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In this work authors introduce and study the self-configuring Genetic Algorithm (GA) and the self-
configuring Ant Colony Optimization (ACO) algorithm and apply them to one of the most known combi-
natorial optimization task – Travelling Salesman Problem (TSP). The estimation of suggested algorithms
performance is fulfilled on well-known benchmark TSP and then compared with other heuristics such as
Lin-Kernigan (3-opt local search) and Intelligent Water Drops algorithm (IWDs). Numerical experiments
show that suggested approach demonstrates the competitive performance. Both adaptive algorithms show
good results on these problems as they outperform other algorithms with their settings with average per-
formance.
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Introduction

Decision-making problems often produce a task of choice one of possible options for an ac-
tion. Formalized statement of this problem is an optimization problem. Optimization, including
combinatorial one, is an actual area of modern science. Real word problems are rather compli-
cated, that is why standard techniques, such as mathematical programming, cannot solve them
efficiently. Therefore, evolutionary methods and biology inspired algorithms are used to solve
complex optimization problems.

In this paper we consider one of the most known combinatorial optimization problem named
Travelling Salesman problem (TSP) [1], which has many practical applications. The traveling
salesman problem is a generalization of the problem of Hamiltonian cycles in graphs and belongs
to the class of NP-complete problems. TSP is often used to test the newly created algorithms
of combinatorial optimization and it has a lot of applications in routing, scheduling and many
other fields. It is formulated as follows: Let there be a given set of n cities. The task is to find
closed shortest path included all cities under condition that each city must be visited only once.
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This paper considers several algorithms and their modifications, to be exact an adaptation
of the algorithm parameters to a particular task. Nature inspired algorithms usually have many
adjustable parameters and this is their significant disadvantage as the parameters tuning is a
difficult task even for the specialists. Nowadays, for the elimination of this defect one applies
the various approaches to algorithms’ self-adaptation, i.e. parameters tuning during algorithms
execution. Another approach is the algorithm self-configuration, i.e. a choice of appropriate
algorithm’s configuration (set of operators, etc.) “on-the-fly” [2].

Considered way of GA self-configuration was introduced in [3] where its usefulness was demon-
strated on benchmark problems and in applied problems of artificial neural networks weights ad-
justment. This approach was then successfully used in solving real world optimization problems
with algorithmically given functions of mixed variables [4]. This made the approach to be a candi-
date for the development of adaptive algorithms of the combinatorial optimization. Performance
of self-configuring Genetic Algorithm (GA) [5] and the self-configuring Ant Colony Optimization
(ACO) [6] algorithm is compared with other heuristics, namely Lin-Kernigan heuristic [7] and
Intelligent Water Drops algorithm [8]. Results of numerical experiments on benchmark problems
show that suggested approach demonstrates competitive effectiveness.

1. Algorithms description

1.1. Lin-Kernighan heuristic

One of the classical methods for solving the traveling salesman problem is a local search [9],
in particular so called k-opt algorithm (Lin-Kernighan heuristic [7]). TSP solution is presented
by cyclic graph f. The k-opt neighborhood Nk(f) includes all the tours which can be obtained by
removing k edges from the original tour f and adding k different edges such that the resulting tour
is feasible. The essence of the algorithm is to consider neighborhood of the current solution. If
there exists a graph g in this neighborhood with better objective function value, then g becomes
current solution. The procedure is repeated as long as the current solution can be improved.

Exploring the whole Nk(f) takes O(nk) operations and, thus, 2-opt and rarely 3-opt are used
in practice. This paper deals with 3-opt because it is more efficient [9].

1.2. Intelligent water drops algorithm

Intelligent water drops algorithm (IWDs) possesses a few properties of a natural water drops.
The paths that a river follows have been created by a swarm of water drops. Thus, any swarm
of water drops will influence the rivers path. On the other side, for a swarm of water drops,
the river is the part of the environment that has an influence over it. A large influence on the
movement of the river shows which type of soil and how resistant it is to the flow, as it determines
the drops speed. Thus, the path of the water drops swarm depends on path of the river, type of
soil and its resistance. So the formation of a natural river is the result of a competition between
the water drops and the environment that resists its movement. Notice that all natural rivers
are full of twists and turns. This is due to the influence of gravity which pulls the water through
the path of least resistance to the lowest point.

