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In this paper we present a closed formula for the values of the q-analog of Kostant’s partition function
for the Lie algebra sp4(C) and use this result to give a simple formula for the q-multiplicity of a weight in
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1. Introduction and preliminaries

In the study of the representation theory of simple Lie algebras it is of interest to compute the
multiplicity of a weight µ in a finite-dimensional complex irreducible representation of the Lie
algebra g of rank r. This multiplicity is the dimension of a specific vector subspace called a weight
space. The theorem of the highest weight asserts that all finite-dimensional complex irreducible
representation of g are equivalent to L(λ) a highest weight representation with dominant integral
highest weight λ = n1ϖ1 + n2ϖ2 + · · · + nrϖr where n1, n2, . . . , nr ∈ N := {0, 1, 2, . . .} and
{ϖ1, ϖ2, . . . , ϖr} denotes the set of fundamental weights of g. One can compute this multiplicity,
denoted by m(λ, µ), by using Kostant’s weight multiplicity formula [10]:

m(λ, µ) =
∑
σ∈W

(−1)ℓ(σ)℘(σ(λ+ ρ)− (µ+ ρ)), (1)

where W is the Weyl group, ℓ(σ) denotes the length of σ, ρ =
1

2

∑
α∈Φ+

α with Φ+ being the set of

positive roots of g. If h is a Cartan subalgebra of g, then elements of the dual of h, denoted by h∗,
are called weights. In Equations (1) ℘ denotes Kostant’s partition function defined on weights
ξ ∈ h∗ and ℘(ξ) counts the number of ways the weight ξ can be expressed as a nonnegative
integral sum of positive roots.

A generalization of Equations (1) was provided by Lusztig and is called the q-analog of
Kostant’s weight multiplicity formula [11]:

mq(λ, µ) =
∑
σ∈W

(−1)ℓ(σ)℘q(σ(λ+ ρ)− (µ+ ρ)) (2)
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with ℘q denoting the q-analog of Kostant’s partition function defined on ξ ∈ h∗ by

℘q(ξ) = c0 + c1q + c2q
2 + · · ·+ cnq

n,

where ci represents the number of ways to express the weight ξ as a sum of exactly i positive
roots. Note that since ℘q(ξ)|q=1 = ℘(ξ) for all weights ξ ∈ h∗ evaluating mq(λ, µ) at q = 1

recovers m(λ, µ). The following is a celebrated result of Lusztig, which illustrates an important
use of the q-analog of Kostant’s weight multiplicity formula [11, Section 10, p. 226]: if g is a
finite-dimensional simple Lie algebra, then mq(α̃, 0) = qe1 + qe2 + · · ·+ qer where α̃ is the highest
root and e1, e2, . . . , er are the exponents of g. We recall that the exponents of g are related to the
degrees of the basic invariants, where the degrees are equal to one more than the exponents [9].

Even though formulas, such as Equations (1) and (2), exist to compute the multiplicity and q-
multiplicity of the weight µ in the irreducible representation L(λ), respectively, the computation
can be intractable. This is due to the fact that in general the number of terms appearing in the
sum are factorial in the rank of the Lie algebra and there is no known closed formula for the
partition function involved. There has been recent progress in addressing these complications
for particular weight multiplicity computations [4, 5, 7, 8].

Although it is very difficult to give closed formulas for weight multiplicities in rank r Lie alge-
bras, there has been some success in low rank cases. One such case is the work of Refaghat and
Shahryari, where they provided a closed formula for Equation (1) for the Lie algebra sp4(C) [12].
More recently, Fernández-Núñez, Garćia-Fuertes, and Perelomovto provided a generating func-
tion for the weight multiplicities of the representations of the Lie algebra sp4(C) [1]. Motivated by
the work of Refaghat and Shahryari and of Fernández-Núñez, Garćia-Fuertes, and Perelomovto
we present a new formula for Equation (2) which gives the q-multiplicities for weights of the
representations of the Lie algebra sp4(C). This formula depends solely on a simple computation
involving the values of λ and µ and not on the partition function nor on the order of the group.

