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The pressure–driven electrolyte transport through nanofiltration membrane pores with specified wall po-
tential is investigated theoretically. The finite ion size effect is taken into account by introducing an
additional term to electrochemical potential. The two–dimensional Navier–Stokes, Poisson, and modified
Nernst–Planck equations are solved numerically in a high aspect ratio nanopore connecting two reservoirs
with a larger diameter. The calculations are performed for potassium chloride aqueous solution. In the
case of point–like ions, the non–physical rise of counter–ion concentration is observed near the pore wall
at large applied voltages. When finite ion size is taken in account, the concentration of counter–ions
decreases significantly and saturates to the maximum value. It leads to lower osmotic pressure jump and
larger magnitude of potential in the pore. The stronger co–ion depletion observed for finite size ions
results in the increase of salt rejection, membrane potential, and required pressure drop.
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Introduction

Separation of species with the help of selectively permeable membranes is widely used in
various fields of industry including chemical, pharmaceutical, energy, and biotechnology sectors.
The removal of ionic species and organic solutes from aqueous solutions can be accomplished with
the help of nanofiltration [1]. This pressure–driven membrane process received much attention
in the last decades due to its applications in textile, paper, and food industries including water
desalination and purification [2, 3].

Nanofiltration membranes are characterized by effective pore diameter ranging from one to a
few nanometers and applied pressure difference from a few bars up to 10–20 bars. The latter is
used to pump the solution through a membrane. The separation of species occurs due to steric
and electric effects. In an aqueous solution, most nanofiltration membranes acquire an electric
charge due to dissociation of functional groups or adsorption of charged species onto the pore
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walls. The overlap of electric double–layers in nanometer–sized pores leads to the preferential
transport of counter–ions and exclusion of co–ions. If the pore walls are conductive, the wall
charge can be altered by applying a prescribed potential to the membrane. In this way, the
membrane selectivity characteristics can be externally varied and controlled [4, 5].

The understanding of membrane transport mechanisms and prediction of its separation char-
acteristics require the development of adequate mathematical models. There are two fundamental
approaches to describing ion transport in charged membranes. In the phenomenological approach
based on irreversible thermodynamics, the fluxes of volume, ionic species, and electrical current
are related to the driving forces, i.e. the gradients of pressure, species concentration, and elec-
tric potential. It provides a relatively simple mathematical description and does not require the
knowledge of membrane structure [6]. An alternative approach relates the transport properties
of membrane to its structure. Within this approach, one can distinguish heterogeneous models,
which consider membrane as a disperse multiphase system, and continuum models describing
the transfer within one phase [7]. The latter are based on the Nernst–Planck, Poisson, and
Navier–Stokes equations, which are often simplified and approximated.

A charged membrane is usually modelled as an array of identical parallel charged pores.
In the homogeneous approach also known as uniform potential (UP) or Teorell–Meyer–Sievers
(TMS) model, the radial variation of electric potential and ion concentrations is neglected, and
uniform distribution of fixed charged in the pores is assumed [8]. It is valid when the Debye
screening length is much larger than the pore radius, and the fixed charge density is sufficiently
low. The Donnan–steric partitioning pore model (DSPM) takes into account the finite ion size
by introducing diffusive and convective hindrance factors. The fitting of experimental rejection
data to this model allowed obtaining such membrane parameters as pore radius, volume charge
density, and effective membrane thickness [9]. The effect of concentration polarization on salt
rejection was investigated in [10] by coupling the DSPM model with convection–diffusion equa-
tions in the boundary layer adjacent to the membrane. The influence of dielectric effects on ion
rejection in nanofiltration membranes was actively studied in recent decades [11]. These effects
are related to the interaction of ions with polarized interface between membrane and solution due
to the difference in their dielectric constants and lowering of solution dielectric constant inside
nanopores.

The radial variation of potential and ion concentrations in the pore as well as the impact
of electroosmotic flow on ion transfer are taken into account in the space–charge (SC) model,
which was originally developed in [12]. Experimental verification of this model was performed by
comparing the theoretical predictions for streaming potential, pore conductivity, and diffusion
potential with the measured data [13]. A good agreement for monovalent ions was found. Detailed
comparison between results obtained from SC and TMS models [14] showed a good agreement
for pores with small radius (less than 2 nm) and low surface charge density. Otherwise, a strong
overestimation of rejection by the TMS model in comparison with the SC model was found.
These conclusions were later confirmed by comparing the results from Uniform potential model
with full 2D numerical modelling [15]. Different contributions of diffusion and migration fluxes
to ion rejection were observed for cases of constant surface potential / charge density. The SC
model was revisited in [16] by using the flux–force formalism with Onsager symmetry properties,
which allowed a significant simplification of working formulas.

