УДК 544.016.5

System NaF-KF-AlF₃: Solid Solutions Based on the Chiolite Structure

Aleksander S. Samoilo^a, Yulia N. Zaitseva^{*b}, Petr S. Dubinin^a, Oksana E. Bezrukova^a, Sergei G. Ruzhnikov^a, Igor S. Yakimov^a and Sergei D. Kirik^a ^aSiberian Federal University 79 Svobodny, Krasnoyarsk, 660049, Russia ^bInstitute of Chemistry and Chemical Technology SB RAS FRC "Krasnoyarsk Science Center SB RAS" 50/24 Akademgorodok, Krasnoyarsk, 660036, Russia

Received 03.03.2017, received in revised form 28.04.2017, accepted 12.05.2017

The formation of solid solutions in the NaF-KF-AlF₃ system has been studied by X-ray diffraction on samples obtained experimentally. For the first time the formation of solid solutions based on the chiolite structure with the composition $(Na_{(5-x)}K_x)Al_3F_{14}, 0 < x < 0,4)$ has been established. The change of a crystal lattice of chiolite occurs in the range: (**a**) – from 7,010 (3) to 7,050 (3) Å, (**c**) from 10,365 (10) Å to 10,400 (10) Å. The sodium potassium substitution occurs at only a 2-fold sodium position by an amount ~ 40 % established by refinement of the crystal structure. The limit dissolution of chiolite in less than 5 % (wt.) KF. The solid solution is stable in the range from the melting temperature to the room one.

Keywords: system NaF-KF-AlF₃, Na₅Al₃F₁₄, solid solutions, X-ray powder diffraction.

DOI: 10.17516/1998-2836-0015.

[©] Siberian Federal University. All rights reserved

^{*} Corresponding author E-mail address: j-n-zaitseva@yandex.ru

Система NaF-KF-AlF₃: твердые растворы на основе структуры хиолита

А.С. Самойло^а, Ю.Н. Зайцева⁶, П.С. Дубинин^а, О.Е. Безрукова^а, С.Г. Ружников^а, И.С. Якимов^а, С.Д. Кирик^а ^а Сибирский федеральный университет Россия, 660049, Красноярск, пр. Свободный, 79 ⁶ Институт химии и химической технологии СО РАН ФИЦ «Красноярский научный центр СО РАН» Россия, 660036, Красноярск, Академгородок, 50/24

Методом рентгеновской дифракции на экспериментально полученных образцах изучено образование твердых растворов в субсолидусной области системы NaF-KF-AlF₃. Впервые установлено образование твердых растворов на основе структуры хиолита с составом (Na_(5-x), K_x)Al₃F₁₄, 0<x<0,4). Изменение параметров кристаллической решетки хиолита осуществляется в диапазоне от 7,010(3) до 7,050(3) Å и от 10,365(10) до 10,400(10) Å. Уточнением кристаллической структуры установлено, что замещение натрия на калий происходит только в 2-кратной позиции натрия на величину ~ 40 %. Предельное растворение в хиолите не превышает 5 % (мас.) К. Твердый раствор устойчив в диапазоне от температуры плавления до комнатной.

Ключевые слова: система NaF-KF-AlF₃, Na₅Al₃F₁₄, твердые растворы, порошковая рентгеновская дифракция.

Введение

Известно, что для электролитического производства алюминия используют криолитглиноземные расплавы. Это обстоятельство объясняет научный и практический интерес к системе NaF-AlF₃-KF, которая в значительной мере описывает поведение многокомпонентных фторидных расплавов [1]. К настоящему моменту установлены многие закономерности фторидных систем. В двойной системе NaF-AlF₃ известны три индивидуальные кристаллические фазы Na₃AlF₆, Na₅Al₃F₁₄, NaAlF₄ [2]. Криолит Na₃AlF₆ с температурой конгруэнтного плавления 1011,6 °С имеет две полиморфные модификации (температура перехода 542 °С) [1]. Хиолит Na₅Al₃F₁₄ инконгруэнтно плавится при 737-739 °С. Тетрафторалюминат натрия NaAlF₄ является метастабильным при нормальных условиях. Фаза может быть получена закалкой от 700 °С. В интервале 400-700 °С разлагается на Na₅Al₃F₁₄ и трифторид алюминия [3-5].