Theorem 1.1. Let ϖ1 and ϖ2 denote the fundamental weights of sp4(C) and consider λ =

mϖ1+nϖ2 and µ = xϖ1+yϖ2 with m,n, x, y ∈ N. Define a = m+n−x−y, b = n−y+
m− x

2
,

c = n− x− y − 1, and d = −y − 1 +
m− x

2
. Then

mq(λ, µ) =



P −Q−R if a, b, c, d ∈ N,
P −Q if a, b, c ∈ N and d /∈ N,
P −R if a, b, d ∈ N and c /∈ N,
P if a, b ∈ N and c, d /∈ N,
0 otherwise,

(3)

where

P =

min(⌊ a
2 ⌋,b)∑

i=0

 a+b−2i∑
j=max(a−i,b)

qj

 , Q =

⌊ c
2⌋∑

i=0

b+c−2i∑
j=b

qj

 , and R =
d∑

i=0

a+d−2i∑
j=a−i

qj

 .

The proof of Theorem 1.1 uses the following closed formula for the q-analog of Kostant’s
partition function.

Proposition 1.2. Let α1 and α2 denote the simple roots of sp4(C). If m,n ∈ N, then

℘q(mα1 + nα2) =

min(⌊m
2 ⌋,n)∑

i=0

 m+n−2i∑
j=max(m−i,n)

qj

 . (4)
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Equation (3) yields a generalization of the formula for Kostant’s weight multiplicity formula
for sp4(C) presented in [12] as its evaluation at q = 1 recovers their result. This paper is organized
as follows: Section 2 provides the necessary background to make our approach precise. Section 3
provides a proof of Proposition 1.2. Lastly, Section 4 contains the proof of Theorem 1.1 and
Corollary 4.1 which considers the case of setting q = 1 in Theorem 1.1 thereby giving a closed
formula for Kostant’s weight multiplicity for the Lie algebra sp4(C).

2. Background
Following the notation of [2, 3] we now provide the necessary background to make our ap-

proach precise. Throughout this work we let α1, α2 denote the simple roots and ϖ1, ϖ2 the
fundamental weights of sp4(C). One may change from fundamental weights to simple roots via

ϖ1 = α1 +
1

2
α2, (5)

ϖ2 = α1 + α2. (6)

We consider the case where λ = mϖ1 + nϖ2 and µ = xϖ1 + yϖ2 with m,n, x, y ∈ N, thereby
using the fundamental weights as an initial basis for λ and µ, but we often convert to the simple
roots in order to simplify partition function calculations.

The set of positive roots of sp4(C) is given by Φ+ = {α1, α2, α1 + α2, 2α1 + α2} and hence

ρ =
1

2

∑
α∈Φ+

α = 2α1 +
3

2
α2 = ϖ1 +ϖ2. (7)

The Weyl group of sp4(C) is denoted by W and its elements are generated by the root reflections
s1 and s2, which are perpendicular to the simple roots α1 and α2, respectively. The eight elements
of W and their lengths are presented in Tab. 1. The action of s1 and s2 on the simple roots and

Table 1. The elements of the Weyl group of sp4(C) and their length

σ ∈ W 1 s1 s2 s1s2 s2s1 s1s2s1 s2s1s2 s1s2s1s2

ℓ(σ) 0 1 1 2 2 3 3 4

the fundamental weights is given by

s1(α1) = −α1, s2(α1) = α1 + α2, s1(α2) = 2α1 + α2, s2(α2) = −α2 (8)

and for 1 6 i, j 6 2

si(ϖj) =

{
ϖj if i ̸= j,

ϖj − αj if i = j.
(9)

The action of any other element of the Weyl group is acquired by noting that the action of s1
and s2 is linear. For example, s1s2(3ϖ2) = 3s1(s2(ϖ2)) = 3s1(ϖ2 − α2) = 3(s1(ϖ2)− s1(α2)) =

3(ϖ2 − (2α1 + α2)) = 3((α1 + α2)− (2α1 + α2)) = −3α1.

3. The q-analog of Kostant’s partition function

The following sections consider a weight ξ and analyze the value of ℘q(ξ) when using the
positive roots of the Lie algebra sp4(C). In this analysis we note that combinatorially the
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positive roots of the Lie algebra of sp4(C), Φ+ = {α1, α2, α1 + α2, 2α1 + α2} all but 2α1 + α2

are positive roots of the Lie algebra sl3(C), whose positive roots are α1, α2, and α1+α2. Hence,
we first present a closed formula for the q-analog of the partition function for the Lie algebra
sl3(C) and use this result in our proof for the closed formula for the q-analog of the partition
function for the Lie algebra sp4(C).

3.1. Formula for ℘q on sl3(C)

By examining the partition function value on the Lie algebra sl3(C), we can begin to bet-
ter understand the partition function value on sp4(C). We consider the q-analog of Kostant’s
partition function on mα1 + nα2 with m,n ∈ N in the Lie algebra sl3(C).