In the frame of Poisson–Boltzmann approach employed in uniform potential and space–charge
models, the assumption of point–like ions is made. However, it is known to strongly overesti-
mate ionic concentration near highly charged surfaces, especially for solutions with multivalent
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ions [17]. To overcome this limitation, the modified Poisson–Boltzmann approach was proposed
by taking into account steric effects [18]. The corresponding equations can be derived by the
variation of free energy, where the steric correction is included in the entropic contribution [17].
Based on this approach, the impact of steric effects on the dynamics of electrolytes near a surface
with high applied voltage was studied in [19, 20]. It was found that the salt adsorption by the
double layers was greatly reduced due to saturation of ionic concentration near the surface. The
induced–charge electrokinetics at large applied voltages in concentrated solutions was reviewed
in [21]. It was shown in [22] that steric correction leads to higher current efficiency in charged
membrane with narrow pores. The study of electrokinetic flow in nanoporous membranes driven
by concentration gradients revealed that ion size effects decrease the average ionic concentra-
tion in the pore solution, reduce the absolute values of average solute flux density and solution
velocity, and increase the membrane potential [23].

In this paper, we first investigate the impact of finite ion size on the pressure–driven electrolyte
transport in nanofiltration membranes. The system is described by two–dimensional Navier–
Stokes, Poisson, and Nernst–Planck equations. The latter is modified to take into account steric
effects, which allows considering a wide range of voltages applied to the conductive pore wall. The
equations are solved in a high aspect ratio nanopore connecting two reservoirs with much larger
diameter. Detailed comparison between results for point–like and finite size ions is performed.

1. Mathematical model

1.1. Modified Nernst–Planck equation

Consider a binary symmetric electrolyte with concentrations of positive and negative ions
denoted by C+ and C−, respectively. The electrochemical potentials of ions (in Joule/mole),
which take into account the steric effect, can be written in the form [17,20,24]

µ± = µ0
± +RT ln(NAa

3
±C±)± FΦ−RT ln

(
1−NAa

3
+C+ −NAa

3
−C−

)
. (1)

Here µ0
± are the standard chemical potentials, R is the ideal gas constant, T is the temperature,

F is the Faraday constant, Φ is the electric potential, NA is the Avogadro number, and a± are
the diameters of solvated ions. The derivation of (1) is based on the free energy functional F ,
which includes the electrostatic energy contribution (self–energy of electric field and electrostatic
energies of ions) and entropic contribution (entropies of positive and negative ions as well as
solvent molecules) [17, 20, 25]. The requirement of zero functional derivatives of F with respect
to C± leads to equations (1), where the last term accounts for ion size effect and penalizes large
ionic concentrations.

The ion fluxes are driven by the chemical potential gradients [26], so one can write

J± = −C±
D±

RT
∇µ± = −D±∇C± ∓D±C±

F

RT
∇Φ−D±C±

NA

(
a3+∇C+ + a3−∇C−

)
1−NA

(
a3+C+ + a3−C−

) , (2)

where D± are the ions diffusion coefficients.
The first and second terms in the right–hand side of (2) describe the ion transport by diffusion

and migration in electric field, respectively. The third terms corresponds to an additional flux,
which is directed against ion concentration gradients and becomes very large when the volume
fraction of solvated ions NA

(
a3+C+ + a3−C−

)
approaches unity (a simple cubic packing of ions

with effective diameters a± is assumed). It prevents the non–physical increase of concentration
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observed in the Poisson–Boltzmann approach [17]. The expression for ion fluxes (2) will be
referred to as modified Nernst–Planck equation. It reduces to classical Nernst–Planck equation
when the third term accounting to ion size effect is absent.