It is assumed that each drop of water is able to transfer an amount of soil from one place to
another. Furthermore, the soil is transferred from the fast parts of the river to the slow parts.
This makes the fast parts deeper, allowing them to hold a greater volume of water. The quantity
of soil a water drop is able to transfer depends on its velocity. Furthermore, the velocity of a
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water drop depends on the amount of soil in its way. The velocity of a water drop grows faster
on a path with less soil. Water drops prefer a path with the least amount of soil.

On the basis of the above properties Shah-Hosseini in 2007 proposed the intelligent water
drops algorithm [8]. Every intelligent water drop (IWD) has two important properties: the
amount of soil that it carries and its velocity. For each IWD, the values of both properties, soil
and velocity, may change as the IWD flows in its environment. From the mathematical point of
view, the environment is a problem for river sand swarm of water drops looking for the optimal
path.

Velocity of IWD, that moves from its location i to the location j, is increased by an amount

∆vel =
av

bv + cvsoil2(i, j),
(1)

where parameters av, bv and cv should be chosen as positive numbers.
IWD’s soil is increased by removing some soil of the path ij. The amount of soil added to the

IWD is calculated by
∆vel(i, j) =

az
bz + cztime2(i, j; velIWD),

(2)

where az, bz and cz are positive parameters. Time is calculated by the simple laws of physics for
linear motion.

time(i, j, velIWD(t+ 1)) =
HUD(i, j)

velIWD.
(3)

Local heuristic function HUD(.,.) has been defined for a given problem to measure the undesir-
ability of an IWD to move from one location to the next. For TSP it is calculated as follow:

HUD(i, j) = ||e(i)− e(j)||, (4)

where e(i) is vector of coordinates, || · || is Euclidean metric.
Soil amount between i and j is updated by the amount of soil removed by the IWD by formula:

soil(i, j) = (1− ρn) · soil(i, j)− ρn ·∆soil(i, j). (5)

The soil of the IWD is increased by the amount of soil as shown below:

soilIWD = soilIWD +∆soil(i, j). (6)

The probability of choosing location j after i is proportional to the amount of the soil on the
path between locations i and j and can be calculated by formula:

pIWD
i (j) =

f(soil(i, j))∑
k/∈V

f(soil(i, k))
, (7)

where
f(soil(i, j)) =

1

εz + g(soul(i, j))
(8)

and

g(soil(i, j)) =

 soil(i, j), if min
l∈Vc

(soil(i, l)) > 0

soil(i, j)−min
l∈Vc

(soil(i, l)) otherwise
(9)

The constant parameter εz is a small positive number to prevent division by zero. Vc is a list of
visited nodes.
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Effectiveness of the algorithm depends on many parameters. Some of them (velocity updating
parameters av, bv and cv, soil updating parameters av, bv and cv, global soil updating parameter
ρIWD) were fixed in our experiments according to the recommendations of the algorithm’s author
(1, 0.01, 1, 1, 0.01, 1 and 0.9 accordingly). However, the remaining parameters required settings
for a specific task (significance of the best solution in upgrading of soil matrix α, local soil
updating parameter ρn, initial soil on each edge of the graph InitSoil, initial velocity of each
drop (InitVelocity). Each parameter can take a large number of values, but in this study we
did not aimed to fine-tuning the algorithm for a specific task and therefore considered only 24
variants: α = 0.1, 0.3 or 0.5, ρn= 0.9 or 0.7, InitSoil = 1000 or 10000 and InitVelocity = 20
or 200.

1.3. Ant colony optimization algorithm

Ant colony optimization algorithm (ACO) [6] is a nature-inspired optimization metaheuristic
based on the behavior and organization of ant colonies in their search for a food. Being almost
blind animals, ants anyway can find shortest path from the nest to the food. For information
exchange, ants use a ferment, or more exactly pheromone, that they leave on the traversed
path. The probability that the ant will choose a certain path is proportional to the amount of
pheromone on it.