Proposition 3.1. If g = sl3(C) and m,n ∈ N, then ℘q(mα1 + nα2) =
m+n∑

j=max(m,n)

qj .

Proof. The number of possible ways to write mα1 + nα2 as a nonnegative integral sum of the
positive roots α1, α2, α1 + α2 is determined entirely by the number of times α1 + α2 is used.
If a partition of mα1 + nα2 includes c(α1 + α2), where 0 6 c 6 min(m,n), then there must be
m − c uses of α1 and n − c uses of α2. The total number of roots used in this partition will be
m + n − c. Since we know that c ranges in value from 0 to min(m,n), and that there is one
and only one possible partition for each value of c, it follows that the number of roots used in
a partition of mα1 + nα2 ranges between m + n − min(m,n) = max(m,n) and m + n. Thus,

℘q(mα1 + nα2) =
m+n∑

j=max(m,n)

qj .

The next corollary follows directly from Proposition 3.1.

Corollary 3.2. Let g = sl3(C). If m,n ∈ N, then ℘(mα1 + nα2) = min(m,n) + 1.

Proof. We note that ℘q(mα1 + nα2)|q=1 = ℘(mα1 + nα2). Thus, we set q = 1 and find that m+n∑
j=max(m,n)

qj

∣∣∣∣∣
q=1

=
m+n∑

j=max(m,n)

1 = m+ n− (max(m,n)− 1) = min(m,n) + 1.

3.2. Formula for ℘q on sp4(C)

We now consider the Lie algebra sp4(C) with positive roots α1, α2, α1 + α2, 2α1 + α2.

Proof of Proposition 1.2. We note that every partition of a weight that is possible in sl3(C) is
also possible in sp4(C). However, sp4(C) also has 2α1+α2 as a positive root, so we must consider
all partitions of a weight using this root. Let m,n ∈ N. It is clear that any partition of mα1+nα2

can contain i copies of the positive root 2α1 + α2 so long as 0 6 i 6 min(
⌊
m
2

⌋
, n). It follows

that when using 0 6 i 6 min(
⌊
m
2

⌋
, n) copies of the root 2α1 + α2 to partition mα1 + nα2, the

remainder (m − 2i)α1 + (n − i)α2 must be partitioned using only the roots α1, α2, α1 + α2.
Thus, by Proposition 3.1 the number of ways to partition (m− 2i)α1 + (n− i)α2 using only the
positive roots α1, α2, α1 + α2 is given by

m+n−3i∑
j=max(m−2i,n−i)

qj . (10)

– 497 –



Pamela E. Harris, Edward L. Lauber Weight q-multiplicities for Representations of sp4(C)

In our count we must add i to the exponents of q in every term of expression (10) to account
for the i copies of the root 2α1 + α2 used in the partition of mα1 + nα2. Doing this yields the
polynomial

qmax(m−i,n) + qmax(m−i,n)+1 + · · ·+ qm+n−2i.

By accounting for the fact that 0 6 i 6 min(
⌊
m
2

⌋
, n) we arrive at the desire result

℘q(mα1 + nα2) =

min(⌊m
2 ⌋,n)∑

i=0

 m+n−2i∑
j=max(m−i,n)

qj

 .

We now obtain a closed formula for Kostant’s partition function on sp4(C).

Corollary 3.3. If g = sp4(C) and m,n ∈ N, then

℘(mα1 + nα2) =



(⌊m
2

⌋
+ 1
)(

m−
⌊m
2

⌋
+ 1
)

if n > m,

(n+ 1)(n+ 2)

2
if m > 2n,

2mn−m2 − n2 +m+ n

2
+
⌊m
2

⌋(
m−

⌊m
2

⌋)
+ 1 if 2n > m > n.

Proof. Setting q = 1 into Equation (4) we find that

℘(mα1 + nα2) =

(min(⌊m
2 ⌋,n)∑

i=0

min(m− i, n)

)
−

− 1

2
min

(⌊m
2

⌋
, n
)(

min
(⌊m

2

⌋
, n
)
+ 1
)
+min

(⌊m
2

⌋
, n
)
+ 1. (11)

We now consider each case individually. If n > m, then Equation (11) simplifies to(⌊m
2

⌋
+ 1
)(

m−
⌊m
2

⌋
+ 1
)
. If m > 2n, then Equation (11) simplifies to

(n+ 1)(n+ 2)

2
. Fi-

nally, if 2n > m > n, then Equation (11) yields⌊m
2 ⌋∑

i=0

min(m− i, n)

−
⌊
m
2

⌋ (⌊
m
2

⌋
+ 1
)

2
+
⌊m
2

⌋
+ 1. (12)

Let us consider the first term of expression (12). If i 6 m − n, then n 6 m − i and hence
min(m − i, n) = n. Similarly, if i > m − n, then n > m − i and hence min(m − i, n) = m − i.
Thus

⌊m
2 ⌋∑

i=0

min(m− i, n) =
2mn−m2 − n2 +m+ n

2
+m

⌊m
2

⌋
−
⌊
m
2

⌋ (⌊
m
2

⌋
+ 1
)

2
. (13)

Substituting Equation (13) into Equation (12) yields the desired result.