1.2. Problem statement

To study the electrolyte transport through membrane, we consider a single cylindrical
nanopore of length Lp and radius Rp, which connects two reservoirs of length Lr and radius Rr.
The axisymmetric geometry of the system is shown in Fig. 1. In this work, it is assumed that the
pore walls are conductive, and a constant potential φs is specified on them. The electrolyte with
fixed entrance concentration CL is pumped through the pore with the volume flux JV , which is
equivalent to the radially averaged velocity.

The stationary flow and ion transport are described by the Navier–Stokes, Nernst–Plank, and
Poisson equations [15, 16, 21]. We introduce dimensionless variables by taking the characteristic
scales of length L (to be specified later), velocity JV , pressure ρJ2

V , concentration CL, and
potential RT/F . The dimensionless governing equations are written in the form

(U · ∇)U = −∇P +
1

Re
∇2U − Λ(C+ − C−)∇Φ, ∇ ·U = 0, (3)

PeU · ∇C+ = −∇ · J+, PeU · ∇C− = −∇ ·DJ− (4)

∇2Φ =
1

2λ2
(C+ − C−), (5)

where the dimensionless ion fluxes are given by

J± = −∇C± ∓ C±∇Φ− C±
ν+∇C+ + ν−∇C−

1− ν+C+ − ν−C−
. (6)

In equations (3)–(5), U is the velocity vector and P is the pressure. For axisymmetric problem,
the velocity is written as U = (U, V ), where U and V are the radial and axial velocity components,
respectively. The equations are solved in cylindrical coordinates (r, z).

The dimensionless parameters of the problem are written as

Re =
ρJV L

µ
, Pe =

JV L

D+
, Λ =

RTCL

ρJ2
V

, D =
D−

D+
,

ν± = CLNAa
3
±, λ =

1

L

√
εε0RT

2CLF 2
, φ′

s =
Fφs

RT
, J ′

V =
R2

p

R2
r

,

(7)

where Re is the Reynolds number, Pe is Peclet number, Λ is the parameter, which characterizes
the electric (Coulomb) force, D is the ratio of diffusion coefficients, ν± are the volume fractions
of ions at the inlet, λ is the dimensionless Debye length, φ′

s is the dimensionless wall potential,
and J ′

V is the dimensionless velocity at the inlet. It is chosen from the condition of equal flow
rates in the reservoirs and nanopore. In formulas (7), ρ is the density of ionic solution, ε is its
relative permittivity, and ε0 is the vacuum permittivity. The case of point–like ions is recovered
by taking ν± = 0.

The boundary conditions are summarized in Tab. 1. An outward unit normal to the nanopore
wall is denoted by n. At the inlet A1, the constant dimensionless axial velocity J ′

V , zero po-
tential, and constant dimensionless concentration are specified. At the outlet B1, we impose
zero pressure, the absence of potential gradient, and zero fluxes of ions due to diffusion and
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migration (the transport of ions occurs by convection only). The same conditions are specified
on the reservoir walls A2, A3, B2, B3 except zero pressure requirement, which is replaced by
the no–slip condition. The latter is also specified on the nanopore wall C together with zero
diffusion and migration fluxes. In addition, we impose constant potential on the nanopore wall.
The wall potential is set relative to the bulk solution at the inlet A1, where zero potential is
specified.

Fig. 1. The geometry of the nanopore and reservoirs

Table 1. The boundary conditions

Boundary Navier–Stokes Poisson Nernst–Planck Nernst–Planck eqns.
segment equations equation equations (Slotboom variables)

A1 U = 0, V = J ′
V Φ = 0 C± = 1 C̃± = (1− ν+ − ν−)

−1

B1 P = 0 ∇Φ · n = 0 J± · n = 0 ∇C̃± · n = 0

A2,3 , B2,3 U = V = 0 ∇Φ · n = 0 J± · n = 0 ∇C̃± · n = 0

C U = V = 0 Φ = φ′
s J± · n = 0 ∇C̃± · n = 0

1.3. Slotboom variables

In this work, we propose an alternative formulation of governing equations by introducing
the Slotboom variables [25,27] (transformed concentrations) according to

C̃± = C± exp
(
±Φ− ln(1− ν+C+ − ν−C−)

)
=

C±e
±Φ

1− ν+C+ − ν−C−
. (8)

The original concentrations can be restored from the transformed ones by the formulas

C± = ρ±C̃±, ρ+ =
1

eΦ + ν+C̃+ + e2Φν−C̃−
, ρ− =

1

e−Φ + e−2Φν+C̃+ + ν−C̃−
. (9)

