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This article covers the use of analytical technique of solutions for flexural and longitudinal 
oscillations of the bearing framework of a railcar body frame in the form of an elastic core of 
variable section with a variable weight, flexural and longitudinal rigidity. The calculation is 
performed for the modernization of the body frame of emergency and repair rail service car, 
taking into account the variability of section, mass, longitudinal and bending stiffness along the 
length to prolong the service life of their useful operation.
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Численная модель колебаний несущего каркаса  
рамы кузова аварийно-восстановительной автомотрисы  
с переменными жесткостными и массовыми параметрами

З. Мухамедова 
Ташкентский институт инженеров  

железнодорожного транспорта 
Узбекистан, 100167, Ташкент, ул. Адылходжаева, 1

В данной статье представлен алгоритм расчета для моделирования напряженно-
деформированного состояния несущего каркаса рамы кузова аварийно-восстановительной 
автомотрисы; приведены результаты численного исследования по напряженно-
деформированному состоянию несущего каркаса рамы кузова аварийно-восстановительной 
автомотрисы с учетом переменности сечения, массы, изгибной и продольной жесткости по 
её длине; дается обоснование выбора диагностических параметров для оценки динамической 
прочности, надежности и прогнозируемого ресурса работы несущего каркаса рамы кузова 
аварийно-восстановительной автомотрисы.

Ключевые слова: автомотриса, каркас рамы кузова, аналитико-численный метод, надежность, 
прочность.

1. Introduction

In conditions of global financial and economic crisis the issues of increasing the reliability of 
operational railway equipment by upgrading the individual structural assemblies during capital repair 
with the prolongation of its useful life, are relevant. At that, even welded, according to the norms of 
depot repair, cracks continue to develop and grow in size, weakening the most dangerous sections. 
It is obvious that the general stress state of body frame, spring suspension and running gear of the 
rolling stock will significantly depend on the initial bending of neutral axis and permanent dynamic 
forces. These factors cause a 1.2–1.5 times decrease in total life of railcars (rail service car). In modern 
foreign patent and scientific literature the problems of increasing the reliability and strength of the 
frames, load-bearing body structure and components for rail vehicles during their design, operation 
and modernization are extensively studied [1, 2]. We offer an analytical-numerical method based on 
the dynamic strength of the bearing body frame of emergency and repair rail service car, assuming a 
beam-type pattern of its fluctuations with elastic fixing of the ends under harmonic load as it moves 
along the track with periodic joint roughness. 

The main objectives of the creation of new designs of mechanical body components, running 
gear, spring suspension systems of rail service cars, as well as of modernization of existing ones are 
to expand the functionality, to increase the reliability, strength and durability. The issues of research 
and improvement of equivalent bearing body of the cars and their spring suspension have appeared 
simultaneously with the beginning of their use, for example with the advent of motor cars or railway 
transport vehicles. An analysis of researches in the field of optimization of dynamic characteristics 
of a special self-propelled rolling stock, with the development of methods of mathematical modeling 
and numerical analysis, revealed that since the 1960s, a great number of works that dealt with the 
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dynamics of the rolling stock in plane statement and since 1980's the papers have been published on 
spatial oscillations of locomotives and railcars when driving along straight and curved sections of the 
track [3, 4]. Consider some of the works which use the method of optimal design based on the use of 
mathematical models (including computerized ones) with the dynamic quality criteria.

In works by V.A. Kamaev [5] the mathematical models of running parts of railway vehicles are 
considered, taking into account wheel and rail interaction, a comparative analysis of algorithms and 
optimization methods are given and the ways to reduce computer time are recommended to solve an 
optimization problem. Analytical optimization methods in [4] are used only for quasi-linear systems 
for which an integral expression of optimization criterion could be explicitly written. In general, 
the principles of optimization are not widespread and hardly ever used in construction of running 
parts of rail service cars. This greatly explains the lack of sophisticated optimization programs for 
comparatively simple mathematical models and the lack of methodological principles of optimization 
with the use of complex mathematical and physical models, and in some cases the lack of correct 
mathematical models of the process.

Turning to the previous studies on this subject area, similar researches with focus on mathematical 
modelling for repair of defective rail wheels was conducted by researchers from Vilnius Gediminas 
Technical University, Marijonas Bogdevicius, Rasa Zygiene, Bureika Gintautas and Rimantas Subačius. 
The research conducted by first two researchers allowed to construct mathematical models for assessing 
the impact of the uneven railroads and other elements on the structures of the rail car, especially wheels 
[6]. Whereas, Bureika and Subačius concentrated on mathematical models for calculating bending 
tensions noted in various elements of the rail car [7]. Moreover, numerical modelling by Ioan Sebesan 
and Dan Baiasu covered the impact of yawing oscillations on body, bogie and wheel elements and 
allowed for passenger car to be used regularly at the speed of 160 km per hour. As can be noted from 
these researches, the current article provides similar approach with focus on mathematical modelling 
of fluctuations in main bearing frame of railcar rather than wheels [8]. 