В системе KF-AlF₃ установлено несколько соединений [6]. Фаза K_3AlF_6 конгруэнтно плавится при температуре 995 °C. Это соединение имеет несколько полиморфных модификаций с температурами перехода 132, 153, 306 °C [7]. Фаза $KAlF_4$ с температурой конгруэнтного плавления при 574 °C может быть получена из индивидуальных компонентов KF и AlF₃ [8]. Соединения K_2AlF_5 и KAl_4F_{13} [9] первоначально были выделены в результате гидротермального синтеза из растворов фтористоводородной кислоты при сравнительно низких температурах.

Система NaF-KF имеет простой эвтектический тип с координатами точки эвтектики: T = 721 °C и 40 % (мол.) NaF [1].

Данные по субсолидусной части внутренней области системы немногочисленны. В работе [10] приводятся сведения о гидротермальном синтезе фазы K₂NaAl₃F₁₂ и ее структуре. Позднее фаза была получена высокотемпературным синтезом из расплава, также была обнаружена низкотемпературная модификация и установлена его структура [11]. Особенностью строения обеих модификаций являются волнообразные сетки из октаэдров AlF_{6/2}, между которыми располагаются катионы. Изменение взаимного расположения катионов обуславливают фазовый переход.

Бинарный разрез Na₃AlF₆-K₃AlF₆ тройной системы NaF-KF-AlF₃ разделен на две подсистемы эльпасолитом K₂NaAlF₆ с температурой плавления 954 °C [12]. Этими же авторами обнаружено существование протяженных областей твердых растворов. В частности, установлено, что при комнатной температуре наблюдается двухфазная смесь Na₃AlF₆ и K₂NaAlF₆. Выше линии полиморфного превращения криолита (542 °C) существуют твердые растворы на основе K₂NaAlF₆ и кубической высокотемпературной формы Na₃AlF₆. По мере смещения состава в сторону K₂NaAlF₆ температура полиморфного перехода снижается до 340 °C вблизи состава K₂NaAlF₆.

Система NaF-KF-AlF₃ была исследована Данеликом с соавторами [13] методами термического анализа. В результате были рассчитаны координаты тройных эвтектических точек E₁: 36,3 % (мол.) NaF, 62,7 % (мол.) KF, 1,0 % (мол.) AlF₃; 711,2 °C и E₂: 51,9 % (мол.) NaF, 27,4 % (мол.) KF 20,7 % (мол.) AlF₃; 734,5 °C.

В целом, описания диаграмм состояния сосредоточены на построении линий ликвидуса и установлении фаз, возникающих в системе [1]. Субсолидусная область обсуждаемой системы изучена недостаточно. Существование твердых растворов практически не описано за исключением данных по бинарному разрезу Na₃AlF₆-K₃AlF₆ [12]. Между тем твердые растворы во фторидных солевых системах – типичное явление. Кроме разреза Na₃AlF₆-K₃AlF₆ с участием криолита можно упомянуть системы: Na₃AlF₆-CaF₂, и Na₃AlF₆-LiAlF₆. В работе [14] описана узкая область твердых растворов на основе β -Na₃AlF₆ при температуре эвтектики в системе Na₃AlF₆-CaF₂. В системе Na₃AlF₆-LiAlF₆ обнаружено существование широких областей твердых растворов на основе как Na₃AlF₆, так и Li₃AlF₆ и их температурных модификаций [15].

По результатам анализа литературы можно констатировать, что исследования субсолидусной области системы NaF-KF-AlF₃ проводились фрагментарно, без надлежащей детализации. В литературе отсутствуют данные о существовании твердых растворов на основе хиолита и, как следствие, нет данных по их кристаллической структуре. Твердые растворы на основе эльпасолита получили лишь описательный характер. Вместе с тем детальные сведения по субсолидусной области имеют значение для решения прикладных вопросов. В частности, данные по составу фаз важны для обеспечения рентгенографического анализа состава электролита в технологическом контроле электролитического производства алюминия [16]. Цель настоящего исследования состояла в расширении сведений по образованию твердых растворов в системе NaF-KF-AlF₃. Исследование было сфокусировано на характеризации твердых растворов на основе хиолита, на оценке границ областей твердых растворов, на определении кристаллохимических деталей строения твердых растворов. Исследование выполнено на образцах, полученных из исходных фторидов в лабораторных условиях. Анализ кристаллической структуры проведен методом полнопрофильного анализа на многофазных поликристаллических образцах.

