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A method of construction of a coamoeba for a discriminant of a general tetranomial equatio is presented.
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Consider a general reduced algebraic equation

1 + x1y + ...xn−1y
n−1 + yn = 0, (1)

where = (x1, . . . , xn) ∈ Cn−1. Denote its discriminant by ∆ = ∆(x). The discriminantal set

∇ = {x ∈ Cn−1 : ∆(x) = 0}

admits a parameterization by s = (s1 : s2 : . . . : sn−1) ∈ CPn−2 according to [1]

xk = − nsk
⟨α, s⟩

(
⟨α, s⟩
⟨β, s⟩

) k
n

, k = 1, . . . , n− 1, (2)

where α and β are integer vectors

α = (n− 1, . . . , 2, 1), β = (1, 2, . . . , n− 1).

We are interested in tetranomial equations, i.e. those obtained from (1) by vanishing of all
coefficients xk, except two:

1 + xly
l + xmym + yn = 0, where l < m < n. (3)

In this case the parameterization (2) of the discriminantal set in an affine coordinate t :=
sl/sm of the projective line CP1 assumes the form:

xl = − nt

(n− l)t+ n−m

(
(n− l)t+ n−m

lt+m

) l
n

,

xm = − n

(n− l)t+ n−m

(
(n− l)t+ n−m

lt+m

)m
n

. (4)

Denote this parameterization by x = Ψ(t) letting x = (xl, xm).

Example 1. In all examples we shall consider two tetranomials of degree 3 and 6.
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1. Consider a third degree equation 1 + x1y + x2y
2 + y3 = 0. Here n = 3, l = 1, m = 2. The

discriminant of this equation is equal to

∆ = 27 + 4x3
1 − 4x3

2 + 18x1x2 − x2
1x

2
2.

The parameterization of its zero locus ∇ is the following

x1 = − 3t

2t+ 1

(
2t+ 1

t+ 2

) 1
3

; x2 = − 3

2t+ 1

(
2t+ 1

t+ 2

) 2
3

.

2. For the tetranomial
1 + x1y + x2y

2 + y6 = 0

the parameterization of its discriminantal set is

x1 = − 6t

5t+ 4

(
5t+ 4

t+ 2

) 1
6

; x2 = − 6

5t+ 4

(
5t+ 4

t+ 2

) 1
3

.

We shall draw the coamoeba of the discriminantal curve ∇ of equation (3).

Definition 1. The coamoeba A′ of the set ∇ is its image Arg∇ ⊆ Rn under the projection on
the argumental subspace

Arg z = (arg z1, . . . , arg zn).

In order to depict the coamoeba of the discriminantal set ∇ for equation (3) it is convenient
to use the parameterization (4). This parameterization involves fractional powers of some linear
in t functions. The case of integer powers has been studied in [2]. In our context this case
corresponds to tetranomial equations with fixed coefficients of neighboring monomials. The
coamoeba of a reduced discriminantal curve ∇ is the image of the composition of mappings
Arg ◦Ψ : CP1 → T2 = (R/2πZ)2. Taking into account (4), this image is parameterized by

arg xl = arg(−nt)− n− l

n
arg

(
(n− l)t+ n−m

)
− l

n
arg(lt+m),

arg xm = arg(−n)− n−m

n
arg

(
(n− l)t+ n−m

)
− m

n
arg(lt+m).

(5)

The mapping Arg ◦ Ψ is finite at a general point, i.e. it has a finite number of preimages
at all points, except, possibly, their finite number. We want to know the number of preimages
for all points of the torus T2. Following the idea of the paper [2], we consider the coamoeba
A′ as a 2-chain in the sense of homology theory. The support of such a chain coincides with
the topological closure of the coamoeba, while the cells constituting the chain A′ are composed
according to the number of preimage of Arg−1(p) of p ∈ A′. In other words, the number of
preimages of any point from a relative interior of a cell is the same.

The singular points of the parameterization (5) are

−m

l
,
m− n

n− l
, 0, ∞.