The governing equations (3)–(5) are rewritten in Slotboom variables as follows

(U · ∇)U = −∇P +
1

Re
∇2U − Λ

(
ρ+C̃+ − ρ−C̃−

)
∇Φ, ∇ ·U = 0, (10)

∇ ·
(
ρ+

(
PeU C̃+ −∇C̃+

))
= 0, ∇ ·

(
ρ−

(
PeU C̃− −D∇C̃−

))
= 0, (11)

∇2Φ =
1

2λ2

(
ρ+C̃+ − ρ−C̃−

)
. (12)
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After the transformation, the boundary conditions for Navier–Stokes and Poisson equations
remain the same, while the conditions for the Nernst–Planck equations are transformed into a
simpler form, which is given in the last column of Tab. 1. In Slotboom variables, the equations
for ion concentrations (4) are also simplified and take the form of (11). It will be shown in Sec. 3
that using the Slotboom variables allows decreasing the computational time as well.

Note that the flow in nanopores corresponds to low Reynolds numbers, so the convective term
in equations (3) and (10) can be neglected. However, we have retained it for completeness.

1.4. Physical parameters

The calculations have been performed for potassium chloride aqueous solution, which fully
disassociates into K+ and Cl− ions. The parameters used are as follows: T = 298.15 K, R =

8.314 J/(mol K), F = 96485 C/mol, ε = 78.49, ε0 = 8.854 · 10−12 F/m, ρ = 997 kg/m3,
µ = 0.888·10−3 Pa·s, D+ = 1.957·10−9 m2/s, D− = 2.032·10−9 m2/s, a+ = a− = 0.66·10−9 m,
L = 10−9 m. The size of reservoirs is fixed to Rr = 25 nm, Lr = 100 nm, while the nanopore
dimensions are Rp = 2 nm, Lp = 2000 nm. The inlet concentration is taken as CL = 10

mol/m3 and the inlet velocity is JV = 100 µm/s. The wall potential varies in the range φs =

−0.05 . . .−0.30 V. The chosen dimensional parameters correspond to the following values of
dimensionless parameters defined by (7): Re = 1.123 · 10−5, Pe = 5.110 · 10−5, Λ = 2.486 · 109,
D = 1.038, ν± = 1.73 · 10−3, λ = 3.042, J ′

V = 6.4 · 10−3. The range of dimensionless wall
potential is φ′

s = −1.946 . . .−11.677.

2. Numerical implementation

The governing equations were integrated numerically with a help of ANSYS Fluent 14.5
(Academic version). The stationary problem was solved iteratively by the SIMPLEC scheme in
finite volume formulation [28]. The characteristics of computational mesh were chosen in such a
way as to ensure that further refinement did not influence the solution quality. For the typical
case of Rp = 2 nm, Lp = 2000 nm, Rr = 25 nm, Lr = 100 nm, the number of nodes in radial and
axial directions was 20 and 3000 for the nanopore, and 70 and 120 for each reservoir, respectively.
The mesh had clustering in the axial direction near the nanopore entrance and exit as well as in
the radial direction in the reservoirs. In the nanopore, the mesh was radially uniform.

We have performed a comparison of convergence between formulations in Primitive variables
(3)–(5) and Slotboom variables (10)–(12). It was found that the use of Slotboom variables allows
to decrease the required number of iterations by 2 times. The total number of iterations in this
case was around 15000. The calculations were performed with the serial processing option (i.e.
on a single core). It was found that the use of parallel computations significantly increases the
number of iterations required for convergence. In ANSYS Fluent, the parallel computations are
realized on the level of linear algebraic equations solver. The decomposition of computational
domain requires solution matching, which apparently decreases the convergence rate.

