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In order to study the Toeplitz algebras related to a Dirac operators in a neighborhood of a closed bounded
domain D with smooth boundary in Cn we introduce a singular Cauchy type integral. We compute its
principal symbol, thus initiating the index theory.
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There are a number of ways in which the theory of Toeplitz operators can be generalised to
n dimensions, see e.g. [1, 2] and the references given there. The monograph [3] presents much
more advanced theory of Toeplitz operators in several complex variables.

The paper [4] describes precisely how Toeplitz operators of "Bergman type" are related to
Toeplitz operators of "Szegö type". A remarkable connection between the theory of Toeplitz
operators á la [1] and the standard theory of pseudodifferential operators emerged from the
work [5]. This connection in its broad outlines is elucidated in [4], too.

This work focuses on a new class of Toeplitz operators which is more closely related to
elliptic theory. The new Toeplitz operators admit very transparent description which motivates
strikingly their study. To this end, let A be a (k×k) -matrix of first order scalar partial differential
operators in a neighborhood of the closed bounded domain D with smooth boundary S in Cn.
Assume that the leading symbol of A has rank k away from the zero section of the cotangent
bundle of D. Then, given any solution u of the homogeneous equation Au = 0 in the interior
of D which has finite order of growth at the boundary, the Cauchy data t(u) of u with respect
to A possess weak limit values at the boundary. If A satisfies the so-called uniqueness condition
of the local Cauchy problem in a neighborhood of D, then the solution u is uniquely defined
by its Cauchy data at S. Let t(u) = Bu be a representation of the Cauchy data of u. The
space of all Cauchy data Bu of u at the boundary is effectively described by the condition of
orthogonality to solutions of the formal adjoint equation A∗g = 0 near D by means of a Green
formula, see [6, § 10.3.4]. In this way we distinguish Hilbert space of vector-valued functions
on S which represent solutions to Au = 0 in the interior of D. In particular, one introduces
Hardy spaces H as subspaces of L2(S,Ck) consisting of the Cauchy data of solutions to Au = 0

in the interior of D with appropriate behaviour at the boundary. Pick such a Hilbert space H.
By the above, H is a closed subspace of L2(S,Ck) and we write Π for the orthogonal projection
of L2(S,Ck) onto H. If A is the Cauchy–Riemann operator then Π just amounts to the Szegö
projection.

Given a (k × k) -matrix M(z) of smooth function on S, the operator TM on H given by
u 7→ Π(Mu) is said to be a Toeplitz operator with multiplier M . If M is a scalar multiple of the
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unit matrix, then the theory of Toeplitz operators TM is much about the same as the classical
theory of Toeplitz operators. Otherwise the theory is much more complicated.

Finally, we briefly discuss Toeplitz operators related to the algebra of octonions O introduced
by John T. Graves in 1843. The octonions were discovered independently by Cayley and are
sometimes referred to as Cayley numbers or the Cayley algebra.

1. Dirac operators

Let Cn be the standard n-dimensional complex space obtained from the underlying real space
R2n of variables x = (x1, . . . , x2n) by introducing the complex structure

zj = xj + ıxn+j

for j = 1, . . . , n. As usual, we define complex derivatives by

∂

∂zj
=

1

2

(
∂

∂xj
− ı

∂

∂xn+j

)
,

∂

∂zj
=

1

2

(
∂

∂xj
+ ı

∂

∂xn+j

)
.

Let us consider a matrix-valued constant coefficient operator

A
(

∂

∂z
,
∂

∂z

)
=

n∑
j=1

αj
∂

∂zj
+ βj

∂

∂zj
(1)

such that

A∗A = −1

4
∆E (2)

where A∗ is the formal adjoint of A and E the identity matrix. It is easily seen that the identity
(2) reduces to a system of identities for the coefficients, namely

α∗
jαk + β∗

kβj = δj,kE,

α∗
jβk + α∗

kβj = 0
(3)

for all j, k = 1, . . . , n.
It is well known that there is a solution of (3) amongst matrices of type (2n−1 × 2n−1), cf.

for instance Chapter 3 in [7].
First-order differential operators with constant coefficients factorizing the Laplacian in the

sense of (2) are called Dirac operators.