Solutions in ACO are represented as permutation of n cities and ants chose next city using
taboo-list (list of visited cities) and pheromone matrix at every stage. ACO has some adjustable
parameters: the evaporation rate (ρ), the relative importance of previous search experience (α)
and the relative importance of the distance between cities (β).

Pheromone trails are updated after each ant has completed a tour by formula:

τij(t+ 1) = ρ · τij(t) + ∆τij , (10)

where ρ is parameter such that (1− ρ) is the evaporation and

∆τij =
m∑

k=1

∆τkij . (11)

Here ∆τkij is an amount of the pheromone that the ant k leaves on the edge ij and can be
calculated by formula:

∆τkij =


Q

Lk
if k uses edge ij in its tour

0 otherwise
, (12)

where Q is a constant, Lk-length of the k-th ant tour.
Let ηij = 1/dij (dij is distance between i and j) be called a visibility. The probability of

choosing the city j after i is a function of the distance between cities and amount of pheromone
on the edge ij and can be expressed as follows

pkij =


[τij(t)]

α · [ηij ]β∑
k∈allowedk

[τik(t)]α · [ηik]β
if j ∈ allowedk

0 if j /∈ allowedk

, (13)

where allowedk is a list of unvisited by k-th ant cities.
Some parameters, such as Q and ρ, does not significantly affect the efficiency of the algorithm,

so in this paper we will consider only the parameters α and β.
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1.4. Genetic algorithm

A well-known genetic algorithm (GA) [5] is based on some principles of evolution, but in the
GA for the TSP a chromosome is represented as permutation of the n digits (number of cities).
That is why some standard operations have a few changes, but many adjustable parameters
remain such as mutation probability, the type of selection, etc.

There are three type of selection in genetic algorithm:

1. Tournament selection (parameter is size of the tournament)
First, we select a random subset of k individuals from the population and then select the best

solution out of this subset.

2. Fitness proportional selection
The probability of the i-th individual to be selected is proportional to its fitness function

value fiti and is calculated as follows:

pi =
fiti

m∑
j=1

fitj

, (14)

where m is a number of individuals.

3. Rank selection (linear or exponential ranking)
Individual i has rank less than individual j (Ri < Rj) if i-th fitness function value is less than

j-th fitness function value (fiti < fitj).
3.1. Linear ranking. Probability of the i-th individual to be selected is calculated by formula:

pi =
Ri

m∑
k=1

Rk

, (15)

where
m∑

k=1

pk = 1, (16)

3.2. Exponential ranking. All individuals are assigned a weight according to the value of
fitness function so that the best individual has weight ω1 = 1, (k+1)-th individual has weight

ωk+1 =

{
ωk, if Rk+1 = Rk

ωk · λ, otherwise
, (17)

where λ ∈ [0, 1].
In this case the probability of the i-th individual to be selected is

pi =
ωi

m∑
j=1

ωj

, (18)

At the stage of recombination in problems on permutations, selected individuals (called par-
ents) devolve part of their chromosomes by using certain rule. Firstly, part of the first parent
chromosome is randomly selected and become a part of the offspring. Then the rest of the chro-
mosome is filled with genes in the order in which they appear in the second parent. At the stage
of mutation, two genes of the chromosome are randomly selected and swapped.
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2. Self-configuration method

All bionic algorithms have many adjustable parameters, for the elimination of this defect one
applies the tuning algorithm parameters during its work or, it can be said, an adaptation [2]. In
this study we use the self-configuration technique borrowed from [3]. We have investigated the
adaptive GA (AGA), which had 8 different selection variants – the tournament selection with
the size of the tournament equals 2, 4 or 8, the rank selection with a linear ranking, the rank
selection with exponential ranking with parameter λ equal to 0.95, 0.8 or 0.5, and the fitness
proportional selection. Also it had 5 different mutation variants - very low, low, medium, high
and very high. Adaptive ACO had 4 different variants of parameter α and also 4 variances of
the parameter β, in both cases 1, 2, 5 or 10.

Automated choice of algorithms’ operators is based on operator probabilistic rates computed
during algorithm execution according to the operator’s usefulness. Variant of each operator shall
be determined separately, let z be a number of variants of operator. In our situation, for example,
z=8 in case of selection operator of adaptive GA. If we take a parameter of the algorithm instead
of the operator, and different values of this parameter instead of operator variants, then z=4 in
case of parameter α of ACO. So here the essence of the adaptation will be described in terms of
operators and their variants.