3. Results and discussion

To describe the electrolyte transport in the nanopore, we need to introduce some characteris-
tics in addition to those already defined in Sec. 2. The rejection (i.e. the fraction of ions, which
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is retained by the membrane) is defined as

R = 1− CR

CL
. (13)

For the considered problem, CL = C±(0) and CR = C±(Lp +Lr). To study the axial variations
of all quantities, the cross–sectionally averaged variables are introduced by

Φ =
1

πR2
p

∫ 2π

0

∫ Rp

0

Φ rdrdφ, C± =
1

πR2
p

∫ 2π

0

∫ Rp

0

C± rdrdφ, P =
1

πR2
p

∫ 2π

0

∫ Rp

0

P rdrdφ.

where Φ, C±, P are the dimensional potential, ion concentrations, and pressure, respectively.
In what follows, we will also need the membrane potential ∆Φ and the applied pressure drop
∆P , which are calculated as

∆Φ = Φ(Lp + Lr)− Φ(0) = Φ(Lp + Lr), ∆P = P (0)− P (Lp + Lr) = P (0). (14)

Let us start the discussion of results with the case of wall potential φs = −0.20V. The
profiles of potential, pressure, ion concentrations and solution velocity at the central cross–
section z = Lp/2 are shown in Fig. 2 for point–like and finite size ions. The electric potential
increases in magnitude towards the pore wall, and causes co–ion (Cl−) depletion and counter–
ion (K+) enrichment in the pore. For point–like ions, the latter is much larger near the wall and
slightly smaller in rest part of the pore in comparison with the finite size ions, see Fig. 2 (c).

Fig. 2. The profiles of potential (a), pressure (b), concentrations of positive (c) and negative (d)
ions in the cross–section z = Lp/2 for φs = −0.20V. Finite size ions (solid line), point–like ions
(dashed line)
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The same is true for the pressure profile in Fig. 2 (b). The pressure gradient near the wall
compensates the electric force (the last term in equation (3)), which is directed towards the wall.
The counter–ion concentration near the wall is non–physically large for point–like ions and far
exceeds the limit set by finite ion size (see also Fig. 4 (b) below). The concentration of co–ions
is smaller when the steric effect is taken into account. These results are in line with previous
calculations in the absence of pressure–driven flow [23]. The calculations show that for small
potentials (|φs| < 0.1V) the curves for point–like and finite size ions become much closer.

The distributions of averaged potential and ion concentrations for φs = −0.20 V are shown
in Fig. 3. The steric effect leads to smaller counter–ion concentration and, consequently, smaller
osmotic pressure jumps at the pore entrance and exit. These jumps balance the electric force,
which develops at the interfacial regions, where non–zero net charge is subjected to a large
electric field. The pressure gradient inside the pore is mainly determined by the specified volume
flux JV .

Fig. 3. The profiles of averaged potential (a), pressure (b), concentrations of positive (c) and
negative (d) ions for φs = −0.20V. Finite size ions (solid line), point–like ions (dashed line)

The decrease of average counter–ion concentration when steric effect is accounted for induces
a slight increase of potential in magnitude, see Figs. 2 (a) and 3 (a). Detailed analysis shows the
development of small axial potential gradient directed to the pore exit (it shown at the inset to
Fig. 3 (a)). The corresponding axial electric force acts on the non–compensated charge in the
direction of nanopore entrance, and its magnitude is stronger near the nanopore wall. It leads to
the deviation of velocity profile from the parabolic one given by V = 2JV

(
1 − (r/Rp)

2
)
. Near
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the wall, the flow is slightly slowed down, while near the center of the channel it is enhanced to
provide the same averaged volume flux JV .

The stronger depletion of co–ions in case of finite ion size results in the smaller value of
electrolyte concentration at the outlet in comparison with point–like ions, so the rejection of
salt is enhanced. As a result, the membrane potential ∆Φ, which is mainly determined by the
Donnan potential jumps at the pore entrance and exit, increases (Fig. 3 (a)). The mechanism
of rejection for constant wall potential is related to balancing of counter–ions convective flux by
the opposite migration and diffusion fluxes. In this case, the total flux of counter–ions becomes
equal to that of co–ions, which is very small and mainly governed by diffusion [15].

The profiles of potential and ion concentrations in the central cross–section are shown in
Fig. 4 for different values of surface potential φs. When the latter is small, the profiles show
weak dependence on the radial coordinate r. With increasing φs, pronounced radial variations are
observed. The counter–ions are enriched, while the co–ions are depleted in the pore. The steric
effect results in the saturation of counter–ion concentration near the pore wall. The maximum
concentration can be found from the expression for volume fraction of ions ν = Ca3NA, where
C is the ion concentration and a is the ion diameter. If we put ν = 1, C = C+, a = a+, then
Cmax

+ = (a3+NA)
−1. For K+ ions, it leads to Cmax

+ = 5778 mol/m3, which is attained at the pore
wall for φs = −0.30V, see Fig. 4 (b).

