ∆i are the Hodge-Laplace operators. We thus conclude that σ2(∆i
∂)(x, ξ) is invertible for

all (x, ξ) ∈ T ∗X \ {0}. Hence, ∆i
∂ is a second order elliptic differential operator on X .

Note that the quasicomplex of connections is a complex if and only if the associated bundle
is trivial.
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Another quasicomplex of great importance in complex analytic geometry is related to certain
“small” perturbations of the Dolbeault complex.

Example 0.2. Assume that X is a complex (analytic) manifold of dimension n. As usual, we
denote by Ω0,i(X ) the space of all differential forms of bidegree (0, i) with C∞ coefficients on X ,
where 0 6 i 6 n. Locally such a form can be written as

f(z) =
∑

J=(j1,...,ji)
16j1<...<ji6n

fJ(z)dz̄
J ,

where z = (z1, . . . , zn) are local coordinates, dz̄J = dz̄j1 ∧ . . .∧dz̄ji and fI are C∞ functions of z
with complex values. Analogously to the exterior derivative d one defines the Cauchy-Riemann
operator ∂̄ which maps the differential forms of bidegree (0, i) to differential forms of bidegree
(0, i+ 1) on X , see for instance [17, 19]. Moreover, ∂̄2 = 0, i.e., the spaces Ω0,i(X ) are gathered
together to constitute a complex of first order differential operators on X called the Dolbeault
complex. This complex is proved to be elliptic in (the interior of) X . Choose any differential
form a of bidegree (0, 1) with smooth coefficients on X and consider the sequence

0 −→ Ω0,0(X )
∂̄+a−→ Ω0,1(X )

∂̄+a−→ . . .
∂̄+a−→ Ω0,n(X ) −→ 0 (0.2)

which is equipped with differential ∂̄ + a given by (∂̄ + a)u = ∂̄u+ a ∧ u for u ∈ Ω0,q. Since

(∂̄ + a)2u = (∂̄ + a)(∂̄u+ a ∧ u)
= ∂̄2u+ ∂̄a ∧ u− a ∧ ∂̄u+ a ∧ ∂̄u+ a ∧ a ∧ u
= ∂̄a ∧ u,

the curvature of sequence (0.2) is equal to ∂̄a. It follows that (0.2) is a quasicomplex. Moreover,
it is a complex if the form a is ∂̄-closed. The symbol sequence of (0.2) coincides with that of the
Dolbeault complex, and so the quasicomplex is elliptic in X .

The purpose of this paper is to show how one obtains existence and regularity theorems for
the Neumann problem after Spencer, see (4.1), if an estimate of the form

∥f∥21/2 6 c
(
∥Aif∥2 + ∥Ai−1∗f∥2 + ∥f∥2

)
holds for all smooth f satisfying certain boundary conditions. In the case of zero curvature, i.e.,
AiAi−1 ≡ 0, basic results are contained in [7]. If AiAi−1 ̸≡ 0, however, the theorems of [7] do
not immediately apply. Our contribution rests on a detailed study of the boundary conditions
which settles the matter of "free boundary conditions".

A major part of the paper is concerned with solving equations of the type Q(u, v) = (f, v)
for all v ∈ D. The form Q(u, v) is an integral of a sum of squares. In [7] also more general
forms are considered, admitting a mild non-Hermitean part. Since the problem is not assumed
to be coercive, one must be rather careful in handling the error terms which usually arise from
derivatives of the coefficients, when deriving estimates. On assuming that Q(u, u) > ∥u∥2 for u
in a subspace D (after adding (u, v) to Q), and that Q(u, u)1/2 is compact with respect to the L2

norm, i.e., that any sequence (uν) with Q(uν , uν) bounded has a convergent subsequence in L2,
one shows that the equation can be solved, the space of solutions of the homogeneous equation is
finite dimensional, and that the solution operator is compact. On assuming a gain of derivatives
we present a regularity theorem for solutions.

Similarly to [7], our results are not complete in themselves, but are meant as a technical aid
in obtaining more definitive results. For no indication is given when a priori estimates hold.
Indeed it seems to be rather difficult to say in general when they can be established.
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It is very easy to prove the existence of a Hilbert space solution of the equationQ(u, v) = (f, v)
for all v ∈ D. But we are interested in those solutions which are smooth in X . To do this we
derive a priori estimates for the L2 norms of derivatives of u. Near the boundary we first estimate
derivatives in directions tangential to the boundary by essentially setting v equal to tangential
derivatives of u. To this end, we assume that the boundary conditions are, in some sense,
invariant with respect to translation along the boundary. Then, assuming the boundary to be
noncharacteristic, we estimate also the normal derivatives. Then we are faced with the standard
problem of going from a priori estimates of derivatives to the proof of their existence.

There is, as yet, no general theorem which states that whenever one has a priori estimates
for derivatives of a function then, in fact, these derivatives exist. In each individual case one
has to prove this separately, and this is often the most tedious and technical aspect of existence
theorems. One way which is often used is to apply a smoothing operator to the solution. In
order to apply the a priori estimates to the resulting functions it is necessary to handle the term
arising from the commutator of the differential operator and the smoothing operator. This is
sometimes rather complicated. This method is used extensively in the book [3], where a number
of special lemmas concerned with the commutators of differential and smoothing operators are
given.

In [7] another method of smoothing is used. It is more closely related to differential operators,
and has proved useful in a wide class of problems. It consists in adding ε times an elliptic
operator so that the resulting equation becomes elliptic and coercive under the given boundary
conditions for ε > 0, even if the original equation is not elliptic. Thus we rely on the fact
that the differentiability theorems are well known for such problems and we wish to reduce
the differentiability theorems to those for coercive elliptic problems. The new equation, being
coercive elliptic, has a smooth solution uε in X and, if the elliptic term has been added in a
suitable way, the method of obtaining a priori estimates applies as well to the new equation as
to the original one, and yields estimates for the derivatives of uε which are independent of ε.
Letting ε → 0 through a sequence εν , it follows that a subsequence of the uεν , together with
derivatives, converges to a smooth solution of the original problem.

This method, therefore, does not show that a generalised solution u is smooth, but constructs
a smooth solution. If there is uniqueness among generalised solutions, then one may also infer
that u is smooth.

Part 1. The Neumann problem for quasicomplexes

1. Preliminaries

Corresponding to each point x ∈ X and cotangent vector ξ ∈ T ∗
xX there is associated with

(0.1) a sequence of linear mappings

0 −→ F 0
x

σ1(A0)(x,ξ)−→ F 1
x

σ1(A1)(x,ξ)−→ . . .
σ1(AN )(x,ξ)−→ FN

x −→ 0, (1.1)

where F i
x is the fibre of the bundle F i over x and σ1(Ai)(x, ξ) the principal homogeneous symbol

of Ai at (x, ξ). Since AiAi−1 ≡ 0 it follows that σ1(Ai)σ1(Ai−1) ≡ 0, i.e., the symbol sequence
(1.1) constitutes a complex. A cotangent vector ξ ∈ T ∗

xX is said to be noncharacteristic for the
quasicomplex (0.1) if the symbol complex is exact.