Экспериментальная часть

Синтез образцов. Для синтеза образцов были использованы реактивы Na₃AlF₆, AlF₃, KF квалификации хч. Перед синтезом все исходные реактивы прокаливали при температуре 400 °C не менее 1 ч. Стехиометрические навески Na₃AlF₆, AlF₃, KF перетирали в агатовой ступке, помещались в закрытом платиновом тигле в регулируемую РИФом шахтную печь при соответствующих температурах и выдерживали 30-50 мин до расплавления. Измерение температуры проводилось Pt-Pt(Rh10 %) термопарой. Кристаллизация расплавов проводилась выливанием расплава из тигля в массивную металлическую изложницу (кристаллизация в изложнице). Масса полученных образцов составляла около 3 г. После полного охлаждения образец извлекали, перетирали в агатовой ступке. На всех этапах проводили дифрактометрический контроль полученных материалов. Далее для достижения равновесного состояния каждый образец был термически обработан при температуре 540 °C в течение 20 мин. На рис. 1 изображен треугольник составов с отмеченными на нем исследуемыми сериями образцов. Области исследований для серий 1 и 2 были ограничены 20 % (мол.) KF. Серия 1 характеризуется постоянным содержанием AlF₃.

Рентгеновская дифракция (РФА). Порошковые дифракционные данные получены с использованием CuK_a излучения на дифрактометре X'Pert PRO с детектором PIXcel (PANalytical), снабженным графитовым монохроматором. Образец растирали в агатовой ступке и подготав-

Рис. 1. Треугольник составов с отмеченными составами (1) и (2) серий синтезированных образцов

ливали методом прямой набивки кюветы. Съемки проводили при комнатной температуре в диапазоне от 5 до 80° по шкале 2θ , шагом $0,026^{\circ}$, $\Delta t - 50$ с.

Рентгеновская флуоресцентная спектроскопия (РФС). Элементный состав синтезированных образцов контролировался на рентгеновском флуоресцентном спектрометре Axios Advanced (PANalytical). Образец готовили прессованием, с использованием H₃BO₃ в качестве подложки.

Рентгеноструктурный анализ. Кристаллические структуры уточняли по порошковым дифракционным данным методом полнопрофильного анализа (метод Ритвельда) с помощью программы FulProf [17] в режиме многофазного образца. Уточнению подвергались координаты атомов и заполняемость атомных позиций. Тепловые параметры атомов уточнялись в изотропном приближении.

Результаты и обсуждения

Анализ фазового состава образцов серий (1) и (2), полученных закаливанием расплава, показал, что основной фазой является $Na_5Al_3F_{14}$. В серии (1) образцы с содержанием KF до 5 % (мас.) состоят из смеси фаз $NaAlF_4$, $Na_5Al_3F_{14}$, AlF_3 и $K_2NaAl_3F_{12}$. С увеличением содержания калия фаза $NaAlF_4$ исчезает. В образцах вблизи состава $K_2NaAl_3F_{12}$ наблюдается одна эта фаза, но в высоко- и низкотемпературных формах. Смещение по составу образцов с увеличением концентрации KF в серии (2) сопровождается уменьшением концентрации $Na_5Al_3F_{14}$, и возрастанием Na_3AlF_6 . Основная калийсодержащая фаза – $K_2NaAl_3F_{12}$. При увеличении KF появляется фаза K_2NaAlF_6 . Наблюдаемое изменение баланса фаз можно описать следующими уравнениями:

$$2Na_5Al_3F_{14} + 2KF \rightarrow K_2NaAl_3F_{12} + 3Na_3AlF_6$$
⁽¹⁾

и при большем избытке KF

$$Na_{5}Al_{3}F_{14} + 4KF \rightarrow 2K_{2}NaAlF_{6} + Na_{3}AlF_{6}.$$
(2)

Если провести сравнение рентгенограмм полученных образцов, то для линий хиолита Na₅Al₃F₁₄ обнаруживается изменяющийся сдвиг (рис. 2), который интерпретируется как изменение параметров решетки внутри серии образцов. Из имеющихся данных можно заключить, что хиолит изменяет параметры решетки при изменении содержания KF в образце.

Логично предположить, что наблюдаемый эффект есть следствие образования твердого раствора при замещении натрия на калий в структуре хиолита. Эффект изоморфного замещения натрия на калий с точки зрения изменения дифракционной картины выражается в двух типах изменений. Во-первых, в сдвиге дифракционных линий, вызванном изменением параметров решетки из-за внедрения более объемного катиона. Во-вторых, в изменении относительной интенсивности дифракционных линий, являющейся следствием размещения в структуре центров с более высокой рассеивающей способностью. Если первый эффект позволяет надежно зафиксировать факт изоморфного замещения, то второй – выяснить структурные детали замещения, т. е. определить позиции и количество замещения. В конечном счете эти два типа изменений должны быть связаны между собой.