Example 1.1. The Cauchy–Riemann operator A = ∂/∂z̄ is a Dirac operator in the complex
plane.

Example 1.2. The operator

A =

(
∂/∂z̄1 −∂/∂z̄2
∂/∂z2 ∂/∂z1

)
is a Dirac operator in C2.
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2. Fundamental solution

To construct an explicit fundamental solution Φ for a Dirac operator A we make use of
relation (2). Namely, denote by e the standard fundamental solution of convolution type for the
Laplace operator in R2n. In the coordinates of Cn it reads

e(z) =
(n− 1)!

2πn

1

2− 2n

1

|z|2n−2
,

if n > 1, and e(z) = (1/2π) ln |z|, if n = 1.
Set

Φ(z − ζ) = 4A∗
(

∂

∂ζ
,
∂

∂ζ

)
e(z − ζ) =

(n− 1)!

πn

A∗(z − ζ, z − ζ)

|z − ζ|2n

for z ̸= ζ, where by A∗(z − ζ, z − ζ) is meant the adjoint of the matrix A(z − ζ, z − ζ).

Lemma 2.1. As defined above, Φ(z− ζ) is a fundamental solution of the Dirac operator A, i.e.
Φ ◦ A = E and A ◦ Φ = E on C∞

comp(Cn,Ck), where (k × k) is the type of E.

Proof. The first relation Φ ◦ A = E is fulfilled by the very construction of Φ. Since A is a
square matrix, if follows from (2) that AA∗ = −(1/4)∆E whence Φ∗◦A∗ = E on C∞

comp(Cn,Ck).
The latter equality is equivalent to A ◦ Φ = E, as desired. �

3. Green formula

Let D be a bounded domain with smooth boundary S = ∂D in Cn. Write ν(y) =

(ν1(y), . . . , ν2n(y)) for the unit outward normal vector of S at a point y ∈ S.
If ρ(x) is a defining function of S then

ν(y) =
∇ρ(y)

|∇ρ(y)|

for y ∈ S, where ∇ρ(y) stands for the real gradient of ρ at y. The complex vector νc =

(νc,1, . . . , νc,n) with coordinates νc,j = νj+ıνn+j is called the complex normal of the hypersurface
S. In the coordinates of Cn we obviously have

νc,j =
∂ρ/∂ζj
|∇ζρ(ζ)|

for j = 1, . . . , n.
Denote by dζ the wedge product dζ1 ∧ · · · ∧ dζn, and by dζ[j] the wedge product of all

dζ1, . . . , dζn but dζj .

Lemma 3.1. For each j = 1, . . . , n, the pullback of the differential form dζ∧dζ[j] under the em-
bedding S ↪→ Cn is equal to (−1)j−1(2ı)n−1ıνc,jds, where ds is the area form on the hypersurface
S induced by the Hermitian metric of Cn.

Proof. An easy computation shows that the pullback of the differential form dy[j] under the
embedding S ↪→ Cn is equal to (−1)j−1νjds, for every j = 1, . . . , 2n. From this the lemma
follows immediately. �
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Denote by σ(ζ) the principal homogeneous symbol σ1(A)(ζ, ξ) of the operator A evaluated at
the point (ζ, νc(ζ)/ı) of the cotangent bundle of a neighborhood of D, where ζ ∈ S. For example,
the principal homogeneous symbol of the Cauchy–Riemann operator is equal −(1/2)(ξ1 + ıξ2).

We are now in a position to specify the restriction of the Green operator GA(g, u) of A to
the boundary. By a Green operator of A is meant a bilinear operator GA from C∞(Cn, (Ck)∗)×
C∞(Cn,Ck) to differential forms of degree 2n − 1 on Cn, such that dGA(g

∗, u) = ((Au, g)y −
(u,A∗g)y)dy holds pointwise in Cn.