At the beginning of the algorithm execution the probability of selecting all the options of the
operator are the same: p = 1/z. At each generation, the effectiveness of each operator variant is
estimated as the average fitness of off-springs obtained with this operator:

averagefitnessi =

ni∑
j=1

fij

ni
, i = 1, 2, . . . , z, (19)

where ni is a number of individuals obtained by the i-th variant of the operator; fij is the
value of the fitness function of the j-th individual obtained by the i-th variant of the operator;
averagefitnessi is the average value of the fitness function of individuals that were generated
by the i-th variant of the operator.

Probability of the operator variant with the largest value of average fitness (i.e. the most
effective) increases by ((z − 1) ·K)/(z · N), while the probability of all other operator variants
decreases by K/(z · N)), where N is the number of past generations of the algorithm, K is a
constant, usually equals to 2. In addition, there must be a lower bound of the probability of the
operator variant as no one of its probabilities can be equal to zero. If some probability reaches
lower bound, this variant stops to give out its share in the benefit of the best variant. The sum
of probabilities of all variants of the same operator is always equal to 1. Thus, the probability
distribution of the operator variant selection is gradually displaced towards the most effective
operator variant from less effective ones.

Thereby, when the algorithm has to create the next offspring from the current population, it
firstly must configure settings, i.e. form the list of operators with the use of operator probability
distributions. Then the algorithm selects parents with the chosen selection operator, produces
an offspring with the chosen crossover operator, mutates this offspring with the chosen mutation
probability and puts it into an intermediate population. When the intermediate population is
complete, the fitness evaluation is executed and the operator rates (probabilities to be chosen)
are updated according to the operator’s productivity, i.e. the ratio of the average offspring’s
fitness obtained with this operator and the offspring population average fitness.
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3. Experimental results

Algorithms performance was compared on two well-known benchmark problems Oliver30 and
Eil51. To solve these problems all heuristics have got as much resource as algorithm 3-opt requires
on average (52800 objective function calculations in case of Oliver30 and 342210 in case of Eil51).
Results of numerical experiments averaged over 100 runs are presented in Tab. 1. Also there are
results for test problem — grid 5 in 5 cities (15700 objective function calculations), which is very
simple but also has a huge number of different optimal routes.

Table 1. Adaptive algorithms comparison with other algorithms on the tasks Oliver30, Eil51

Grid 5x5
Best run Average run Standart deviation

3-opt 254,142 255,219 2,78603
IWD best 254,142 258,648 5,70864
GA best 254,142 260,576 5,30205
Adaptive GA 254,142 260,954 4,92872
ACO best 254,142 254,142 0
Adaptive ACO 254,142 254,308 1,1598

Oliver30
Best run Average run Standart deviation

3-opt 423,741 428,610 7,4740
IWD best 254,142 425,500 3,7022
GA best 254,142 432,356 13,2365
Adaptive GA 423,741 434,239 13,6875
ACO best 423,741 423,782 0,1675
Adaptive ACO 423,741 426,428 3,7653

Eil51
Best run Average run Standart deviation

3-opt 428,872 438,598 5,0160
IWD best 428,872 437,279 5,57137
GA best 431,953 447,943 7,5848
Adaptive GA 429,118 449,938 9,94143
ACO best 429,484 432,732 3,11622
Adaptive ACO 429,484 433,936 2,88955

Fig. 1 shows one example of algorithms work on Oliver30 problem in the case where the better
solution (423.741) was found. Here we can see some advantage in the effectiveness of ACO that
may be due to the fact that it begins its work with a solution oriented on the distances between
cities, but not completely randomly as other algorithms.