In what follows, functional methods are used to study quasicomplex (0.1), and it will be
necessary to have L2 norms defined for sections of the vector bundles F i. Accordingly, we shall
always consider X to have a Riemannian structure with volume element dv, and we shall assume
that each F i has a C∞ Hermitean inner product (·, ·)x defined along its fibres. For arbitrary
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sections f, g ∈ C∞(X , F i), we define

(f, g) =

∫
X
(f(x), g(x))xdv

and ∥f∥ =
√
(f, f). Then L2(X , F i) can be defined as the completion of C∞(X , F i) in the

norm ∥ · ∥.
In a similar way, we use the induced area element ds on the boundary S of X to introduce

the space L2(S, F i) with scalar product (·, ·)S and norm ∥ · ∥S .
As usual, we write Ai−1∗ for the formal adjoint of Ai−1 as determined by the inner products

in the spaces L2(X , F i−1) and L2(X , F i). Thus Ai−1∗ is the unique differential operator from
sections of F i to sections of F i−1 of order 1, such that (Ai−1u, g) = (u,Ai−1∗g) whenever
u ∈ C∞(X , F i−1) and g ∈ C∞(X , F i) have support in the interior of X .

We will also use the Sobolev norms ∥ · ∥s defined for sections of F i, where s is a real number.
Remark that if X the closure of an open set in Rn, F i = X ×Cki and s is a nonnegative integer,
then the norm ∥ · ∥s on C∞(X , F i) is equivalent to the norm

f 7→
( ∑

|α|6s

∥∂αf∥2
)1/2

,

where ∂α = ∂α1
1 . . . ∂αn

n .
The construction of Sobolev spaces on the compact closed manifold S is more direct. We

write ∥ · ∥S,s for the Sobolev norm on C∞(S, F i) and Hs(S, F i) for the corresponding function
space.

2. A boundary decomposition
The operators ∆i = Ai∗Ai + Ai−1Ai−1∗ are called the Laplacians of (0.1). The unit normal

vector ν(x) of the boundary ∂X is noncharacteristic for the quasicomplex at step i if and only
if ∂X is noncharacteristic for the Laplacian ∆i ∈ Diff2(X ;F i) at x. Throughout the paper we
make the standing assumption that the conormal bundle of the boundary is noncharacteristic
for quasicomplex (0.1) at steps i− 1 and i.

We can assume without loss of generality that X is embedded into a larger smooth manifold
X ′ without boundary. Choose a smooth function ϱ in a neighbourhood U of ∂X in X ′ which is
negative in U ∩ (X \ ∂X ), positive in U ∩ (X ′ \X ) and whose differential does not vanish on ∂X .
By shrinking U if necessary, we may actually assume that |dϱ(x)| = 1 holds for all x ∈ ∂X , for
if not, we replace ϱ by ϱ/|dϱ|.

Lemma 2.1. For x ∈ ∂X , the cotangent vector dϱ(x) ∈ T ∗
xX is independent of the particular

choice of ϱ.

Proof. Let ϱ1 and ϱ2 be two functions with the properties described above. For each x ∈ ∂X
there is a neighbourhood Ux of this point in X ′, such that ϱ2 = fϱ1 in Ux with some smooth
function f in Ux. It is clear that f is positive in Ux \ ∂X . Furthermore, we get dϱ2 = fdϱ1 on
Ux ∩ ∂X whence f ≡ 1 on Ux ∩ ∂X , as desired.

Write σi(x) for the principal homogeneous symbol of Ai evaluated at the point (x, dϱ(x)) of
T ∗X . This is a smooth section of the bundle Hom(F i, F i+1) whose restriction to the surface
∂X does not depend on the particular choice of ϱ, the latter being due to Lemma 2.1. The
principal homogeneous symbol of ∆i evaluated at (x, dϱ(x)) is σi(x)∗σi(x) + σi−1(x)σi−1(x)∗,
which we denote by ℓi(x) for short. Since the boundary is noncharacteristic for ∆i, the map
ℓi(x) ∈ Hom(F i

x) is invertible for all x in some neighbourhood of ∂X in X ′, and similarly for the
symbol ℓi−1(x).
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Theorem 2.2. The restriction of the bundle F i to the surface ∂X splits into the direct sum

F i �∂X= F i
t ⊕ σi−1F i−1

t ,

where F i
t = σi∗σi(ℓi)−1F i �∂X is a smooth subbundle of F i �∂X .

Proof. For each x ∈ X close to the boundary, any f ∈ F i
x can be written in the form

f = t(f) + σi−1(x)n(f), (2.1)

where
t(f) = σi(x)∗σi(x)(ℓi(x))−1f,
n(f) = σi−1(x)∗(ℓi(x))−1f

prove to satisfy t ◦ t = t, t ◦ n = n, n ◦ t = 0 and n ◦ n = 0. This establishes the theorem.

Note that if F i = ΛiT ∗X is the bundle of exterior forms of degree i over X then F i
t = ι∗F i

is the pullback of F i under the embedding ∂X ↪→ X . It follows that F i
t = ΛiT ∗(∂X ).

3. Green formula
To describe natural boundary value problems for solutions of ∆iu = f in X , one uses a

Green formula related to the Laplacian ∆i. Such formulas are well understood in general, see
for instance Lemma 3.2.10 in [17]. In this section we just compute explicitly the terms included
into this formula, to get it in the form we need.

Theorem 3.1 (Green formula). For all smooth sections u and v of F i over X it follows that∫
∂X

(
(t(u), ıℓn(Av))x − (ıℓn(u), t(A∗v))x + (t(A∗u), ıℓn(v))x − (ıℓn(Au), t(v))x

)
ds =

=

∫
X

(
(∆u, v)x − (u,∆v)x

)
dv,

where ı =
√
−1.

Proof. Let GA(∗g, u) be the Green operator for a differential operator A = Ai, see § 2.4.2 of [17].
Here, ∗ : F i+1 → F i+1′ is the fibrewise Hodge star operator determined by ⟨∗g, f⟩ = (f, g)x for
all f ∈ F i+1

x . An easy computation shows that the pullbacks of differential forms GA(∗g, u) and
GA∗(∗u, g) under the inclusion ∂X ↪→ X amount to

ι∗GA(∗g, u) = (t(u), ıℓ n(g))xds,

ι∗GA∗(∗u, g) = −(ıℓ n(g), t(u))xds

on ∂X for all smooth sections g and u of F i+1 and F i, respectively, cf. § 3.2.2 ibid. Applying
Corollary 2.5.14 of [17] establishes the formula.

Theorem 3.1 shows immediately that the quadrupel t(u), n(u), t(A∗u) and n(Au) gives a
representation of the Cauchy data of u on the surface ∂X relative to the Laplacian ∆. The
tangential part of the Cauchy data, (t(u), t(A∗u)), is usually referred to as the Dirichlet data,
and the normal part of the Cauchy data, (n(u), n(Au)), is referred to as the Neumann data. This
designation is due rather to the whimsical development of mathematics than to well-motivated
choice, for, at the last step of the quasicomplex, the data (t(u), t(A∗u)) reduce to t(A∗u), which
is the classical Neumann data, and (n(u), n(Au)) reduce to n(u), which is the classical Dirichlet
data.
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4. The Neumann problem

In his paper [16], Spencer proposed a method of studying the cohomology of an elliptic
complex similar to (0.1) at step i. The main step involves the boundary value problem

∆iu = f in X ,
n(u) = 0 on ∂X ,

n(Au) = 0 on ∂X ,
(4.1)

where f is a given section of F i over X .