By [8, § 2.4.2], there is a unique Green operator for A, and its pullback under the embedding
S ↪→ Cn is

GA(g, u) =
1

ı
gA

( ı

2
(νj − ıνn+j),

ı

2
(νj + ıνn+j)

)
uds = gσ(ζ)uds

whence

GA(Φ(z − ζ), E) =
(n− 1)!

πn

A∗(z − ζ, z − ζ)

|z − ζ|2n
σ(ζ)ds. (4)

Lemma 3.2. Every vector-valued function u ∈ C1(D,Ck) has the integral representation

χDu = −
∫
S

GA(Φ(z − .), u) +

∫
D
Φ(z − .)Au dv,

where dv is the Lebesgue measure in R2n and χD the characteristic function of D.

Proof. This is a very special case of a general Green formula related to an elliptic system of
differential equations, see for instance [8, § 2.5.4] and elsewhere. �

Needless to say that this formula extends to the case of Sobolev class functions u ∈ H1(D,Ck)

as well as to more general functions on D.

4. Toeplitz operators
Theorem 4.1. Let u0 ∈ L2(S,Ck). In order that there be a solution u to Au = 0 in the interior
of D, which has finite order of growth at S and coincides with u0 on S, it is necessary and
sufficient that ∫

S

gσ(ζ)u0 ds = 0 (5)

for all solutions of the formal adjoint equation A∗g = 0 near D.

Proof. See Theorem 10.3.14 in [6]. �
We denote by H the (closed) subspace of L2(S,Ck) that consists of all functions u satisfying

the orthogonality conditions (5). The elements of H can be actually specified as solutions to
Au = 0 of Hardy class H2 in the interior of D, see [6, § 11.2.2]. The orthogonal projection Π of
L2(S,Ck) onto H is therefore an analogue of Szegö projection.

Definition 4.2. Let M(z) be a (k × k)-matrix whose entries are bounded functions on S. By a
Toeplitz operator TM with multiplier M is meant the operator u 7→ Π(Mu) in H.

More generally, if Ψ is a (k × k)-matrix of pseudodifferential operators of order 0 on S,
then Ψ maps L2(S,Ck) continuously into L2(S,Ck). Therefore, the composition TΨ = ΠΨ is a
continuous self-mapping of H which we call a generalised Toeplitz operator.

If the projection Π is a classical pseudodifferential operator on S, then from the equality
Π2 = Π it follows readily that the order of Π just amounts to zero. Hence, the generalised Toeplitz
operators on S form a subalgebra of the C∗-algebra of all zero order classical pseudodifferential
operators on C∞(S,Ck).
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5. The generalised Cauchy type integral

To clarify the nature of the generalised Szegö projection Π we introduce the singular Cauchy
type integral

Cu(z) = −p.v.
∫
S

GA(Φ(z − .), u) (6)

for z ∈ S, where u ∈ L2(S,Ck). The principal value of the integral on the right-hand side exists
for almost all z ∈ S and it induces a bounded linear operator in L2(S,Ck).

Lemma 5.1. The operators (1/2)I ± C are projections on the space L2(S,Ck).

Proof. This follows from the equality C2 = (1/4)I by a trivial verification, cf. for instance [9]. �
The generalised Cauchy type integral (6) is a classical pseudodifferential operator of order 0

in C∞(S,Ck). We finish this section by evaluating its principal homogeneous symbol. To this
end, we identify the cotangent space T ∗

z S of S at a point z ∈ S with all linear forms on T ∗
z R2n

which vanish on the one-dimensional subspace of T ∗
z R2n spanned by ν(z). Since T ∗

z R2n ∼= R2n,
one can actually specify T ∗

z S as the hyperplane through the origin in R2n which is orthogonal to
the vector ν(z).

Lemma 5.2. For each z ∈ S and ξ ∈ T ∗
z S, the symbol of order 0 of the operator C is equal to

σ0(C)(z, ξ) = σ1(A∗)

(
z,

ξ

|ξ|

)
σ(z).

