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Решение задачи обтекания крылового профиля  
вблизи границы раздела

Л.В. Кулагинаa, В.А. Кулагинa, Ф.-Ч. Либ

aСибирский федеральный университет 
Россия, 660041, Красноярск, пр. Свободный, 79 

бШкола энергетических наук и техники 
Харбинский технологический институт 

Харбин 150001, Китай

В настоящей работе представлены некоторые подходы к решению задач обтекания 
крылового профиля вблизи границы раздела. Исследования потока вблизи границ раздела 
(сплошные стенки и свободные поверхности) показывают, что в замкнутом потоке 
жидкость превращается в пузырьковую смесь жидкости и газа. Это усложняет анализ 
потока и вносит дополнительные потери, приводящие к ухудшению энергетических 
характеристик соответствующих механизмов. В общем случае проблема двухфазного 
сжимаемого течения вокруг различных типов лопастных механизмов существенно 
нелинейна (даже при предположении отсутствия вихревого потока).

Ключевые слова: обтекание крылового профиля, суперкавитационные механизмы, границы 
раздела, теория потенциала, метод решения.

Introduction

Most of the problems in potential theory [1] can generally be reduced to solving integral or integral 
differential equations or sets of such equations.

In the case of small perturbations, the solution to the problem comes down to solving the integral 
equation [3, 4]
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where χ and Fср are functions of the hydrofoil shape and kernels D1 and G2 are given by 
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. The foil shape is defined as 
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Fн is the centerline equation and Fс is the thickness distribution. In the first approximation of the 
no-penetration boundary condition we obtain:
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 where w = 1 for a 

sharp leading edge and 
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for a rounded one.
Equation (1) is an integral Fredholm equation of the first kind with a singularity in its kernel
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The solution γ of Eq. (2) is known [6] to be unstable even at small errors in f(ξ) data and sensitive 
to errors in the kernel k(ξ, s) and it is virtually independent of the solving technique. 

The problem itself, (1), is essentially ill-defined and requires proper regularization techniques to 
enable its solution [6]. What makes it ill-posed when 0→h  is that integral equation (1) degenerates to 
a differential equation that is linear with respect to the higher derivative. By means of unsophisticated 
mathematics [3, 4] integral equation (1) of the flow boundary-value problem is rewritten as
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From Eq. (3) it follows that when 0h → , problem (1) reduces to a boundary-layer-type 
problem, which sheds light on why the problem is ill-posed. The physical conditions impose 
limitation on N. 

This problem can be solved employing a hybrid approach. First, solutions to the exterior, (1), and 
interior, (3), problems are found [2, 3] and then these are mutually adjusted. 

There is yet another way to tackle the problem. It starts with constructing a perturbed exterior 
solution and then this solution, which is ill-suited for 0h → , is transformed so that it is able to reveal 
the nature of singularity. The resultant solution thus becomes uniformly valid everywhere and provides 
good approximation to the true solution. The solution can be further improved quantitatively via 
higher-order approximations and, finally, nonlinear methods can be applied to accelerate convergence 
of the functional sequence [3, 4].

If the sequence is divergent, which depends on the class of the function f(ξ) in (1), then the linear 
transformations and algorithms discussed above allow the main term of the sequence to be extracted. 
Write the solution of integral equation (1) as γ = γ1 + γ2. The first term is associated with the influence 
of the centerline shape on circulation, while the second one is attributed to the dynamic curvature 
resulting from the flow around a profile near the separation boundary. 

The functional parameter method

Represent γ1 solution in the form of a 
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There is an expansion for the kernel with respect to parameter τ such that:
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with k1m defined in [3].
Series (5) is convergent. Moreover, it is convergent over the entire actual range of variation of the 

parameter r. Convergence of series (4) remains questionable because it is not possible to construct a 
general term. It is however possible to evaluate a convergence domain for specific foil shapes.