Example 4.1. In the special case of the de Rham complex and i = 0 problem (4.1) reduces to
the classical Neumann problem. For n(du) amounts to the normal derivative of u at ∂X .

Even in the classical case, (4.1) is not solvable unless f satisfies additional conditions. Since
(4.1) is a boundary value problem symmetric with respect to the Green formula, it is solvable
only if f is orthogonal in the L2 sense to the space Hi(X ) of all h ∈ C∞(X , F i) satisfying the
corresponding homogeneous problem, i.e., ∆ih = 0 in X and n(h) = 0, n(Ah) = 0 on ∂X . The
sections of Hi(X ) are called harmonic.

Lemma 4.2. A section h ∈ C∞(X , F i) is harmonic if and only if Ah = 0, A∗h = 0 in X and
n(h) = 0 on ∂X .

Proof. The point here is that the boundary conditions of (4.1) allow us to integrate by parts
without introducing integrals on the boundary. The sufficiency is obvious. To show the necessity,
pick a section h ∈ Hi(X ). On integrating by parts we readily obtain

0 = (∆ih, h) = ∥Aih∥2 + ∥Ai−1∗h∥2,

and the lemma follows.

The main step in the approach of [16] is to establish that Hi(X ) is finite-dimensional and if
f ∈ C∞(X , F i) is orthogonal to Hi(X ) then (4.1) can be solved for u ∈ C∞(X , F i). Suppose that
these solvability properties for problem (4.1) have been established. We introduce the subspace
N i(X ) of C∞(X , F i) consisting of those sections u which satisfy the boundary conditions in
(4.1), i.e., n(u) = 0 and n(Au) = 0 on ∂X . Given any f ∈ C∞(X , F i), we denote by Hif the
orthogonal projection of f into Hi(X ). The difference f −Hif still belongs to C∞(X , F i) and
is orthogonal to Hi(X ), hence there is a section u ∈ N i(X ) such that ∆iu = f −Hif in X . Set
N if := u −Hiu, thus obtaining a linear operator from C∞(X , F i) to N i(X ). This operator is
well defined, for from u1, u2 ∈ N i(X ) and ∆iu1 = ∆iu2 it follows that u1 −Hiu1 = u2 −Hiu2.
We see that any section f ∈ C∞(X , F i) can be written as

f = Hif +Ai∗AiN if +Ai−1Ai−1∗N if (4.2)

in X .
If the curvature of quasicomplex (0.1) vanishes at step i, i.e., AiAi−1 ≡ 0, then the terms on

the right-hand side of (4.2) are mutually orthogonal, as is easy to check. In this case formula
(4.2) furnishes an isomorphism between the cohomology of (0.1) at step i and the space Hi(X )
of harmonic sections, see [17, 4.1] for more details.
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Part 2. Subelliptic estimates

5. The main theorem
Quasicomplex (0.1) is said to be elliptic at step i if the symbol complex (1.1) is exact at step

i for each x ∈ X and for each cotangent vector ξ ∈ T ∗
xX different from zero. This is equivalent

to the fact that the Laplacian ∆i is a second order elliptic operator on X .

Theorem 5.1. Suppose (0.1) is elliptic at steps i− 1 and i and there is a constant c such that

∥u∥21/2 6 c
(
∥Aiu∥2 + ∥Ai−1∗u∥2 + ∥u∥2

)
(5.1)

holds for all u ∈ C∞(X , F i) satisfying n(u) = 0. Then Hi(X ) is finite-dimensional, and if
f ∈ C∞(X , F i) is orthogonal to Hi(X ) then there exists u ∈ C∞(X , F i) satisfying (4.1).

As is mentioned in the introductory remarks, this theorem is contained in [7] if the curvature
of (0.1) vanishes at step i.

The first step in proving the theorem is to extend the Laplacian ∆i to a closed operator Li

on the Hilbert space L2(X , F i). To this end we apply a classical method of (Kurt) Friedrichs,
cf. [2]. In functional analysis, by the Friedrichs extension is meant a canonical self-adjoint
extension of a nonnegative densely defined symmetric operator. This extension is particularly
useful in situations where an operator may fail to be essentially self-adjoint or whose essential
self-adjointness is difficult to show. The definition of the Friedrichs extension is based on the
theory of closed positive forms on Hilbert spaces. If T is a nonnegative operator in a Hilbert
space H, then Q(u, v) = (u, Tv) + (u, v) is a sesquilinear form on DomT and Q(u, u) > ∥u∥2.
Thus Q defines an inner product on DomT . Let H1 be the completion of DomT with respect
to Q. This is an abstractly defined space. For instance its elements can be represented as
equivalence classes of Cauchy sequences of elements of DomT . It is not obvious that all elements
in H1 can be identified with elements of H. However, the canonical inclusion DomT ↪→ H
extends to an injective continuous map H1 ↪→ H. We regard H1 as a subspace of H. Define
an operator T1 in H whose domain consists of all u ∈ H1 such that v 7→ Q(u, v) is a bounded
conjugate-linear functional on H1. Here, bounded is relative to the topology of H1 inherited
from H. Pick u ∈ DomT1. By the Riesz representation theorem applied to the linear functional
v 7→ Q(u, v) extended to all of H, there is a unique f ∈ H such that Q(u, v) = (f, v) for all
v ∈ H1. Set T1u := f . Then T1 is a nonnegative self-adjoint operator in H, such that T1 − I
extends T . The operator T1 − I is called the Friedrichs extension of T .

The operator ∆i in L2(X , F i) with domain N i(X ) is nonnegative, densely defined and sym-
metric. The sesquilinear form Q(u, v) = (u,∆iv) + (u, v) on N i(X ) reduces readily to

D(u, v) := (Aiu,Aiv) + (Ai−1∗u,Ai−1∗v) + (u, v),

which is known as the Dirichlet scalar product on C∞(X , F i). When completing N i(X ) in the
norm D(u) :=

√
D(u, u), one can scarcely retain the boundary condition n(Au) = 0 at ∂X .

Hence, one disregards this condition from the very beginning and considers the Dirichlet inner
product on the subspace of C∞(X , F i) which consists of all u satisfying n(u) = 0 on ∂X . We
write Di for its completion to a Hilbert space. It is not difficult to see that Di can be thought
of as a subspace of L2(X , F i). We now define Li + I to be the operator whose domain consists
of all u ∈ Di such that v 7→ D(v, u) extends to a bounded linear functional on L2(X , F i) and
whose rule of correspondence is given by D(u, v) = ((Li + I)u, v), for all sections v ∈ Di. Then
Li + I is a self-adjoint operator on L2(X , F i), and (Li + I)u = (∆i + I)u if u ∈ N i(X ). Also,
Li + I is surjective, and (Li + I)−1 is bounded as an operator from L2(X , F i) to Di. It follows
by (5.1) and Rellich’s theorem that (Li + I)−1 is a compact operator from L2(X , F i) to itself,
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and hence Li = (Li + I) − I must have closed range and finite-dimensional null space. Since
Li is self-adjoint, its null space is the orthogonal complement of the range of Li. Hence, any
f ∈ L2(X , F i) can be written in the form f = h+ Liu, where h belongs to the null space of Li

and u is in the domain of Li. The proof of Theorem 5.1 will now be complete when we establish
two facts. The first of the two is that if u lies in the domain of Li and if Liu is C∞, then u is C∞.
The second fact is that every smooth section u in the domain of Li must satisfy the boundary
conditions n(u) = 0 and n(Au) = 0 on ∂X . If f is C∞, then the first statement will imply that
the sections h and u in f = h+ Liu are C∞. Its proof will occupy the next three sections. The
second statement will then imply that h is in Hi(X ), that u is in N i(X ), and that Liu = ∆iu.
We turn to the proof of the second statement right now.