Уточнение кристаллической структуры твердого раствора проводилось на многофазных образцах с содержанием калия до 20 % (мас.). Уточнялись все пространственные координаты и

Рис. 2. Иллюстрация сдвига рентгендифракционных линий хиолита для образцов второй серии по отношению положений линий эталона (ICDD PDF2 №01-74-755)

коэффициенты заполнения атомных позиций катионов [17]. Способ синтеза образцов, а именно кристаллизация из расплава, позволяет обоснованно предположить, что позиции атомов в анионной и катионной подрешетках заполнены полностью, поскольку отсутствовали диффузионные затруднения при формировании исходных частиц. Атомы алюминия не переходят в иные позиции структуры, а катионы натрия или калия – в позиции алюминия.

Кристаллическая структура хиолита представлена на рис. За, б [18]. В структуре можно выделить два вида чередующихся со сдвигом слоев. Первый тип слоя представляет квадратную сетку из октаэдров [AlF₆], связанных по вершинам. Расстояния Al-F лежат в узком интервале 1,78-1,82 Å. В середине квадратов находятся ионы натрия. Октаэдры в узлах сетки и на сторонах отличаются ориентацией и количеством поделенных с соседями вершин. Причем в сетке имеется два типа октаэдров [AlF₂F_{4/2}] и [AlF₄F_{2/2}]. Ближайшее окружение натрия в форме квадратной призмы образовано ионами фтора свободных вершин октаэдров на сторонах сетки. Восемь расстояний Na(1)-F равны 2,583 Å [18]. Второй слой представляет квадратную сетку из катионов натрия, которые фиксируются в плоскости электростатическими силами. Ближайшее расстояние Na(2)-Na(2) в сетке равно 3,527 Å, что несколько короче расстояния между катионами соседних слоев Na(1)-Na(2) (3,603 Å). Вокруг каждого натрия катионной сетки можно выделить искаженное октаэдрическое окружение из фторов, образованное свободными вершинами октаэдров [AlF₆]. В экваториальной плоскости искаженного октаэдра расстояния Na(2)-F составляют 2,268-2,290 Å, а в вершинах – 2,626 Å. Сетка октаэдров [AlF₆] представляет собой более прочную молекулярную конструкцию, так как ее элементы соединены ковалентными

Рис. 3. Кристаллическая структура хиолита: а – общий вид; б – структура анионно-катионного слоя и катионного слоев; в – кристаллическая структура фазы твердого раствора Na_{4,65}K_{0,35}Al₃F₁₄ (оранжевым цветом выделены позиции, в которых происходит частичное замещение натрия на калий)

связями. Определенную эластичность сетке придает поворот октаэдров в слое, что может обеспечить некоторое растяжение и сжатие. Слой ионов натрия подчинен стремлению к «плотной укладке» и минимизации электростатической энергии.

Несмотря на кажущуюся легкость замещения, натрия на калий в катионном слое структуры расстояния до атомов ближайшего окружения (d(Na(2)-F)=2,268 Å) делают этот процесс маловероятным. Пространственные ограничения для замещения во второй катионной позиции практически отсутствуют (d(Na-F)=2,583 Å). Уточнение кристаллической структуры, включая заполняемость катионных позиций, согласуются с указанным ожиданием: образование твердых растворов происходит при замещении в катионной позиции анионно-катионного слоя. Предельный состав твердого раствора соответствует формуле KNa₄Al₃F₁₄, содержание калия и KF в хиолите соответственно равно 8,18 и 12,15 % (мас.).

На рис. 3*в* представлена кристаллическая структура твердого раствора одного из образцов 2-й серии. В табл. 1 приведены координаты кристаллической структуры хиолита этого образца. Проведенное уточнение показывает, что в твердом растворе хиолита содержится ~ 4,2 % (мас.) КF. Полученные межатомные расстояния являются гарантией корректного уточнения (уточнение произведено без нарушения кристаллической структуры). Незначительные изменения атомных координат связаны с небольшим изменением ориентации октаэдров, вызванным размещением в катионных позициях более крупных частиц. О качестве уточнения структуры можно судить по соответствию экспериментальной и рассчитанной рентгенограмм, приведенных на рис. 4. Уточнение произведено для двухфазной системы. Аналогичные расчеты выполнены для всех образцов.