Substituting (4) and (5) into (1) and resolving the solution into two terms (terms of the same τ 
power are taken equal) yields a system of singular integral equations with a Cauchy-type kernel:
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Converting this equation into 0a∞  class functions we have 
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The function 
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 is found from the boundary conditions via the solutions 
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. Let us now write the solutions for N = 13 and n = 1 for a plate when 

n n
mm

ss m N n
s

a

n
n m

m

s
s

s

n
m m N

n
m m N N

n F

m

m m kk

k s

k k s

k s

mm W

m

W

W

W

W

W

.

n n
mm

ss m N n
s

a

n
n m

m

s
s

s

n
m m N

n
m m N N

n F

m

m m kk

k s

k k s

k s

mm W

m

W

W

W

W

W

 (8)

Substituting (8) into (7) gives
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where m = 1, 2, ..., 13;
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If we do not go beyond linearized formulation of the problem, then with (4) and (9) we can find 
the resultant aerodynamic characteristics – the lift force and pitching momentum coefficients – using 
the following formulas
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In the first boundary conditions approximation, at n = 1 we get the functions of influence of the 
distance parameter 
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 in the form of τ-series:
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where 
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.
Under formal application of the discussed method, the solution γ given by (4)(9) is 

unstable [6]. It is considered that a coarse solution can be obtained taking just a few terms of 
the series; a further increase in the number of terms will only enhance the instability and the 
resultant multi-term series will have nothing to do with the true solution of Eq. (1). If however 
this instability is treated as a transient process, then it can be asserted that increasing the 
number of approximation terms provides additional information on the behavior of the true  
solution.

Let ψ(ε) be an analytical function, then expression (11) can be treated as a Taylor-series expansion. 
The asymptotic behavior of coefficients of this expansion ψ = Σanεn is determined by the type of the 
function singularity. So it is natural to look for a way to deduce singularity parameters from a limited 
sequence {an} of coefficients of the series [7]. 

The radius of convergence of the Taylor series is determined by the singularity of the function 
ψ(ε) that is closest to the point around which expansion is performed. Farther away singularities may 
appear to influence the behavior of the series coefficients as well. If this is the case, one should find the 
spectrum of singularities.

The algorithms considered above offer a solution to the problem of ψ(ε) synthesis.
Numerical solution of Eq. (1).
Integral equation (1) can be solved by reducing it to a set of algebraic equations (discrete 

singularities method, collocation method and others). The mentioned methods are strongly unstable 
[6] as they use conventional quadrature formulas. Attempts to improve the result by increasing the 
number of nodes when ε→0 only aggravate the situation.

Solution of singularity equation (4) relies on regularization techniques, hence a proper choice of 
regularizator can essentially enhance stability of the computation scheme.

The structure of the solution 
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 is a non-zero regular 
function for ξ = ±1, is determined by a specific behavior of the edge flow. After substitution of this 
solution into (1) and some simple manipulations we have

1
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 is the right-hand side of Eq. (1).
With the nodes, reference points and quadrature coefficients chosen by the formulas
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we get the following set of algebraic equations
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Aerodynamic characteristics of a foil are derived from formulas (10). Switching to the quadrature 
formulas gives
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The BCF algorithm is a powerful tool to handle integrals and resolve sets of algebraic equations 
due to the quadrature and cubature formulas
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 – weights, 
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 – nodes, R – remainder) and the Nedashkovsky-Skorobogatko BCF method [8] 
acting as regularizators in the process. The advantage of this technique [8, 9] is that it is inherently self-
regularized because of mutual cancellation of computational errors and as such it is little sensitive to 
adverse changes in the coefficient matrix conditioning. A good result is obtained when the BCF method 
is employed to accelerate convergence or find an antilimit of sequences. To that end, a set of equations 
is constructed with matrixes of Toeplitz type [10]. So, for finding the Shanks-Schmidt transformation 
σk,n we have
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 (15)

Once (15) has been solved, transformation follows the formula
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 (16)

The Тk, n transformation is implemented using the following system
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where 
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for Levin’s t-, w-, and v-transformations, 
respectively. 

Actually, we can limit ourselves to finding only the first two components of solutions, z1 and γ1, as 
the rest k components are required for analysis of the transformation spectrum.

Transformation  
of divergent sequences and series

If solution of Eq. (1) has been obtained in the form of a series, the sequence 
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(m = 0, 1, 2, ...), as a rule, is divergent. Summation of such series and sequences is done using 
nonlinear transformations. Since representation 
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, where αk is an arbitrary 
complex number, holds for {Sn}, then by analogy with the Fourier-series, the Fire summation 
is applied:
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 (18)

For the series
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 (19)

Sometimes we know the location of the singularity [1], giving rise to divergence of the series, 
on the axis or in the domain of variation of the parameter ε. A divergent series can be converted 
into an absolutely or conditionally convergent one by introducing some other comparison function. 
The Euler transformation [8] 
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 applied to the series in (11) yields new 
series
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where 
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 is the operator of finite 

differences of order k, and 
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 are the binomial coefficients. Reiterating the procedure 
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 it is 
feasible to eventually obtain a uniform approximation for the solution at the extremes of the specified 

interval 
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. The source series is to be represented in the form 
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. 