This article provides a calculation algorithm for the simulation of stress-strain state of load-
bearing body frame of emergency and repair rail service car; it gives the results of numerical studies 
on stress-strain state of bearing body frame structure of emergency and repair rail service car taking 
into account the variability of section, mass, longitudinal and bending stiffness along its length; it 
outlines the validity for the choice of diagnostic parameters for the evaluation of dynamic strength, 
reliability and predictable service life of bearing body frame structure of emergency and repair rail 
service cars.

Equivalent bearing body frame of emergency and repair rail service car was simulated by an 
elastic rod with variable cross section, with variable mass, bending and longitudinal stiffness. The 
difference between the proposed model and the existing ones [1, 2] is an account of the variability of 
cross section, mass, and the longitudinal and bending stiffness along the length of equivalent beam, 
which corresponds to the actual conditions of operation. In existing methods of calculation a beam of 
uniform strength is considered for the simplification, or an approximate calculation is carried out on 
the model with lumped parameters, excluding elasticity. These approximate models in dynamics may 
create an error up to 150 – 200 % of the real strains and stresses. Therefore, in practice, pilot studies are 
always performed and dynamic correction coefficients are introduced into the calculations of strength 
and stability.
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2. Mathematical model of oscillations 

For the model proposed here, the parameters of the equivalent load-bearing body frame of the 
locomotive are taken in the form of variable functions:

– The mass per unit length of the body frame of emergency and repair rail service car (kg/m)

m K ( X ) = m O * (ао + a 1 X + a 2 X2), (1)

– the area of cross section

F ( X ) =F O *(dо +d 1 X + d 2 X2), (2)

the length of the main bearing body frame of emergency and repair rail service car is 12.96 meters and 
the X coordinate varies in the range 0 ≤ X ≤ 12,96 m: 

– the reduced moment of inertia of frame section on the axis ХС – IX (cm4): 

 IX ( X ) = IО * (bO + b 1 X + b 2 X2 ), (3)

where the coefficients ao, a1, a2, d0, d1, d2, b0, b1, b2 obtained by approximation with use of spline-
functions [3] method on the basis of real data on the linear mass mK (X), the cross sectional area F (X), 
given the inertia IX (X).

– the reduced bending stiffness

S I ( X ) = Е *IX ( X ) , (4)

where IX ( X ) is calculated by the formula (3).
The Figure 1 shows the general overview of the elements of the railcar with details of the impact 

of forces, dimensions and location of the units mentioned in Eqs. (1)–(4). 
An assumption is made that the body frame of rail service car is represented in the form of an 

elastic rod (beam) with constant modulus of material elasticity E = const and the density ρ = const; it 
has some static initial radius of deflection R. The equations of bending and longitudinal oscillations for 
this model are taken by analogy with [9, 10].

To analyze the stress-strain state of equivalent frame of bearing structure of emergency and 
repair rail service car, the differential equations of bending and longitudinal oscillations of straight 
rods of variable section are used (considering torsional oscillations relatively small compared to other 
components) by analogy with [9, 10].
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Fig. 1. Design scheme for the equivalent load-bearing frame of the body frame of railcar
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where IX ( X ) is calculated by the formula (3). 
 
The Figure 1 shows the general overview of the elements of the railcar with details of the impact of forces, 
dimensions and location of the units mentioned in Eqs.1-4.  

 
Fig. 1. Design scheme for the equivalent load-bearing frame of the body frame of railcar 

 
An assumption is made that the body frame of rail service car is represented in the form of an elastic rod (beam) 
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deflection R. The equations of bending and longitudinal oscillations for this model are taken by analogy with [9, 
10]. 
 

To analyze the stress-strain state of equivalent frame of bearing structure of emergency and repair rail service 
car, the differential equations of bending and longitudinal oscillations of straight rods of variable section are used 
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After substituting the Eqs. (1)–(4) and their derivatives in the system of differential Eqs. (5)–(6) we obtain the 

nonlinear equations of the form: 
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Dividing term by tern each of the Eqs. of the system (7)–(8) by mK (X), the entire frame of the body is divided 
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The solution of the system (7)–(8) is performed with the linearization by Simpson’s method, then Fourier 
method is applied to the differential equations with constant coefficients with further application of operational 
Laplace transform in time; numerical studies are carried out by the methods of piecewise linear approximation and 
boundary elements method, similar to the procedures given in [9–10] in Mathcad 14 programming environment. 
Initial conditions are taken as zero ones, and the boundary conditions – in the form of elastic fixing of the ends. 
 