Fig. 4. The profiles of potential (a), concentrations of positive (b) and negative (c) ions in the
cross–section z = Lp/2 for different values of φs. 1: −0.05V, 2: −0.10V, 3: −0.15V, 4:
−0.20V, 5: −0.25V, 6: −0.30V
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Fig. 5. The dependence of rejection (a), pressure drop (b), and membrane potential (c) on
the surface potential φs. The calculated cases are shown by dots. Finite size ions (solid line),
point–like ions (dashed line)

Consider now the dependence of rejection, pressure drop and membrane potential on the
applied wall potential φs. The results are shown in Fig. 5. When φs = 0, there are no counter–
ion enrichment and co–ion depletion in the pore. In this case, CL = CR, so the rejection R
and membrane potential ∆Φ are zero, while the pressure drop corresponds to the hydrodynamic
pressure drop of Poiseuille flow. The increase of wall potential by absolute value results in
the larger counter–ion enrichment and co–ion depletion, which in turn leads to the increase of
rejection and membrane potential. The required pressure drop is also increased due to osmotic
contribution. At small values of φs, the results for finite size and point–like ions coincide, but
the deviation between these results becomes noticeable with increasing φs. For finite size ions,
the calculations provide larger values of considered quantities. When φs < −0.20, the case
of point–like ions is not calculated since the resulting counter–ion concentration exhibits non–
physical growth near the wall, see Fig. 2 (c). Thus, taking into account the steric effect allows to
calculate the characteristics of nanofiltration process in a wider range of applied wall potentials.

4. Conclusion

In this paper, the pressure–driven electrolyte transport through nanofiltration membrane
pores with specified wall potential has been investigated theoretically. A binary symmetric
electrolyte is considered. The steric effect is taken into account by introducing an additional
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term to electrochemical potential, which results in the modification of Nernst–Planck equation
and prevents the non–physical growth of ion concentration at large applied voltages. The two–
dimensional Navier–Stokes, Poisson, and modified Nernst–Planck equations are solved in a high
aspect ratio nanopore connecting two reservoirs with a larger diameter. The Slotboom variables
are introduced to simplify the equations and speed up the convergence rate.

The calculations are performed for potassium chloride aqueous solution. It is found that
in the case of point–like ions, the non–physical rise of counter–ion concentration is observed
near the pore wall at large applied voltages. When finite ion size is taken into account, the
concentration of counter–ions decreases significantly and saturates to the maximum value. It
leads to lower osmotic pressure jump and larger magnitude of potential in the pore. The stronger
co–ion depletion observed for finite size ions results in the increase of salt rejection, membrane
potential, and required pressure drop. The deviations between these characteristics for point–like
and finite size ions become noticeable with increasing the wall potential. Taking into account the
steric effect allows to calculate the characteristics of nanofiltration process in much wider range
of applied voltages.

This work is supported the Russian Science Foundation, project 15–19–10017.
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Россия

Проведено теоретическое исследование транспорта электролита через нанофильтрационную
мембрану под действием разности давлений. Стенки пор являются проводящими с заданным по-
тенциалом. Учитывается конечный размер ионов за счет введения дополнительного слагаемого в
электрохимический потенциал. Для описания течения электролита в нанопоре, соединяющей два
резервуара бо́льшего диаметра, численно решаются двумерные уравнения Навье–Стокса, Пуассона
и модифицированное уравнение Нернста–Планка. Расчеты проводятся для водного раствора хло-
рида калия. Показано, что в случае точечных ионов значения концентрации противоионов вблизи
стенки поры не соответствуют физически допустимым при больших приложенных потенциа-
лах. При учете конечных размеров ионов концентрация противоионов существенно уменьшает-
ся, достигая максимально возможного значения вблизи стенки. Это приводит к уменьшению
осмотического скачка давления и увеличению потенциала внутри поры. Более сильное исключе-
ние коионов при учете их конечного размера вызывает увеличение задержания соли, мембранного
потенциала и требуемого перепада давлений.

Ключевые слова: проводящие мембраны, перенос электролита, нанофильтрация, модифицирован-
ное уравнение Нернста–Планка, конечный размер ионов, численное моделирование.
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