Lemma 5.2. Every C∞ section u in Di satisfies the boundary condition n(u) = 0 on ∂X .

Proof. Since u ∈ Di, there exists a sequence {uj} in C∞(X , F i) such that n(uj) = 0 on ∂X
and D(u − uj) → 0 as j → ∞. Since n(uj) = 0 on ∂X , integration by parts yields the equality
(A∗uj , φ) = (uj , Aφ) for every φ ∈ C∞(X , F i−1). Since D(u − uj) → 0, we may pass to the
limit in the equality to obtain (A∗u, φ) = (u,Aφ) for every φ. In view of the integration-by-parts
formula (see the proof of Theorem 3.1), this means that∫

∂X
(ıℓn(u), t(φ))xds = 0

for all φ ∈ C∞(X , F i−1). Hence the lemma holds.

Lemma 5.3. Suppose the boundary is noncharacteristic for quasicomplex (0.1) at step i − 1.
Then every u ∈ C∞(X , F i) which belongs to the domain of Li satisfies n(Au) = 0 on ∂X .

Proof. If u ∈ C∞(X , F i) belongs to the domain of Li, then for every C∞ section v in Di we get

0 = D(u, v)− ((Li + I)u, v)

= ((Aiu,Aiv)− (Ai∗Aiu, v)) + ((Ai−1∗u,Ai−1∗v)− (Ai−1Ai−1∗u, v))

=

∫
∂X

(ıℓn(Au), t(v))x ds−
∫
∂X

(t(A∗u), ıℓn(v))x ds,

the last equality being due to the integration-by-parts-formula. Since n(v) = 0 on the surface
∂X , the second term on the right-hand side vanishes, which gives readily∫

∂X
(ıℓn(Au), t(v))x ds = 0

for all v ∈ C∞(X , F i) satisfying n(v) = 0 on ∂X . On applying Theorem 2.2 we conclude that
n(Au) = 0 on ∂X , as desired.

6. A priori estimates
To complete the proof of Theorem 5.1 we must prove that u is C∞, whenever Liu is. In this

section we derive certain a priori estimates which help establish this result. In what follows, c
will denote a generic constant.

We shall need the norms ∥f∥(r,s) when f is a C∞ function with compact support in the closed
half-space Rn

>0 consisting of all x ∈ Rn with xn > 0. For the definition of these norms in terms of
Fourier transform we refer to Section 2.5 of [3]. We only remark that if r and s are nonnegative
integers, then ∥ · ∥(r,s) is equivalent to the norm

f 7→
( ∑

|α|6r+s
αn6r

∫
Rn

>0

|∂αf(x)|2dv
)1/2

.
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So ∥f∥(r,s) controls the L2 norms of those partial derivatives of f which are of total order 6 r+s
and are of order 6 r in the normal derivative ∂/∂xn. We list the main properties of the norms
∥ · ∥(r,s) in

Lemma 6.1. As defined above, the scale ∥ · ∥(r,s) bears the following properties:
1) ∥f∥(r,0) = ∥f∥r, the Sobolev r -norm on Rn

>0;
2) ∥f∥(r,s) 6 ∥f∥(r′,s′) if r 6 r′ and r + s 6 r′ + s′;
3) ∥Pf∥(r,s) 6 c ∥f∥(r+m,s) holds with some constant c independent of f , if P is a differential

operator of order m;
4) ∥f∥(r,s) 6 c (∥Pf∥(r−m,s) + ∥f∥(r′,s′)) holds with a constant c independent of f , if P is an

elliptic differential operator of order m and r + s = r′ + s′;
5) ∥f∥S,s 6 ∥f∥(1,s−1), where ∥ · ∥S,s is the Sobolev s -norm on {xn = 0};
6) 2ℜ (f, g) 6 ∥f∥((0,s)∥g∥((0,−s) for any s.

Proof. Assertion 4) is Lemma 2.1.1 in [5]. The rest of the lemma is contained in Sec. 2.5 of [3].

Let U be a coordinate neighbourhood in X such that the bundles F i−1, F i, and F i+1 are
trivial over U . Assume that the coordinate x = (x1, . . . , xn) on U maps U into the closed half-
space Rn

>0. Then any C∞ function with support in U can be considered as a function on Rn
>0,

and hence the norms ∥f∥(r,s) are defined for f ∈ C∞
comp(U). Now fix a frame in F i|U , that is,

choose sections e1, . . . , eki in C∞(U,F i) with the property that for each x ∈ U the elements
e1(x), . . . , eki(x) form a basis for the fibre over x. Then each u ∈ C∞

comp(U,F
i) has component

functions defined by
u = u1e1 + . . .+ uk

i

eki ,

and we may define

∥u∥(r,s) =
( ki∑

j=1

∥uj∥2(r,s)
)1/2

.

It is easy to check that the assertions in Lemma 6.1 continue to hold for these norms.

Let D′ = (D1, . . . , Dn−1), where Dj =
1√
−1

∂

∂xj
. Consider the pseudodifferential operator

Λs = χ(D′)
(
1 + |D′|2

)s/2
on Rn−1, where χ ∈ C∞(Rn−1) is 0 on a neighbourhood of the origin and 1 outside a slightly
larger set. On letting Λs act along the first n− 1 coordinate directions we define Λsf when f is
a C∞ function on X with compact support in U . And with a fixed choice of frame in F i over
U we can define Λsu for u ∈ C∞

comp(U,F
i) by letting Λs act on the component functions of u as

determined by the frame. If φ ∈ C∞
comp(U) and

T s = φΛsφ. (6.1)

then T s is an operator which acts on C∞(X ) and also, with a choice of local frame, an arbitrary
smooth sections of F i−1, F i, or F i+1.

If an appropriate frame is used to define T s on sections of F i, then T s becomes a formally
self-adjoint operator. In fact, let e′1, . . . , e′ki ∈ C∞(X , F i) be such that for each x ∈ U the
elements e′1(x), . . . , e′ki(x) form an orthonormal basis for the fibre, and let the volume element
be given by dv = v(x)dx in the coordinate x on U . Then define ej = e′j/

√
v, for j = 1, . . . , ki, so

that if u = ujej and v = vjej have support in U , then

(u, v) =

∫
U

ki∑
j=1

ui(x)vi(x)dx.
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If we define T su = (T suj)ej for u = ujej ∈ C∞(U,F i), then (T su, v) = (u, T sv) for all C∞

sections u and v. When letting T s operate on sections of a bundle, we shall assume that the
frame being used makes T s self-adjoint.