Thus, it is possible to find a general solution of differential Eqs. of bending and longitudinal oscillations of the 
body frame of emergency and repair rail service car (9) and (10) in the form: 

 

 
( )

}sin1*]
)(

[

coscoscos
)(

{*)(),(

2
2

2

2022
2

22

1

tV
XW

D

tW
n

ttn
XW

CXWtXW

n
n

ÎÏ
K

n
n

nK

k

λ
λ

λ
ωλ

λω

⋅++

+⋅+
−
−

⋅= ∑
∞

=  ;     (13) 

 

  

( )( )

}sinsin

sinsin*
)(

coscos

)(*
)(

{*
)(
)(sin1*]

)(
[

cossinsin
)(

)(

2
2

2
1

12

2
2

2
1

122
2
2

2
1

12
0

1
2

1
1

1

1022
11

111

nn

nn
ÎÏ

nn

nnK

nn

nn

K
n

n
Î

K

n
nn

nnK

ttV

tt
XW

DttW

tW
XW

C
XU
XÔtV

XU
D

tU
nn

tntn
XU

CtU

λλ
λλ

λλ
λλ

λλ
λλ

λ
λ

λ
ωλλω

ωλλω

−
−

⋅+

+
−
−

+
−
−

⋅+

++⋅++

+⋅+
−⋅⋅

−⋅
⋅=

 ,        (14) 

where  

( )( ) ( ) ( )( ) ( )( )

( )( ) ( )2
1

2
2

22
2

2

22
2

22
1

2
1

2
2

22
1

1
1

cos

coscos)(

nnn

n

nnnnn

n

n
t

nn
tn

n
ttW

λλωλ
λ

ωλωλ
ω

λλωλ
λ

−⋅−
−

−
−⋅−

−
−⋅−

=

 .      (15) 

 
Thus, as a result of using the method of iterations and piecewise linear approximation we have managed to 

obtain an analytical and numerical solution for the analysis of joint bending and longitudinal oscillations of the 
bearing body frame of emergency and repair rail service car in the form of a model of an elastic rod of variable 
cross section, mass, bending and longitudinal stiffness as it moves along the track with periodic joint roughness. 

 
In order to better understand and make thorough analysis and conclusions, simulation of the mathematical 

model was carried out using testing railcars with simulation workplace. The idea behind the experiment was to 
install in the frame control unit so called damping subfloor element. The results of the simulation experiment are 
summarized in Table 1.  
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Table

Checkpoint 
measurements 
of vibrations 
and stresses

The low-frequency 
component  

of the acceleration, 
Hz

The maximum 
amplitude  

of vibration 
acceleration, m/s2

The longitudinal 
tension  

(in the center  
of the frame), MPa

Bending stress  
(in the center), MPa

Experiment Theory Experiment Theory Experiment Theory Experiment Theory
Frame body 
control 
(including 
damping 
subfloor)

2.59 2.64 14.06 - 3.2 3.1 28 29.1

Frame body 
control 
(standard
design)

2.07 2.17 15.2 - 3.3 3.2 31 30.7
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Thus, as a result of using the method of iterations and piecewise linear approximation we have 
managed to obtain an analytical and numerical solution for the analysis of joint bending and longitudinal 
oscillations of the bearing body frame of emergency and repair rail service car in the form of a model 
of an elastic rod of variable cross section, mass, bending and longitudinal stiffness as it moves along 
the track with periodic joint roughness.
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mathematical model was carried out using testing railcars with simulation workplace. The idea behind 
the experiment was to install in the frame control unit so called damping subfloor element. The results 
of the simulation experiment are summarized in Table 1. 

As can be observed from Table 1, experimental data received from simulation is to the greatest 
extent in accordance with calculated mathematical model and very small deviation. Accordingly, the 
total stress-strain state with the introduction of the damping subfloor in the frame body structure of 
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railcars decreased by about 11 – 15 %, depending on the loading conditions that will facilitate the 
operation of the extension of the useful life. The total dynamic voltage does not exceed the tensile 
strength in the experiment ranged from 15.3 MPa to 41.23 MPa.

Hence, the results of both mathematical model based on experiment (simulation) is in line with 
proposed improvements for the railcars. 

3. Conclusion

On the basis of numerical studies and comparative analysis with experiment (simulation) we have 
stated the following quality patterns:

1. Bending stresses appearing in the center of the length of the body frame of emergency and 
repair rail service car at speeds up to 50 km/h, as it moves along the track with periodic roughness, do 
not exceed the ultimate strength of the material, and in average range from 15 to 40 MPa depending on 
loading modes (the rate of motion).

2. Longitudinal stresses appearing in the center of the length of the body frame of emergency and 
repair rail service car at speeds up to 50 km/h, as it moves along the track with periodic roughness, 
are about 20 – 25 % of the bending stresses (from 3 to 10.4 MPa). They reach their maximum values at 
breakaway and braking modes.

3. The introduction of damping subfloor in frame design emergency replacement railcar reduces 
bending stresses in the frame 10 – 12 %, depending on the speed (respectively from 31 MPa to 28 MPa 
at a speed of 40 km/h – 11.07 %).

Accordingly, the use of mathematical modelling in modernization and extension of useful 
life of railcars is highly applicable given the importance of low cost maintenance and use of 
railway resources effectively. The results of the simulation and mathematical modelling will be 
implemented in real life conditions and will be compared with data on mathematical calculations 
and simulation. 
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