All these pionts lie on the axis of real values of the parameter t. They divide the axis into four
intervals, while the axis itself divides the Riemann sphere CP1 ∼= C̄ into two simply connected
domains, where the mapping (4) admits single valued branches.

We start with the construction of zero-dimensional cells. Since the signs of linear in t functions
in (5) do not change within intervals, these intervals are mapped into single-pont sets, i.e. zero-
dimensional cells. The singular points are mapped to segments (1-dimensional cells), while the
endpoints of the segments are images of intervals meeting at the chosen singular point.
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Points from different parts of the coamoeba may have different number of preimages of Arg◦Ψ.
Our goal is to construct 2-cells, which are convex polygons, consisting of points with the same
number of preimages.

In order to achieve this we rewrite the parameterization (4) in the form

xl = (−nt)((n− l)t+ n−m)
l−n
n (lt+m)

− l
n ,

xm = (−n)((n− l)t+ n−m)
m−n

n (lt+m)
−m

n .

As has been said above, the axis of real values of t divides the Riemann sphere into two
simply connected domains. This allows to find the image of a branch of the mapping in the
upper half-plane. The other images of branches in the upper half-plane may be obtained by
‘shifting’ the first one. This shift we get by changing the value of t in the parameterization (5)
by 2πk.

When considering branches in the upper half-plane we approximate it by removing half-circles
of small radii with centers at the singular ppoints. Therefore when t moves along the real axis
from left to right the value of arg t jumps by π at the singular points. Analogously, when t is
moving from right to left for the branches from the lower half-plane the value of arg t jumps by
−π as the parameter goes along small half-circles in the lower half-plane.

We start with large negative values of t (i.e. from t = −∞ for which arg t = π) in the upper
half-plane. Formulas (5) show that Arg x(−∞) = (−π; 0) (this is the point p1 on Fig. 1). The
same value is preserved on the whole ray from (−∞) to −m

l
. Passing from one vertex of a cell

to another corresponds to a jump in a singular point, which happens when one of the factors in
the parameterization vanishes. So, the first jump occurs at t = −m

l
. Here xl and xm vanish

because of the factors
(lt+m)

− l
n and (lt+m)

−m
n .

When going around along a half-circle there occurs a jump to p2 on Fig. 1. The jump is equal

to π multiplied by α1 =
( l

n
;
m

n

)
. Thus, we get p2 = p1 + α1π.

Fig. 1. Cells of the discriminant of the equation 1 + x1y + x2y
2 + y3 = 0

The jump from p2 to p3 on Fig. 1 occurs at t =
m− n

n− l
when the factors

((n− l)t+ n−m)
l−n
n ; ((n− l)t+ n−m)

m−n
n

vanish. In this case the vector α2 =
(
− l − n

n
;−m− n

n

)
, and p3 = p2 + α2π.
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The last vertex corresponds to vanishing of linear factors, but in fact in this case only xl

becomes zero. Since the coefficent at t is negative, α3 = (−π, 0), and we get the point p4 =
p3 + α3π. The jump at ∞ corresponds to the segment [p4; p1]. Thus, we get a closed polygonal
line inside which the chosen branch from the upper half-plane is projected.

The image of the lower half-plane is constructed in the same way, taking into account jumps
by −π. The images of upper and lower branches are symmetric with respect to the point p1,
since passing from the upper half-plane to the lower one around ∞ the image turns by π. In this
way we get the first cell of the coamoeba. The remaining cells are constructed in the same way,
but it is necessary to pick the general starting points of cells.

The parameterization involves multi-valued functions, therefore the coamoeba has n images
of upper and lower half-planes. In order to determine the points p1 of these cells we return
to the original parameterization (4). To determine the coordinates of the remaining starting
points we need to sum the coordinates of the starting point p1 = (−π; 0) and the vector of
exponents of fractional expressions multiplied by 2πk, k = 0, . . . , n − 1, i.e the starting points

have the coordinates (−π; 0)+
(2πkl

n
,
2πkm

n

)
. The rest of the construction of cells is performed

analogously.

Example 2. Let us determine starting points for our examples.