Lemma 6.2. Suppose φ, ψ, ω are C∞ functions with compact support in U and φ = 1 on the
support of ω, ψ = 1 on the support of φ. Let T s be the operator defined by (6.1). Then,

1) for each r, t there is a constant c such that ∥T sf∥(r,t) 6 c ∥ψf∥(r,t+s);
2) if moreover P is a differential operator of order m, then for each r, t there exists a constant

c such that
∥[P, T s]f∥(r,t) 6 c ∥ψf∥(r+m,t+s−1),

∥[[P, T s], T s]f∥(r,t) 6 c ∥ψf∥(r+m,t+2s−2);

3) for each t there is a constant c such that

∥ωf∥(0,t+s) 6 c
(
∥T sf∥(0,t) + ∥f∥t+s−1

)
.

As usual, the bracket [P,Q] of two operators denotes their commutator PQ−QP .

Proof. Assertions 1) and 2) are well-known properties of classical pseudodifferential operators.
3) holds because T s is tangentially elliptic on the support of ω, see Theorem 4.7 in [4].

Lemma 6.3. Assume that quasicomplex (0.1) is elliptic at F i and let u ∈ C∞(X , F i) satisfy
n(u) = 0 on ∂X . Then there exist v, u′, u′′ ∈ C∞(U,F i) with support in suppφ such that

1) T sT su = v + T su′ + u′′;
2) n(v) = 0 on ∂X ;
3) for each t there is a constant c such that

∥u′∥(1,t) 6 c ∥ψu∥(1,t+s−1),
∥u′′∥(1,t) 6 c ∥ψu∥(1,t+2s−2).

Proof. We follow the proof of Lemma 4 in [12]. Theorem 2.2 shows immediately that the homo-
topy formula σ n(u)+n(σu) = u holds for all u ∈ C∞(∂X , F i), where n2 = 0. Hence, the results
of [12] apply with A = n, B = n and R = σ(x). Consider

w = σ(x)n(T sT su)

= σ(x)T s[n, T s]u+ σ(x) [n, T s]T su

= T sw′ + w′′,

where w′ = 2σ(x) [n, T s]u and

w′′ = [σ(x)[n, T s], T s]u+ [σ(x), T s] [n, T s]u

= σ(x) [[n, T s], T s]u+ 2 [σ(x), T s] [n, T s]u.

Using Lemmata 6.1, 6.2 and inequality ∥σ(x)u∥S,s 6 c ∥u∥S,s with c a constant independent of
u, we infer

∥w′∥S,t+1/2 6 c ∥[n, T s]u∥S,t+1/2

6 c ∥ψu∥S,t+s−1/2

6 c ∥ψu∥(1,t+s−1)

and

∥w′′∥S,t+1/2 6 c (∥[[n, T s], T s]u∥S,t+1/2 + ∥[n, T s]u∥S,t+s−1/2)

6 c (∥ψu∥S,t+2s−3/2 + ∥ψu∥S,t+2s−3/2)

6 c ∥ψu∥(1,t+2s−2).
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By Theorem 2.5.7 in [3] we can choose u′, u′′ ∈ C∞
comp(U,F

i) such that

u′ = w′,
u′′ = w′′

on the boundary of X and

∥u′∥(1,t) 6 c ∥w′∥S,t+1/2,

∥u′′∥(1,t) 6 c ∥w′′∥S,t+1/2.

In view of the estimates for w′ and w′′ which have already been obtained we get

∥u′∥(1,t) 6 c ∥ψu∥(1,t+s−1),
∥u′′∥(1,t) 6 c ∥ψu∥(1,t+2s−2),

as required. Since

T su′ + u′′ = T sw′ + w′′

= σ(x)n(T sT su)

on ∂X , we can define v = T sT su− T su′ − u′′, and the proof is complete.

In [7] the boundary condition n(u) = 0 on ∂X is assumed to be invariant with respect to action
in the directions parallel to the boundary. This means, in particular, that if n(u) = 0 on ∂X then
also n(T su) = 0, in which case Lemma 6.3 is trivial. How can the condition σ(x)∗u = 0 imply
σ(x)∗T s = 0 on the boundary? This can be achieved only in the case if n(u) = 0 just amounts
to saying that several components of the section u of F i vanish on ∂X . Since quasicomplex
(0.1) is elliptic at the step i, this can certainly be achieved by choosing special local frames
for the bundle F i. The decomposition of Theorem 2.2 actually gives such a vector bundle F i

t

which is a direct summand of F i. Technically this means that all norms under consideration
are independent up to equivalent norms of the particular choices of local frames, which is an
ungrateful exercise in functional analysis of sections of smooth vector bundles over ∂X .

Lemma 6.4. For all u ∈ C∞(X , F i),

D(u, T sT su) = D(T su, T su) +O
(
∥ψu∥(1,s−1)

)
.

Proof. Since T s is formally self-adjoint, the lemma reduces to Lemma 3.1 in [7]. The proof is
essentially algebraic, using only self-adjointness and those properties of T s which are mentioned
in Lemma 6.2.

Lemma 6.5. Assume that quasicomplex (0.1) is elliptic at steps i − 1 and i. Let the estimate
∥u∥21/2 6 cD(u, u) hold for all u ∈ C∞(X , F i) satisfying the boundary condition n(u) = 0 on ∂X .
Then for each s > 1/2 there is a constant c with the property that

∥T su∥21/2 6 cD(T su, T su) 6 c (∥(∆+ I)u∥2s−1/2 + ∥u∥2s) (6.2)

holds for all u ∈ C∞(X , F i) in the domain of Li.

Proof. Since u is in the domain of Li, we have D(u, v) = ((∆ + I)u, v) for all v ∈ C∞(X , F i)
satisfying the boundary condition n(v) = 0 on ∂X . Hence, this equality holds in particular for
the section v = T sT su− T su′ − u′′ described in Lemma 6.3. Thus,

D(u, T sT su) = D(u, T su′) +D(u, u′′) + ((∆+ I)u, T sT su) + ((∆+ I)u, T su′ + u′′). (6.3)
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We shall treat the terms on the right of (6.3) one by one.
To treat the first term we first claim that

D(u, T su′) = D(T su, u′) +O(∥ψu∥2(1,s−1)). (6.4)

In fact, to prove this we must majorise two terms like

(Au,AT su′)− (AT su,Au′) = (Au, [A, T s]u′) + ([T s, A]u,Au′),

and by the preceding lemmata this expression is bounded by

∥A(ψu)∥(0,s−1)∥[A, T s]u′∥(0,−s+1) + ∥[T s, A]u∥ ∥Au′∥ 6 c ∥ψu∥(1,s−1)∥u′∥(1,0)
6 c ∥ψu∥2(1,s−1).

Therefore, (6.4) holds, and since

|D(T su, u′)| 6
√
D(T su, T su)

√
D(u′, u′)

6 1

4
D(T su, T su) + c ∥u′∥21

6 1

4
D(T su, T su) + c ∥ψu∥2(1,s−1),

we get

|D(u, T su′)| 6 1

4
D(T su, T su) + c ∥ψu∥2(1,s−1).

As for the second term in (6.3) we claim that |D(u, u′′)| 6 c ∥ψu∥2(1,s−1). In fact, for a typical
term, we have

|(Au,Au′′)| 6 c ∥A(ψu)∥(0,s−1)∥u′′∥(1,−s+1)

6 c ∥ψu∥2(1,s−1),

and hence the above estimate holds.
The third term in (6.3) is majorised as

|((∆+ I)u, T sT su)| = |(T s(∆+ I)u, T su)|
6 ∥T s(∆+ I)u∥(0,−1/2)∥T su∥(0,1/2)
6 c ∥(∆+ I)u∥s−1/2∥T su∥1/2
6 c (ε2∥T su∥21/2 + ε−2∥(∆+ I)u∥2s−1/2)

6 c ε2D(T su, T su) + cε−2∥(∆+ I)u∥2s−1/2,

where ε > 0 is taken so small that cε2 <
1

4
.