Аналогичные вычисления были выполнены для всех синтезированных образцов. Полученные данные позволили построить тренд параметров (**a** и **c**) решетки хиолита от концентрации калия в хиолите (рис. 5). На графиках имеется явный линейный характер зависимости, который можно использовать для оценки концентрации КF, исходя из параметра решетки (**a**).

Рис. 4. Иллюстрация соответствия экспериментальной (черные точки) и рассчитанной (черная линия) рентгенннограмм, и их разность (красная линия), достигаемые в ходе уточнения кристаллических структур фаз образца. R_{wp}=9,8 %, R_p=7,8 %, R_{exp}=7,4 %. Ряды штрихов в нижней части рентгенограммы указывают положение линий соответствующих фаз

Таблица 1. Координаты кристаллической структуры хиолита одного из образцов серии (1) $Na_{4,65}K_{0,35}Al_3F_{14}$ a= 7,0479(2)Å, c= 10,3732(3)Å, V= 515,27(3) Å³, S.G. P4/mnc

Atom	Wyck.	Occ.	x/a	y/b	z/c	В
Al1	2 <i>a</i>	2	0	0	0	1,2(2)
A12	4 <i>c</i>	4	0	1/2	0	1,2(2)
Na1	2b	1,31(3)	0	0	1/2	1,9(2)
K1	2b	0,69(3)	0	0	1/2	1,9(2)
Na2	8g	8	0,2759(4)	0,7759(4)	1⁄4	2,2(2)
F1	4 <i>e</i>	4	0	0	0,1693(5)	2,4(2)
F2	8 <i>h</i>	8	0,0620(6)	0,2489(5)	0	1,2(2)
F3	16 <i>i</i>	16	0,1774(3)	0,5361(4)	0,1202(2)	1,4(2)

а) Относительные координаты атомов

б) Отдельные межатомные расстояния

Al1–F1	1,756(5)	A12–F3	1,784(2)
Al1–F2 ⁱ	1,808(4)	Al2–F2 ^v	1,823(4)
Al2–F3	1,784(2)	Na2–Na2 ^{vi}	3,543(4)
Na1–Na2 ⁱⁱ	3,606(2)	Na1–F3 ^{vii}	2,606(2)
Na2-F1 ⁱⁱⁱ	2,641(3)	Na2–F3	2,270(3)
Na2-F3 ^{iv}	2,299(3)		

(i) y, -x, z; (ii) 0,5-y, 0,5-x; (iii) -y, 1+x, z; (iv) 0,5-x, 0,5+y, 0,5-z; (v) -x, 1-y, z; (vi) 0,5-x, -0,5+y, 0,5+z; (vii) 1-y, x, z.

Рис. 5. Связь параметров решетки хиолита (а и с) от концентрации КF в структуре хиолита

Следует принимать в расчет то, что на точность определения концентрации КF могло повлиять искажение, вызванное небольшой текстурой в образце электролита. Концентрация KF вычислена, исходя из формулы твердого раствора хиолита: Na_{5-x}K_xAl₃F₁₄:

$$C(KF) = \frac{x \cdot Mw(KF) \cdot 100}{Mw(Na_{5,x}K_xAl_3F_{1,4})}$$

Диапазон изменения параметра решетки и изоморфного замещения калия имеет предел (рис. 5), который составляет приблизительно 5 % КF (или 40 % в позиции Na(1)). Предельные значения достигаются после гомогенизирующего отжига при 540 °C. Изменение температуры отжига может повлиять на содержание калия, однако это не оказывает влияния на линейную зависимость параметра решетки от концентрации.

Параметр решетки (c) убывает с увеличением концентрации калия, так как развертывание октаэдров в структуре приводит к сближению слоев.

Таким образом, при добавлении в систему NaF-AlF₃ фторида калия хиолит образует небольшую область твердых растворов, стабильных в диапазоне температур (от комнатной до плавления). Замещение натрия на калий происходит в одной из двух кристаллографических позиций натрия. Объем замещения составляет примерно 40 %, что соответствует предельному раствору, содержащему ~ 5 % KF. Дальнейшее увеличение концентрации фторида калия приводит к появлению других калийсодержащих фаз системы $K_2NaAl_3F_{12}$ и K_2NaAlF_6 , что указывает на ограничение области твердых растворов. По-видимому, твердые растворы с большей концентрацией создают напряжения кристаллической решетке, что обуславливает более высокую энтальпию их образования.