4. The q-analog of Kostant’s weight multiplicity formula
for sp4(C)

Proposition 1.2 provided a closed formula for the q-analog of the partition function for the
Lie algebra sp4(C). We now use this formula to provide a proof of Theorem 1.1, but first we
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must examine the partition function value input σ(λ+ ρ)− (µ+ ρ) for all σ ∈ W as appearing
in Equation (1). Throughout the rest of this section we let λ = mϖ1 +nϖ2 and µ = xϖ1 + yϖ2

with m,n, x, y ∈ N. To illustrate the computations σ(λ+ ρ)− (µ+ ρ) we consider the case when
σ = s1. Using Equations (5), (6), and (8) we find that

s1(λ+ ρ)− (µ+ ρ) =

=s1

(
(m+ n+ 2)α1 +

(
m

2
+ n+

3

2

)
α2

)
−
(
(x+ y + 2)α1 +

(
x

2
+ y +

3

2

)
α2

)
=(n+ 1)α1 +

(
m

2
+ n+

3

2

)
α2 −

(
(x+ y + 2)α1 +

(
x

2
+ y +

3

2

)
α2

)
=(n− x− y − 1)α1 +

(
n− y +

m− x

2

)
α2

Repeating this procedure with every element of the Weyl group generates the content of Tab. 2.

Table 2. Computing σ(λ+ ρ)− (µ+ ρ) for all σ ∈ W

σ ℓ(σ) σ(λ+ ρ)− (µ+ ρ)
1 0 (m+ n− x− y)α1 + (n− y + m−x

2 )α2

s1 1 (n− x− y − 1)α1 + (n− y + m−x
2 )α2

s2 1 (m+ n− x− y)α1 + (−y − 1 + m−x
2 )α2

s1s2 2 (−n− x− y − 3)α1 + (−y − 1 + m−x
2 )α2

s2s1 2 (n− x− y − 1)α1 + (−y − 2− m+x
2 )α2

s1s2s1 3 (−m− n− x− y − 4)α1 + (−y − 2− m+x
2 )α2

s2s1s2 3 (−n− x− y − 3)α1 + (−n− y − 3− m+2
2 )α2

s1s2s1s2 4 (−m− n− x− y − 4)α1 + (−n− y − 3− m+2
2 )α2

We now consider the q-analog of Kostant’s partition function on the expressions σ(λ+ ρ)−
(µ + ρ) as listed in Tab. 2. We note that m,n, x, y ∈ N and that the q-analog of Kostant’s
partition function returns 0 if the coefficient of either α1 or α2 is negative or not an integer.
Thus, the Weyl group elements s1s2, s2s1, s1s2s1, s2s1s2, and s1s2s1s2 never contribute to the
q-analog of Kostant’s weight multiplicity formula since at least one of the coefficients of α1 or
α2 in the expression σ(λ + ρ) − (µ + ρ) will always be negative whenever λ = mϖ1 + nϖ2 and
µ = xϖ1 + yϖ2 with m,n, x, y ∈ N. With this observation at hand we now present the proof of
our main result Theorem 1.1.

Proof of Theorem 1.1. We need only consider the contribution of (−1)ℓ(σ)℘q(σ(λ+ ρ)− (µ+ ρ))

for the Weyl group elements σ = 1, s1, and s2. Let a = m+ n− x− y, b = n− y +
m− x

2
, c =

n− x− y − 1, and d = −y − 1 +
m− x

2
. Then from Tab. 2 we note that

1(λ+ ρ)− (µ+ ρ) = aα1 + bα2,

s1(λ+ ρ)− (µ+ ρ) = cα1 + bα2,

s2(λ+ ρ)− (µ+ ρ) = aα1 + dα2.
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By Proposition 1.2 if σ = 1 and a, b ∈ N, then

P = (−1)ℓ(1)℘q(aα1 + bα2) =

min(⌊ a
2 ⌋,b)∑

i=0

 a+b−2i∑
j=max(a−i,b)

qj

 . (14)

Observe that if a /∈ N or b /∈ N, then ℘q(aα1 + bα2) = 0 and hence P = 0. Note that if
m,n, x, y ∈ N, then

−x− y − 1 < −y − x

2
⇐⇒ n− x− y − 1 < n− y +

m− x

2
⇐⇒ c < b.