Tab. 1 shows that adaptive methods lose conventional with the best settings not so much. At
the same time, they do not require testing many variants of parameters. Effectiveness of biology
inspired algorithms on a specific task varies considerably depending on the settings. If we solve
the problem only once (that is what we actually do with real problems), the effectiveness of the
algorithms will be approximately equal to the mean value on this task and not to the best value.
Such a comparison on the tasks is shown in Tab. 2, where two lines for each algorithm contain the
values of the objective function, found in the best and average settings through all the settings
and columns contain averaging over runs, and the standard deviation.
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Fig. 1. Examples of the ACO, IWDs, GA and adaptive GA behavior on task Oliver30

Table 2. Adaptive algorithms comparison with other algorithms with different parameters
variants on the tasks Oliver30 and Eil51

Oliver30 Eil51
Best Average Standart Best Average Standart
run run deviation run run deviation

3-opt 423,741 434,61 11,931 435,58 450,346 8,59725
IWD best 423,741 426,413 3,19925 433,101 442,05 433,101

average 434,75 434,75 10,1741 450,775 468,64 450,775
GA best 423,741 431,647 11,3784 442,672 450,913 442,672

average 424,139 442,982 12,8611 444,923 460,762 444,923
AdaptiveGA 423,741 434,485 12,7539 440,817 457,286 12,0611
ACO best 423,741 424,04 0,42986 428,872 429,866 428,872

average 428,684 443,771 11,7151 478,636 496,615 478,636
AdaptiveACO 423,741 426,428 3,7653 429,118 434,634 3,38365

Both adaptive algorithms show good results on these problems as they outperform other
algorithms with their settings giving average performance. Although on average adaptive GA
cannot outperform other algorithms with their best settings and adaptive ACO cannot outper-
form conventional ACO with the best settings, one has to realize that it is unknown beforehand
which settings of the algorithm on the given task will be the best. There were 16 settings vari-
ants of ACO and 24 settings variants of GA and IWDs that means much extra efforts for the
determination of these "best" algorithms before they could win adaptive GA. One can use the
part of these efforts to improve results of the adaptive GA or adaptive ACO, e.g. by adding
computational resources.

Figs. 2–5 show typical examples of operator probabilities interplay in GA and ACO one run.
If we deal with real-world problems then very possible situation is the absence of unique best
settings. It means that there are different best settings on the different steps of problem solving
and this is illustrated clearly on the Fig. 2. In such cases self-configuring algorithms bring much
more advantages.
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Fig. 2. Probabilities of selection variants through the one run of GA

Fig. 3. Probabilities of mutation variants through the one run of GA

4. Conclusion

In this paper we compared performance of some heuristic algorithms of the combinatorial
optimization, such as 3-opt algorithm, intelligent water drops algorithm, conventional genetic
algorithm and conventional ant colony algorithm with self-configuring (adaptive) genetic and
ant colony algorithms.

Our investigations demonstrate that adaptive algorithms are the effective methods of opti-
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mization with the remarkable property, which consists in the fact that the user does not have to
adjust parameters but can have competitive results in solution quality.

As a future work plans, it can be the comparison with other algorithms, the development of
adaptive versions of other algorithms and the use of suggested approach for solving real world
problems.

Fig. 4. Probabilities of alpha values through the one run of ACO

Fig. 5. Probabilities of beta values through the one run of ACO
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Самоконфигурируемые алгоритмы для задач
комбинаторной оптимизации

Ольга Е.Семенкина
Евгений А.Попов

Ольга Э. Семенкина
Сибирский государственный аэрокосмический университет

Красноярский рабочий, 31, Красноярск, 660014
Россия

В данной работе авторы предлагают и исследуют самоконфигурируемые генетический алгоритм
(GA) и алгоритм муравьиных колоний (ACO) и применяют их к одной из наиболее известных
задач комбинаторной оптимизации — задаче коммивояжера (TSP). Оценка работоспособности
предложенных алгоритмов проводится на известных тестовых вариантах TSP, а затем срав-
нивается с другими эвристиками, а именно с эвристикой Лина-Карнигана (локальный поиск с
3-заменой) и алгоритмом "умных капель воды". Численные эксперименты показывают, что пред-
ложенный подход демонстрирует сопоставимую работоспособность. Оба адаптивных алгоритма
показывают хорошие результаты на данных задачах, т.к. они превосходят другие алгоритмы с
настройками, дающими среднюю эффективность.

Ключевые слова: задача коммивояжера, генетический алгоритм, муравьиный алгоритм, алго-
ритм "умных капель воды", самоконфигурация.
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