Работа выполнена при финансовой поддержке РУСАЛ ИТЦ.

Список литературы

1. Grjotheim K., Krohn C., Malinovsky M., Matiasovsky K., Aluminium Electrolysis. Fundamentals of the Hall–Heroult Process, Second ed., Aluminum-Verlag, Dusseldorf, 1982.

2. Chartrand P., Pelton A.D. A Predictive Thermodynamic Model for the Al-NaF-AlF₃-CaF₂-Al₂O₃ System. *Light Metals*, 2002, 6, 245-252.

3. Ginsberg H., Wefers K. Thermochemische Untersuchungen am System NaF-A1F₃. Zeitschrift fuer Erzbergbau und Metallhuettenwesen, 1967, 20, 156-161.

4. Howard E.H., Some Physical and Chemical Properties of a New Sodium Aluminum Fluoride. *J. Am. Chem. Soc*, 1954, 76, 2041-2042.

5. Kirik S.D., Zaitseva J.N. NaAlF₄: preparation, crystal structure and thermal stability, *J. Solid State Chem.* 2010, 183, 431-426.

6. Heyrman M., Chartrand P.A. Thermodynamic model for the NaF-KF-AlF₃-NaCl-KCl-AlCl₃ system. *Light metals*, 2007, 519-524.

7. King G., Abakumov A.M., Woodward P.M., Llobet A., Tsirlin A.A., Batuk D., Antipov E.V. The high-temperature polymorphs of K₃AlF₆. *Inorganic Chemistry*, 2011, 50(16), 7792-7801.

8. Phillips B., Warshaw C.M., Mokrin I. Equilibria in KAlF₄-Containing Systems. J. Am.Ceram. Soc, 1966, 49, 631-634.

9. Chen Rong, Wu Genhua, Zhang Qiyun Phase Diagram of the System KF–AlF₃. J. Am.Ceram. Soc, 2000, 83, 3196-3198.

10. Le Bail A., Gao Y., Fourquet J.L., Jacoboni C. Structure determination of $A_2NaAl_3F_{12}$ (A = K,Rb). *Mat.Res.Bull*, 1990, 25, 831-839.

11. Kirik S.D., Zaitseva Yu.N., Leshok D.Yu., Samoilo A.S., Dubinin P.S., Yakimov I.S., Simakov D.A., Gusev A.O. NaF-KF-AlF₃ System: Phase Transition in K₂NaAl₃F₁₂ Ternary Fluoride. *Inorg. Chem*, 2015, 54, 5960-5969. DOI: 10.1021/acs.inorgchem.5b00772

12. Grjotheim K., Holm J.L., Mikhael Sh.A. Equilibrium Studies in the Systems. K₃AlF₆-Na₃AlF₆ and K₃AlF₆-Rb₃AlF₆. *Acta Chem. Scand*, 1973, 27, 1299-1306.

13. Danielik V., Gabčova J., Phase diagram of the system NaF-KF-AlF₃. J. of Thermal Analysis and Calorimetry, 2004, 76, 763-773.

14. Chrencova M., Danek V., Silny A. Solid solutions in the system Na₃AlF₆-CaF₂. Ninth International Symposium on Light Matals Production, ed. J. Thonstad, NTNU Trondheim Norway, 1997.

15. Stinton D.P., Brown J.J. Jr. Phase Equilibria in the System LiF-AlF₃-Na3AlF₆. J. of Amer. Ceram. Soc, Discussions and Notes, 1976, 59, 5, 6264-6265.

16. Кирик С.Д., Куликова Н.Н., Якимов И.С., Клюева Т.И., Баранов И.А., Бузунов В.Ю., Голощапов В.Г. Промышленное применение рентгеновской дифракции для контроля электролита на заводах РУСАЛ. Цветные металлы, 1996, 9, 75-77 [Kirik S.D., Kulikova N.N., Yakimov I.S., Klueva T.I., Baranov I.A., Buzunov V.Y., Goloschapov V. G. Industrial Application of XRD Approach for Electrolyte Control in Domestic Aluminum Production. Nonferrous metals, 1996, 9, 75-77 (in Russian)]

17. Rodriguez-Carvajal J., FullProf version 4.06, March 2009, ILL (unpublished).

18. Jacoboni C., Leble A., Rousseau J.J. Determination precise de la structure de la chiolite Na5 Al3 F14 et etude par R.P.E. de Na₅Al₃F: Cr³⁺. *Journal of Solid State Chemistry*, 1981, 36, 297-304.