1. 1 + x1y + x2y
2 + y3 = 0. On the interval (−∞;−2) the arguments are (−π; 0). The first

jump at t = −2 takes us to
(
− 2π

3
;
2π

3

)
. The point (0;π) corresponds to the jump at t =

1

2
,

while the last point (π;−π) to the jump at t = 0.

Correspondingly, when going in the lower half-plane we get the values

(π; 0),
(
− 4π

3
;−2π

3

)
, (−2π;−π), (π;−π).

2. 1 + x1y + x2y
2 + y6 = 0. The axis of t is divided into intervals

(−∞,−2),
(
− 2,−4

5

)
,
(
− 4

5
, 0
)
, (0,+∞).

At the points of jumps we get

(−π, 0),
(5π

6
,
π

3

)
, (0, π), (π, π).

The starting cells look as follows (Fig.2).

Fig. 2. Cells of the discriminant of 1 + x1y + x2y
2 + y6 = 0
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Determine now coordinates of general points of the remaining cells.

Example 3. We determine the number of groups of symmetric cells with the help of the
degree of polynomial.

1. 1 + x1y + x2y
2 + y3 = 0.

This equation is of degree 3, hence we have three groups of symmetric cells. The coordinates
of the first one we have already found.

The second group begins at (−π; 0) + 2π
(1
3
;
2

3

)
=

(
− π

3
;
4π

3

)
=

(
− 2π

3
;
−2π

3

)
. The third

one at the point
(π
3
,
2π

3

)
Taking the union of all cells on the fundamental square and making necessary shifts we get
the coamoeba of the discriminant of an equation of third degree (Fig.3).

Fig. 3. The coamoeba of the discriminant of the cubic equation 1 + x1y + x2y
2 + y3 = 0

In this example no more than two two-dimensional cells overlap, this means that points of
the coamoeba have at most two preimages.

2. 1 + x1y + x2y
2 + y6 = 0 The starting points have the coordinates

(0; 0),
(
− 2π

3
;
2π

3

)
,
(
− π

3
;−2π

3

)
,
(π
3
;
2π

3

)
,
(2π

3
;−2

π

3

)
.

The coamoeba looks as follows Fig.4

Fig. 4. The coamoeba of the discriminant of the equation 1 + x1y + x2y
2 + y6 = 0

In contrast to the previous example, the maximal number of overlapping cells is three, i.e.
some points of the coamoeba have three preimages. Black triangles on the figure depicting
the coamoeba correspond to such regions.
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Coamoebas in these examples have non-empty complements. Let us give an example of a
tetranomial whose discriminant’s amoeba covers whole torus (Fig. 5).

Such an example is delivered by the equation 1 + x2y
2 + x3y

3 + y6 = 0.

Fig. 5. The coamoeba of the discriminant of the equation 1 + x2y
2 + x3y

3 + y6 = 0

Example 4. Consider now a system of equations{
y31 + ay1y2 − 1 = 0,

y32 + by1y2 − 1 = 0.

The parameterization of the discriminantal set of this system is the following:

a = − 3

s− 2

(
s− 2

1 + s

) 1
3
(
1− 2s

1 + s

) 1
3

= −3(s− 2)−
2
3 (1 + s)−

2
3 (1− 2s)

1
3 ,

b = − 3s

1− 2s

(
s− 2

1 + s

) 1
3
(
1− 2s

1 + s

) 1
3

= −3s(s− 2)
1
3 (1 + s)−

2
3 (1− 2s)−

2
3 .

(6)

The set of singular points of this parameterization is

s : −∞,−1, 0,
1

2
, 2.

The starting points of cells of the coamoeba:(
− π

3
;−π

3

)
,
(π
3
;
π

3

)
, (π;π).

The coamoeba of the discriminantal set is on Fig. 6.

Fig. 6. The coamoeba of the discriminant for a system of equations.
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Коамебы дискриминантов для тетраномов
Екатерина М.Музалевская
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Приводится способ построения коамебы дискриминанта общего тетрономиального уравнения.

Ключевые слова: коамеба, дискриминант, тетраном.
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