Proof. By assumption, the Laplacian A∗A is a second order elliptic differential operator on
C∞(U,Ck). It has a parametrix P which is a (k×k)-matrix of scalar pseudodifferential operators
of order −2 on U . The operator Φ differs from PA∗ by a smoothing operator, and so it has the
principal homogeneous symbol (σ2(A∗A))−1σ1(A∗) which is a left inverse for σ1(A).

Formula (6) just amounts to saying that

Cu(z) = −Φ(σ(ζ)u(ζ)ℓS),

where ℓS is the surface layer on S. We thus see that the pseudodifferential operator C on S is
the restriction to S of the pseudodifferential operator

Ψ = −Φ ◦ σ(z)

defined in a neighborhood of S. This latter is of order −1 and its principal symbol is easily
evaluated, namely

σ−1(Ψ)(z, ξ) = −σ−1(Φ)(z, ξ)σ(z) = −(σ2(A∗A)(z, ξ))−1 σ(z)

for z in a neighborhood of S and ξ ∈ Cn \{0}. A familiar argument now shows that the principal
symbol of C is given by the formula

σ0(C)(z, ξ) = 1

2π
p.v.

∫ ∞

−∞
σ−1(Ψ)(z, tν(z) + ξ) dt =

= −σ(z)

2π
p.v.

∫ ∞

−∞
(σ2(A∗A)(z, tν(z) + ξ))−1 σ1(A∗)(z, tν(z) + ξ) dt

for all z ∈ S and ξ ∈ R2n \ {0} orthogonal to ν(z). Note that the integral on the right-hand side
diverges, however, its Cauchy principal value exists, which is due to the condition ⟨ν(z), ξ⟩ = 0.
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Since

σ2(A∗A)(z, ξ) =
1

4
|ξ|2E,

we shall have established the desired equality if we prove that

1

4π

∫ ∞

−∞

1

|tν(z) + ξ|2
dt =

1

4

1

|ξ|

for all z ∈ S and ξ ∈ R2n \ {0} orthogonal to the vector ν(z). A trivial verification shows that

|tν(z) + ξ|2 = t2 + |ξ|2

whence

1

4π

∫ ∞

−∞

1

|tν(z) + ξ|2
dt =

1

4π

∫ ∞

−∞

1

t2 + |ξ|2
dt =

1

4

1

|ξ|
,

as desired. �

6. Index of Toeplitz operators

We now return to generalised Toeplitz operators TΨ = ΠΨ in H introduced in Section 4., see
Definition 4.2 and below. Here, Π is a projection of L2(S,Ck) onto H. We restrict ourselves to
the case where Π is a classical pseudodifferential operator of order zero in C∞(S,Ck). We are
interested in characterizing those Toeplitz operators in H which possess the Fredholm property.
To this end we extend TΨ from H to all of L2(S,Ck) in a special manner and use Fredholm
criteria for operator algebras with symbols.

Lemma 6.1. A Toeplitz operator TΨ in H is Fredholm if and only if so is the operator

EΨ := TΨΠ+ (I −Π)

in L2(S,Ck).

Proof. We see that TΨ is the restriction of the pseudodifferential operator

EΨ = TΨΠ⊕ (I −Π) : H ⊕H⊥ → H ⊕H⊥

on H.
If EΨ is Fredholm then indEΨ is finite. But indEΨ = indTΨ+ind (I−Π), where TΨ : H → H

and (I − Π) : H⊥ → H⊥. It is clear that ind (I − Π) = 0, whence indTΨ is also finite. And
moreover, indEΨ = indTΨ. �

The operator EΨ on L2(S,Ck) is pseudodifferential of order zero. Its principal homogeneous
symbol just amounts to σ0(EΨ) = σ0(Π)σ0(Ψ)σ0(Π) + σ0(I − Π) away from the zero section of
T ∗S. Given any s ∈ R, the operator EΨ in Hs(S,Ck) is known to be Fredholm if and only if it
is elliptic, i.e. σ0(EΨ)(z, ξ) is invertible for all (z, ξ) ∈ T ∗S with ξ ̸= 0. Moreover, the index of
this operator is actually independent of the particular choice of s and it can be evaluated by the
familiar Atiyah–Singer formula [10].
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7. Concluding remarks