The remaining term in (6.3) can now be estimated by

|((∆+ I)u, T su′ + u′′)| 6 ∥ψ(∆+ I)u∥(0,s−1/2)∥T su′ + u′′∥(0,−s+1/2)

6 c (∥(∆+ I)u∥2s−1/2 + ∥ψu∥2(1,s−1)),

and thus we have proved that

D(u, T sT su) 6 1

2
D(T su, T su) + c (∥(∆+ I)u∥2s−1/2 + ∥ψu∥2(1,s−1)).
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On using Lemma 6.4 and substracting the term
1

2
D(T su, T su) from both sides we get

1

2
D(T su, T su) 6 c (∥(∆+ I)u∥2s−1/2 + ∥ψu∥2(1,s−1)).

To complete the proof it suffices to show that ∥ψu∥2(1,s−1) is majorised by the right-hand side
of (7.1). But since quasicomplex (0.1) is elliptic at step i, the operator ∆i + I is elliptic, and so,
by part 4) of Lemma 6.1,

∥ψu∥2(1,s−1) 6 c (∥(∆+ I)ψu∥2(−1,s−1) + ∥u∥2s)

6 c (∥(∆+ I)ψu∥2s−3/2 + ∥u∥2s)

6 c (∥(∆+ I)u∥2s−3/2 + ∥[∆, ψ]u∥2s−3/2 + ∥u∥2s)

6 c (∥(∆+ I)u∥2s−3/2 + ∥u∥2s),

as desired.

Recall that by ω we mean a C∞ function with compact support in U , such that φ = 1 on
the support of ω.

Lemma 6.6. Suppose the quasicomplex (0.1) is elliptic at step i. Then for each s > 1/2 there
is a constant c such that

∥ωu∥s+1/2 6 c (∥T su∥1/2 + ∥(∆+ I)u∥s−3/2 + ∥u∥s−1/2)

holds for all u ∈ C∞(X , F i).

Proof. Since quasicomplex (0.1) is elliptic at step i, the operator ∆i + I is elliptic, and part 4)
of Lemma 6.1 yields

∥ωu∥s+1/2 6 c (∥(∆+ I)ωu∥s−3/2 + ∥ωu∥(0,s+1/2))

6 c (∥(∆+ I)u∥s−3/2 + ∥[∆, ω]u∥s−3/2 + ∥ωu∥(0,s+1/2))

6 c (∥(∆+ I)u∥s−3/2 + ∥u∥s−1/2 + ∥ωu∥(0,s+1/2)).

The desired estimate now follows from part 3) of Lemma 6.2.

Theorem 6.7. Assume that quasicomplex (0.1) is elliptic at steps i− 1 and i. Let the estimate
∥u∥21/2 6 cD(u, u) hold for all u ∈ C∞(X , F i) satisfying the boundary condition n(u) = 0 on ∂X .
Then for each s > 1/2 there is a constant c such that the estimate

∥u∥s+1/2 6 c ∥(∆+ I)u∥s−1/2 (6.5)

holds for all u ∈ C∞(X , F i) in the domain of Li.

Proof. Choose a finite covering {Uν} of X by coordinate neighbourhoods of the form used above.
For each ν, let ων , φν , ψν and T s

ν be as described in Lemma 6.2. We can assume that {ων}
forms a partition of unity on X . Then, by Lemmata 6.5 and 6.6, we get

∥u∥s+1/2 6 c
(∑

ν

∥Ks
νu∥1/2 + ∥(∆+ I)u∥s−3/2 + ∥u∥s−1/2

)
6 c (∥(∆+ I)u∥s−1/2 + ∥u∥s)

for all smooth u in the domain of Li. Using the interpolation inequality

∥u∥s 6 ε∥u∥s+1/2 + C(ε) ∥u∥
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with ε > 0 sufficiently small, we obtain

∥u∥s+1/2 6 c (∥(∆+ I)u∥s−1/2 + C(ε) ∥u∥) + 1

2
∥u∥s+1/2

whence
∥u∥s+1/2 6 c (∥(∆+ I)u∥s−1/2 + ∥u∥). (6.6)

Since
∥u∥2 6 D(u, u) = ((∆+ I)u, u) 6 ∥(∆+ I)u∥ ∥u∥

for all u in the domain of Li, we obtain

∥u∥ 6 ∥(∆+ I)u∥ 6 ∥(∆+ I)u∥s−1/2.

Estimate (7.1) now follows from (6.6) and the last inequality, as desired.

7. Elliptic regularisation
Following [7], we use the techniques of elliptic regularisation in this section to prove that u

is C∞ whenever Liu is C∞. This will complete the proof of Theorem 5.1.
Choose a bundle F and a differential operator ∂ : C∞(X , F i) → C∞(X , F ) of order 1 such

that ∥∂u∥ > ∥u∥1 for all u ∈ C∞(X , F i). Define

Ai
ε = Ai ⊕ ε∂ : C∞(X , F i) → C∞(X , F i+1)⊕ C∞(X , F )

for ε > 0. Except for the fact that the composition Ai
εA

i−1 need not be of order 1 when ε > 0,
the operators Ai−1 and Ai

ε share most of the properties of Ai−1 and Ai which were used in the
last two sections. In particular, we can use the sesquilinear form

Dε(u, v) = (Ai
εu,A

i
εv) + (Ai−1∗u,Ai−1∗v) + (u, v)

= D(u, v) + ε2 (∂u, ∂v)

to define a self-adjoint operator Li
ε on L2(X , F i) such that Dε(u, v) = ((Li

ε + I)u, v) for all u in
the domain of Li

ε and all C∞ sections v satisfying n(v) = 0 on ∂X .
We still give Dε(u, v) the domain that consists of all u, v ∈ C∞(X , F i) whose normal parts

vanish on ∂X . The only problem is on the additional boundary condition for Ai
εu for smooth

sections u ∈ C∞(X , F i) lying in the domain of Li
ε. An easy verification using the Green formula

shows that this free boundary condition reduces to

ℓi(x)n(Au) + ε2(σ1(∂)(x, dϱ(x)))∗∂u = 0

on ∂X .

Lemma 7.1. Assume that quasicomplex (0.1) is elliptic at steps i − 1 and i. Let the estimate
∥u∥21/2 6 cD(u, u) hold for all u ∈ C∞(X , F i) satisfying the boundary condition n(u) = 0 on ∂X .
Then for each s > 1/2 there is a constant c with the property that

∥u∥s+1/2 6 c ∥(Li
ε + I)u∥s−1/2 (7.1)

holds whenever u ∈ C∞(X , F i) is in the domain of Li
ε and 0 6 ε 6 1.