After grouping the terms with the same power 
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 and dropping the terms of order 
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 we 
finally obtain the following approximating expressions for the foil lift force and pitching momentum 
as an influence function of the 
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 interval at small angles of attack:
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While these series are slow to converge for large 
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, they are uniformly valid in a larger 
domain. Therefore when nonlinear methods of convergence acceleration are employed even Aitken’s 
transformation can yield the best approximation, with an accuracy of up to 23 significant figures for 
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. The accuracy improves for larger 
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.
Let us now write an analytical expression for the sequence 
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 derived 
from the series 
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.
Constructing a sequence of partial sums and substituting it into 

h

h
h

n n N
N

m
ma

n
kk S

k

j

j
k

jk C k j
kC

n
m

m nn nb a a

n n m m nn m nb a a b a a a a b a a a a

n na a

n na a

n n

Y n na a

h

,

where 
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is the operator of central difference of order k, 
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 are the binominal coefficients, 
we get
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where 
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If in (21) 

h

h
h

n n N
N

m
ma

n
kk S

k

j

j
k

jk C k j
kC

n
m

m nn nb a a

n n m m nn m nb a a b a a a a b a a a a

n na a

n na a

n n

Y n na a

h

, then the nominator of the fraction should be examined for zeroes. 
Suppose, there is 
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 among the polynomial zeroes; this defect can be readily cured. When 
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 is a pole, we should set 
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. Sometimes appearance of a pole indicates the limits of series 
convergence. Thus for the ψY series from (11) these are 
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, which agrees with the results 
obtained by other techniques [3, 4].

The amount of information that can be derived for a given number of approximations does not 
appear to be enough for a transformation to ensure the best approximation over the entire domain of 
variation of parameter ε. We then have to approach the true solution via various transformations for 
each h value.

The Shanks-Schmidt-Levin transformations are based on rational approximation of the series 
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. They complement each other as their representation error is associated with the Loran-series 
expansion of the function
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 (22)

The first term in (22) refers to errors under Shanks and second one under Levin transformations. 
In a general case, it is necessary to have available these transformations along with the recursive 
techniques for their evaluation to be able to automatically monitor the situation. If it appears that the 
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Shanks transformation fails or is slow to converge for 
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, we should 
then switch to the Levin transformation.

If Fire summation (19) is applied to series (11) and (20) followed by summation for each 
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 using 
Shanks-Schmidt and Levin’s algorithms then the result we obtain will agree with that of numerical 
simulation. The best analytic approximations employing transformation of σk,n series (20) are obtained 
with rational fractions σ1, 3; σ1, 6; σ2, 7; σ3, 5; σ3, 8. The figure shows the influence function ψY as evaluated 
by (11). Also shown are the results of Fire summation applied to series (20) followed by summation 
using the Shanks-Schmidt-Levin algorithm. Computational results based on this algorithm are in very 
good agreement with the numerical result for integral equation (1) solved by the collocation technique 
using BCF apparatus as prescribed by the given algorithm. The four-term expansion ψY from (11) 
is uniformly valid over the interval 

k
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kp kph h h , the quantitative result, however, being far from 
exact.

Conclusion

Optimal asymptotics contains nine terms, and still it rapidly deviates from the exact solution; 
however an approximation such as σ3, 8 for h < 0,01 already gives a relative error less than 1 %. 

Fig. The function of influence of h  interval on the lift force: L – influence function derived from (20) using 

Levin’s transformation for each h  – Numerical simulation results for Eq. (1) obtained by the collocation method 
using the BCF apparatus
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The discussed algorithms have been implemented as computational programs for algebraic 
(ALFA) and integral (OMEGA) equations, ordinary (SIMP) and improper (SECOB) integrals, including 
the Cauchy integral (DSECOB) as well as summation programs for sequences and series (SHENKS, 
AYTKEN), including divergent ones (EULER).

The reported study was funded by Russian Foundation for Basic Research, Government of 
Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund to the research 
projects № № 17-48-240386 р_а and 16-41-242156 р_офи_м.
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