In the sequel we restrict our attention to a special Clifford algebra corresponding to the case
n = 4. Clifford algebras have important applications in variety of fields including string theory,
special relativity and quantum logic. The algebra in question is called the algebra of octonions
and denoted by O. To wit,

A =

(
q1 −q2
q̄2 q̄1

)
,

where qi =

(
∂

∂z̄i
+

∂

∂z̄2+i
ȷ

)
, ȷ is the fundamental quaternion unit and the bar denotes the

conjugate of a quaternion.
Let us rewrite the action of the operator A on a quaternion-valued function in complex

coordinates, that is

Au =

(
∂̄1 + ∂̄3ȷ −∂̄2 − ∂̄4ȷ

∂2 − ∂̄4ȷ ∂1 − ∂̄3ȷ

) (
u1 + u3ȷ

u2 + u4ȷ

)
=


∂̄1 −∂̄2 −∂̄3c ∂̄4c

∂2 ∂1 ∂̄4c ∂̄3c

∂̄3c −∂̄4c ∂̄1 −∂̄2
−∂̄4c −∂̄3c ∂2 ∂1




u1

u2

u3

u4

 ,

c being the complex conjugation and ∂̄j = ∂/∂z̄j .
The octonions have the dimension eight. Because of nonassociativity they can not be repre-

sented as quaternion (2 × 2)-matrices with usual multiplication. The product of two octonions
O = (a, b) and P = (c, d) is defined via the Cayley–Dickson construction by

(a, b)(c, d) = (ac− d̄b, da+ bc̄).

It corresponds to the special multiplication of the matrices

OP =

(
a −b

b̄ ā

) (
c −d

d̄ c̄

)
=

(
ac− d̄b −da− bc̄

cb̄+ ād̄ −b̄d+ c̄ā

)
.

It remains to show that the multiplication OP is alternative, i.e. O(OP) = (OO)P and
(PO)O = P(OO) for all matrices O, P.

Lemma 7.1. The matrices O constitute an alternative algebra.

Proof.

O(OP) =

(
a −b

b̄ ā

) (
ac− d̄b −da− bc̄

cb̄+ ād̄ −b̄d+ c̄ā

)
=

=

(
aac− ad̄b− cb̄b− ād̄b −daa− bc̄a+ bb̄d− bc̄ā

acb̄− d̄bb̄+ ācb̄+ āād̄ −b̄da− b̄bc̄− b̄dā+ c̄āā

)
and

(OO)P =

(
aa− b̄b −ba− bā

ab̄+ āb̄ −b̄b+ āā

) (
c −d

d̄ c̄

)
=

=

(
aac− b̄bc− d̄ba− d̄bā −daa+ db̄b− bac̄− bāc̄

cab̄+ cāb̄− b̄bd̄+ āād̄ −ab̄d− āb̄d− c̄b̄b+ c̄āā

)
,
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where

ad̄b+ ād̄b− d̄ba− d̄bā = [a, d̄b] + [ā, d̄b] = [a+ ā, d̄b] = 0

and

acb̄+ ācb̄− cab̄− cāb̄ = [ā, c]b̄+ [a, c]b̄ = [ā+ a, c]b̄ = 0.

The equality (PO)O = P(OO) is verified similarly. �
To specify the class of multipliers we describe those (2 × 2)-matrices M(z) which commute

with σ1(A)(z, ζ).

Lemma 7.2. A (2× 2)-matrix M commutes with σ1(A)(z, ζ) if and only if M is of the form

M =

(
X −Y C
Y C X

)
, (7)

C being quaternion conjugation and X, Y are arbitrary (2× 2)-matrices with complex entries.

Proof. Here the multiplication OM is considered in the usual way. Straightforward calculation
shows that

[O,M ] =

(
[a,X]− [b, Y ]C −[b,X]− [a, Y ]C

[b̄, X] + [ā, Y ]C [ā, X]− [b̄, Y ]C

)
.