Proof. All the arguments used to prove (7.1) continue to be valid when Ai is replaced by Ai
ε, and

it is easy to see that the constant c in each of the various estimates can be chosen independently
of ε.
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The reason for introducing Ai
ε is that when ε > 0 then the coercive estimate

ε2∥u∥21 6 Dε(u, u) (7.2)

holds for all u ∈ C∞(X , F i), and it is fairly easy to obtain a regularity theorem for Li
ε. In fact,

we have

Theorem 7.2. Suppose that quasicomplex (0.1) is elliptic at steps i− 1 and i. Let the estimate
∥u∥21/2 6 cD(u, u) hold for all u ∈ C∞(X , F i) satisfying the boundary condition n(u) = 0 on
∂X and let 0 < ε 6 1. Then for every f ∈ C∞(X , F i) there is a unique section u ∈ C∞(X , F i)
in the domain of Li

ε such that (Li
ε + I)u = f .

Proof. The operator Li
ε was constructed in such a way that Li

ε+I automatically maps its domain
onto L2(X , F i) in a one-to-one fashion. Hence, to prove the theorem, it will suffice to show that
if u is in the domain of Li

ε and if (Li
ε + I)u is C∞, then u is also C∞. We shall use the method

of difference quotients which occurs, e.g., in [9] and [1].
If f is a function on the closed upper half-space in Rn, if 1 6 j < n and h > 0, then we write

δh,jf(x) =
1√
−1

f(x1, . . . , xj + h, . . . , xn)− f(x1, . . . , xj − h, . . . , xn)

2h

and, for any multi-index α = (α1, . . . , αn) with αn = 0, we set δαh = δα1

h,1 . . . δ
αn−1

h,n−1. After choosing
a coordinate system x : U → Rn on X , which maps U into the closed upper half-space, and after
choosing a function φ ∈ C∞

comp(U) we can use a local orthonormal frame to define

Tα
h u = φ δαh (φu) ,

when u is a section of one of the vector bundles F i or of F . For details we refer to the discussion
just above Lemma 6.2.

If, in Lemma 6.2, the operator T s is replaced by the operator Tα
h with |α| = s, then statements

1), 2), and 3) continue to hold even if the constants c are required to be independent of h for
0 < h 6 1. Consequently, Lemmata 6.3 and 6.4 also hold for the operators Tα

h , where again
the constants can be chosen independent of h. Using (7.2) and the arguments in the proof of
Lemma 6.5, one can show that for each ε > 0 and every integer s > 1 there is a constant c such
that

∥Tα
h u∥1 6 c

(
∥ψ(Li

ε + I)u∥(0,s−1) + ∥ψu∥(1,s−1)

)
, (7.3)

provided |α| = s, 0 < h 6 1, u belongs to the domain of Li
ε, ψu ∈ H(1,s−1)(X , F i) and (Li

ε+I)u ∈
C∞(X , F i). Now, if α and u satisfy these conditions, then (7.3) shows that (Tα

h u)0<h61 is a
bounded subset of H1(X , F i). Hence, there is a sequence hν converging to zero such that Tα

hν
u

converges weakly to some element f of H1(X , F i). Since Tα
hν
u converges in the distribution sense

to φDα(φu) as h → 0, we infer that f = φDα(φu) an hence φDα(φu) ∈ H1(X , F i). Thus, if
φ = 1 on the support of ω ∈ C∞

comp(U), we conclude that ωu ∈ H(1,s)(X , F i).
Now let u be in the domain of Li

ε, such that (Li
ε + I)u ∈ C∞(X , F i), and let p be a fixed

point of ∂X . Then the argument just given shows that if u is in H(1,s−1) on a neighbourhood
U of p, then u is in H(1,s) on a slightly smaller neighbourhood. Thus, for each integer s there
exists a function ω ∈ C∞

comp(U) such that ωu ∈ H(1,s)(U,F i) and hence, by Theorem 2.5.7 in [3],
the restriction of ωu to the boundary belongs to Hs(∂X , F i). It follows that u ∈ Hs(∂X , F i)
for each s, and so u �∂X must be C∞ by Sobolev’s lemma. Since both (Li

ε + I)u and u �∂X are
C∞, the regularity theorem for the Dirichlet problem implies that u is C∞ also (see for instance
Theorem 9.9 in [1]). The proof of the theorem is thus complete.
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Corollary 7.3. Suppose that quasicomplex (0.1) is elliptic at steps i− 1 and i. Let the estimate
∥u∥21/2 6 cD(u, u) hold for all u ∈ C∞(X , F i) satisfying the boundary condition n(u) = 0 on ∂X
and let u belong to the domain of Li. Then,

1) u is C∞ if (Li + I)u is C∞;
2) u ∈ Hs+1(X , F i) if (Li + I)u ∈ Hs(X , F i);
3) u ∈ Hs+1(X , F i) if Liu ∈ Hs(X , F i);
4) u is C∞ if Liu is C∞.

Proof. To prove 1) assume that (Li + I)u is C∞ and for each 0 < ε 6 1 let uε be the unique
C∞ section satisfying (Li

ε + I)uε = (Li + I)u. If s > 1/2, then (7.1) shows that (uε)0<ε61 is
bounded in the norm ∥ . . . ∥s+1/2, and by Rellich’s theorem there is a sequence εν converging to
zero, such that uεν converges in the norm ∥ · ∥s to an element u0 of Hs(X , F i). On passing to
the limit in Dε(uε, v) = ((Li + I)u, v) we obtain

D(u0, v) = ((Li + I)u, v)

for all v ∈ C∞(X , F i) satisfying n(v) = 0 on the boundary. Thus, u0 is in the domain of Li and
(Li+I)u0 = (Li+I)u. Since Li+I is one-to-one, we conclude that u0 = u and so u ∈ Hs(X , F i).
Since s > 1/2 can be arbitrarily large, it follows that u is C∞.

To prove 2), let s > 0 and assume (Li + I)u is in Hs(X , F i). Choose a sequence fν of C∞

sections which converges to (Li + I)u in the norm ∥ · ∥s, and let uν be the unique C∞ section
satisfying (Li + I)uν = fν . Then, by (7.1), the sequence uν converges in the norm ∥ · ∥s+1 to
some element u0 of Hs+1(X , F i). Since Li + I has closed graph, we get (Li + I)u0 = (Li + I)u
and hence u = u0. Thus, u belongs to Hs+1(X , F i), as required.

If s = 0, then 3) follows immediately from 2). Let m be a positive integer and assume that
3) holds for all s with 0 6 s 6 m− 1. Let m− 1 < s 6 m, and assume that Liu is in Hs(X , F i).
Then, since Liu ∈ Hs−1(X , F i), we conclude that u ∈ Hs(X , F i) by the inductive hypothesis,
and so (Li+ I)u belongs to Hs(X , F i). Thus, by 2), we see that u is in Hs+1(X , F i), as desired.

The assertion 4) follows obviously from 3) by Sobolev’s lemma, and the proof is complete.

8. A regularity theorem
In this section we assume that the curvature of quasicomplex (0.1) vanishes at step i, i.e.,

AiAi−1 ≡ 0. In this case, the inhomogeneous equation Ai−1u = f might be locally solvable only
for those f which satisfy Aif = 0. This is a starting point of [16].