Thus, Proposition 1.2 allows us to compute the following: If σ = s1 and b, c ∈ N with c < b, then

Q = (−1)ℓ(s1)℘(cα1 + bα2) = −
⌊ c

2⌋∑
i=0

b+c∑
j=b

qj

 . (15)

However, if b /∈ N or c /∈ N, then ℘q(cα1+bα2) = 0 and hence Q = 0. Finally, since m,n, x, y ∈ N,
we have

n− y

2
> −y − 1 ⇐⇒ n− y +m− x

2
> −y − 1 +

m− x

2
⇐⇒ a

2
> d.

Thus, Proposition 1.2 allows us to compute the following: If σ = s2 and if a, d ∈ N with a > 2d,
then

R = (−1)ℓ(s2)℘(aα1 + dα2) = −
d∑

i=0

a+d−2i∑
j=a−i

qj

 . (16)

Again, if a /∈ N or d /∈ N, then ℘q(aα1 + dα2) = 0 and hence R = 0. Equation (3) now follows
from taking the sum of Equations (14)–(16).

Our last result follows from setting q = 1 in Equation (3) of Theorem 1.1 and using Corollary 3.3.

Corollary 4.1. Let λ = mϖ1 + nϖ2 and µ = xϖ1 + yϖ2 with m,n, x, y ∈ N := {0, 1, 2, . . .} be

weights of sp4(C) and define a = m + n − x − y, b = n − y +
m− x

2
, c = n − x − y − 1, and

d = −y − 1 +
m− x

2
. Then

m(λ, µ) =



P −Q−R if a, b, c, d ∈ N,
P −Q if a, b, c ∈ N and d /∈ N,
P −R if a, b, d ∈ N and c /∈ N,
P if a, b ∈ N and c, d /∈ N,
0 otherwise,

(17)

where

P =



(⌊a
2

⌋
+ 1
)(

a−
⌊a
2

⌋
+ 1
)

if b > a,

(b+ 1)(b+ 2)

2
if a > 2b,

2ab− a2 − b2 + a+ b

2
+
⌊a
2

⌋(
a−

⌊a
2

⌋)
+ 1 if 2b > a > b,

Q =

⌊
c+ 2

2

⌋2
,

R =
(d+ 1)(d+ 2)

2
.
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We end by providing a computational proof that mq(α̃, 0) = q1 + q3 where α̃ is the highest
root and 1 and 3 are the exponents of sp4(C).

Example 1. Let λ = α̃ = 2ϖ1 and µ = 0. Then m = 2, n = x = y = 0, and a = m+n−x−y = 2,
b = n− y +

m− x

2
= 1, c = n− x− y− 1 = −1, and d = −y − 1 +

m− x

2
= 0. By Theorem 1.1

as a, b, d ∈ N and c /∈ N we must compute P and R. Observe that

P =
1∑

i=0

 3−2i∑
j=max(2−i,1)

qj

 = q + q2 + q3 and R =
0∑

i=0

2−2i∑
j=2

qj

 = q2.

Thus mq(α̃, 0) = P −R = q+ q3. Lastly, note that mq(α̃, 0)|q=1 = 2 recovers the rank of the Lie
algebra sp4(C).

The authors thank Gabriel Ngwe for edits to an earlier draft of this manuscript and Leo
Goldmakher for his assistance in translating the title and abstract to Russian.
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Вес q-кратностей для представлений sp4(C)
Памела Е. Харрис
Эдвард Л. Лаубер

Вильямс колледж
Вильямстаун, MA 01267

США

В настоящей работе мы приводим замкнутую формулу для значений q-аналога функции обобще-
ния Костанта для алгебры Ли sp4(C) и используем этот результат, чтобы дать простую фор-
мулу для q-кратности веса в представлениях алгебры Ли sp4(C). Это обобщает работу Рефагата
и Шахрияри в 2012 г., которые дали замкнутую формулу для кратности веса в представлениях
алгебры Ли sp4(C) .

Ключевые слова: симплектическая алгебра Ли, статистическая сумма Константа, q-аналог ста-
тистической суммы Константа, кратность веса, вес q-кратности.
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