An easy computation shows that [a,X] = 0 if and only if X is of the form

X =

(
w1 −w2c

w2c w1

)
, (8)

where w1, w2 are arbitrary complex numbers. �
Needless to say that X is a (2× 2)-matrix of nonlinear operators. From the equality

X1X2 =

(
w1

1w
2
1 − w1

2w
2
2 −(w1

2w
2
1 + w1

1w
2
2)c

(w1
2w

2
1 + w1

1w
2
2)c w1

1w
2
1 − w1

2w
2
2

)
it follows readily that the matrices X of the form (8) constitute an unital algebra. Since detX =

w2
1 + |w2|2, a matrix X is invertible if and only if X ̸= 0.

Since the kernel and cokernel of a nonlinear operator X fail to be vector spaces, the index of
X is no longer defined. By the index of a differentiable nonlinear operator is usually meant the
index of its Fréchet derivative. However, the operators in question are not Fréchet differentiable
in the sense of complex vector spaces.

Lemma 7.3. The corresponding operator (8) is not differentiable unless w2 ̸= 0.

Proof. This follows by immediate computation. �
We conclude that there is no suitable Fredholm problems over the field of complex numbers

for Toeplitz operators with multipliers of special kind. From now on all consideration are over
the field of real numbers.

Using Lemma 5.1 we establish a very useful formula for the projection Π, namely, Π =

(1/2)I + C. Thus,

TM1 = (1/2)M1 + CM1,

TM2 = (1/2)M2 + CM2,

and so
TM1TM2 = TM1M2 − [C,M2]((1/2)M1 − CM1). (9)
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Lemma 7.4. Assume that M1 and M2 are (2 × 2)-matrices of smooth functions on S. Then
TM2M1 = TM2TM1 modulo compact operators on H.

Proof. If a (2 × 2)-matrix M commutes with σ1(A)(z, ξ), it is of the form (7), and so the
adjoint matrix M∗ has the same form. Hence it follows that M∗ commutes with σ1(A)(z, ξ), and
so M commutes with the adjoin σ1(A∗)(z, ξ), too. Now an elementary analysis shows readily
that

C(Mu)(z) = −p.v.

∫
S

M(ζ)Φ(z − ζ)σ(ζ)u(ζ)ds =

= M(Cu)(z) +
∫
S

GA(Φ(z − ζ), (M(z)−M(ζ))u)ζ

holds almost everywhere on the boundary for all u ∈ L2(S,C4). In particular, if u ∈ H, then

C(Mu)(z) = (1/2)(Mu)(z) +

∫
S

GA(Φ(z − ζ), (M(z)−M(ζ))u)ζ

for almost all z ∈ S. From these two equalities we conclude that the remainder [C,M2]((1/2)M1−
CM1) in (9) is a pseudodifferential operator of order −2 on the surface S. �

One deduces from the proof of Lemma 7.4 that TM2M1 = TM2TM1 holds actually up to trace
class operators, if n = 1. In this case the results of [11] apply to evaluate the index of Fredholm
Toeplitz operators.

Lemma 7.4 allows one to develop the Fredholm theory of Toeplitz operators with operator-
valued multipliers of the form (7).

The research of the author was supported by the Deutscher Akademischer Austauschdienst
and by the Russian Federation President grant of support of leading scientific schools NSH-
9149.2016.1.
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Об одном классе теплицевых операторов в случае многих
комплексных переменных

Дмитрий П. Федченко
Институт математики и фундаментальной информатики

Сибирский федеральный университет
Свободный, 79, Красноярск, 660041

Россия

Чтобы изучать теплицевы алгебры, связанные с операторами Дирака в окрестности замкнутой
ограниченной области D с гладкой границей в Cn, мы рассматриваем сингулярный интеграл типа
Коши. Мы вычисляем его главный символ, делая тем самым первый шаг к построению формул
индекса для операторов Тёплица.

Ключевые слова: операторы Дирака, интеграл типа Коши, символ, теплицевы операторы, ин-
декс.
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