Let T denote the operator from L2(X , F i−1) to L2(X , F i) obtained by closing the graph of
A : C∞(X , F i−1) → C∞(X , F i). Thus, u is in the domain of T and Tu = f if and only only if
there is a sequence (uν) in C∞(X , F i−1) such that uν → u and Auν → f in the L2 -norm. Our
aim in this section is to prove

Theorem 8.1. Assume that the quasicomplex (0.1) is elliptic at steps i − 1, i and i + 1, and
assume that the estimate ∥f∥21/2 6 cD(f, f) holds for all f ∈ C∞(X , F i) satisfying n(f) = 0

on ∂X . Let u be in the domain of T , let u be orthogonal to the kernel of T , and let Tu ∈ Hs(X , F i)
for some s > 0. Then u belongs to Hs+1/2(X , F i−1).

Such a theorem has proved useful in studying counterexamples for a priori estimates like
∥f∥21/2 6 cD(f, f), see, e.g., [10].

Lemma 8.2. Under the assumptions of Theorem 8.1, for each s there is a constant c such that

∥ωAu∥s + ∥ωA∗u∥s 6 c
(
∥ωAu∥(0,s) + ∥ωA∗u∥(0,s) + ∥∆u∥s−1 + ∥u∥s

)
(8.1)

is valid for all u ∈ C∞(X , F i).
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Proof. Using the ellipticity of the quasicomplex at F i−1 and F i+1, one checks readily that

(g, h) 7→ (A∗g,Ag +A∗h,Ah)

is an elliptic operator from sections of F i−1 ⊕ F i+1 to sections of F i−2 ⊕ F i ⊕ F i+2. Hence, by
Lemma 6.1, part 4),

∥ωA∗u∥s + ∥ωAu∥s 6 c (∥ωA∗u∥(0,s) + ∥ωAu∥(0,s)+
+ ∥A∗(ωA∗u)∥s−1 + ∥A(ωA∗u) +A∗(ωAu)∥s−1 + ∥A(ωAu)∥s−1),

and since the commutators [A∗, ω], [A,ω], etc., have order zero, and the operators A∗A∗, AA
have order one, we get

∥A∗(ωA∗u)∥s−1 6 c ∥u∥s,
∥A(ωA∗u) +A∗(ωAu)∥s−1 6 c (∥∆u∥s−1 + ∥u∥s) ,

∥A(ωAu)∥s−1 6 c ∥u∥s.

Estimate (8.2) now follows.

Lemma 8.3. Under the assumptions of Theorem 8.1, for each s > 1/2 there is a constant c
such that

∥A∗u∥s 6 c ∥(∆+ I)u∥s−1/2 (8.2)

holds for each u ∈ C∞(X , F i) in the domain of Li.

Proof. By Lemma 6.2 and Lemma 8.2 we have

∥ωA∗u∥2s 6 c
(
∥ωA∗u∥2(0,s) + ∥ωAu∥2(0,s) + ∥∆u∥2s−1 + ∥u∥2s

)
6 c

(
∥T sA∗u∥2 + ∥T sAu∥2 + ∥∆u∥2s−1 + ∥u∥2s

)
6 c

(
D(T su, T su) + ∥∆u∥2s−1 + ∥u∥2s

)
for all u ∈ C∞(X , F i). If u belongs to the domain of Li, then by Lemma 6.5

∥ωA∗u∥2s 6 c
(
∥(∆+ I)u∥2s−1/2 + ∥u∥2s

)
6 c ∥(∆+ I)u∥2s−1/2.

Now cover X with a finite number of neighbourhoods Uν of the kind used in Lemma 6.2 and
choose the corresponding functions ων to form a partition of unity on X . Then

∥A∗u∥s 6
∑
ν

∥ωνA
∗u∥s 6 c ∥(∆+ I)u∥s−1/2

for all u ∈ C∞(X , F i) in the domain of Li, as desired.

Lemma 8.4. Under the assumptions of Theorem 8.1, let u ∈ L2(X , F i) belong to the domain of
Li, and assume that Liu ∈ Hs−1/2 for some s > 1/2. Then u is in the domain of T ∗ and T ∗u
belongs to Hs(X , F i−1).

Proof. In view of part 2) of Corollary 7.3 we get u ∈ Hs+1/2(X , F i) and hence (Li + I)u ∈
Hs−1/2(X , F i). Choose a sequence (fν) in C∞(X , F i) which converges to (Li + I)u in the norm
∥ · ∥s−1/2 and let uν ∈ C∞(X , F i) be the unique solution to

(Li + I)uν = fν .
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Then by (7.1) the sequence (uν) converges in the norm ∥ · ∥s+1/2, and since Li + I gas closed
graph, the limit must be u. Now Lemma 5.2 and the Green formula show that each uν is in the
domain of T ∗, and T ∗uν = A∗uν . The estimate (8.2) now implies that (T ∗uν) converges in the
norm ∥ · ∥s. Since T ∗ has closed graph, we conclude that u = limuν is in the domain of T ∗ and
T ∗u = limT ∗uν is in Hs(X , F i−1). The proof is complete.

As is remarked in Section 5., any f ∈ L2(X , F i) can be written as f = h+ Liu, where h lies
in the null space of Li and u is in the domain of Li. If we require that u be orthogonal to the null
space of Li, then f determines u uniquely and the correspondence f 7→ u defines an operator
N i : L2(X , F i) → L2(X , F i) which, as one easily sees, is self-adjoint and bounded.

Proof of Theorem 8.1. Let u be in the domain of T i−1, let u be orthogonal to the kernel of T i−1,
and assume that Tu is in Hs(X , F i) for some s > 0. Then, since Tu = h + Li(NTu), where
h ∈ Hi(X ) is C∞ on X , Lemma 8.4 shows that NTu is in the domain of T ∗ and T ∗NTu belongs
to Hs+1/2(X , F i−1). To complete the proof we show that

u = T ∗NTu.

In fact, if v ∈ C∞(X , F i−1) is an arbitrary section with support in the interior of X , then
Av = h+∆NAv, where h ∈ Hi(X ). Hence,

Av −AA∗NAv = h+A∗ANAv.

Since AiAi−1 ≡ 0, the terms on the right-hand side of this equality are orthogonal to the terms
on the left-hand side. It follows that A(I−A∗NA)v = 0 and so (I−A∗NA)v is in the null space
of T . Since u is orthogonal to the null space of T , we obtain

0 = (u, (I −A∗NA)v)

= ((I − T ∗NT )u, v),

and u = T ∗NTu now follows.

The first author gratefully acknowledges the financial support of the Ministry of High Educa-
tion of Iraq.
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Задача Неймана по Спенсеру
Азал Мера

Николай Тарханов
Потсдамский университет

Карл-Либкнехт-Штр., 24/25, Потсдам, 14476
Германия

Попытка распространить теорию Ходжа для эллиптических комплексов на компактных замкну-
тых многообразиях на случай компактных многообразий с краем приводит к краевой задаче для
лапласиана комплекса, которая обычно называется задачей Неймана. Мы изучаем задачу Неймана
для более широкого класса последовательностей дифференциальных операторов на компактном
многообразии с краем. Это последовательности малой кривизны, т.е. обладающие свойством,
что композиция любых двух соседних операторов имеет порядок меньший, чем два.

Ключевые слова: эллиптические комплексы, многообразия с границей, теория Ходжа, задача Ней-
мана.
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