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In order to study the Toeplitz algebras related to a Dirac operators in a neighborhood of a closed bounded
domain D with smooth boundary in C" we introduce a singular Cauchy type integral. We compute its

principal symbol, thus initiating the index theory.
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There are a number of ways in which the theory of Toeplitz operators can be generalised to
n dimensions, see e.g. [1,2] and the references given there. The monograph [3] presents much
more advanced theory of Toeplitz operators in several complex variables.

The paper [4] describes precisely how Toeplitz operators of "Bergman type" are related to
Toeplitz operators of "Szegd type". A remarkable connection between the theory of Toeplitz
operators 4 la [1] and the standard theory of pseudodifferential operators emerged from the
work [5]. This connection in its broad outlines is elucidated in [4], too.

This work focuses on a new class of Toeplitz operators which is more closely related to
elliptic theory. The new Toeplitz operators admit very transparent description which motivates
strikingly their study. To this end, let A be a (kx k) -matrix of first order scalar partial differential
operators in a neighborhood of the closed bounded domain D with smooth boundary S in C™.
Assume that the leading symbol of A has rank & away from the zero section of the cotangent
bundle of D. Then, given any solution u of the homogeneous equation Au = 0 in the interior
of D which has finite order of growth at the boundary, the Cauchy data ¢(u) of u with respect
to A possess weak limit values at the boundary. If A satisfies the so-called uniqueness condition
of the local Cauchy problem in a neighborhood of D, then the solution u is uniquely defined
by its Cauchy data at S. Let t(u) = Bu be a representation of the Cauchy data of uw. The
space of all Cauchy data Bu of u at the boundary is effectively described by the condition of
orthogonality to solutions of the formal adjoint equation A*g = 0 near D by means of a Green
formula, see [6, § 10.3.4]. In this way we distinguish Hilbert space of vector-valued functions
on S which represent solutions to Au = 0 in the interior of D. In particular, one introduces
Hardy spaces H as subspaces of L2(S, C¥) consisting of the Cauchy data of solutions to Au = 0
in the interior of D with appropriate behaviour at the boundary. Pick such a Hilbert space H.
By the above, H is a closed subspace of L?(S,CF) and we write II for the orthogonal projection
of L?(S,CF) onto H. If A is the Cauchy-Riemann operator then II just amounts to the Szegd
projection.

Given a (k x k)-matrix M(z) of smooth function on S, the operator Ths on H given by
w +— II(Mwu) is said to be a Toeplitz operator with multiplier M. If M is a scalar multiple of the
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unit matrix, then the theory of Toeplitz operators T, is much about the same as the classical
theory of Toeplitz operators. Otherwise the theory is much more complicated.

Finally, we briefly discuss Toeplitz operators related to the algebra of octonions Q introduced
by John T.Graves in 1843. The octonions were discovered independently by Cayley and are
sometimes referred to as Cayley numbers or the Cayley algebra.

1. Dirac operators

Let C™ be the standard n-dimensional complex space obtained from the underlying real space
R?" of variables = (21, ...,Z2,) by introducing the complex structure

Zj = Tj + 1Tntj

for j =1,...,n. As usual, we define complex derivatives by
0] 1/ 0 0
— = _,
aZj 2 81‘]' aanrj ’
0 1/ 0 n 0
— ===+ .
8@ 2 8xj 6xn+j
Let us consider a matrix-valued constant coefficient operator

0o 0 = 0 0
A(az,az) Zg%‘ajj Thigs (1)

such that
1
A*A = fZAE (2)

where A* is the formal adjoint of A and E the identity matrix. It is easily seen that the identity
(2) reduces to a system of identities for the coefficients, namely

Gag + BB = 6k E, )
3
;B +apB; =0

forall j,k=1,...,n.

It is well known that there is a solution of (3) amongst matrices of type (2771 x 2771) cf.
for instance Chapter 3 in [7].

First-order differential operators with constant coefficients factorizing the Laplacian in the
sense of (2) are called Dirac operators.

Example 1.1. The Cauchy—Riemann operator A = 0/0Z is a Dirac operator in the complex
plane.

Example 1.2. The operator

(Yo o)

is a Dirac operator in C2.
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2. Fundamental solution

To construct an explicit fundamental solution ® for a Dirac operator A we make use of
relation (2). Namely, denote by e the standard fundamental solution of convolution type for the
Laplace operator in R?”. In the coordinates of C" it reads

(n—1)! 1 1
2 2 — 2n |z|2n—27

e(z) =
if n>1,and e(z) = (1/27)In|z|, if n = 1.
Set
(n—DIA*(Z—-¢ 2 —()

(P

Bz — () =4A4* (8@“’ ;C) e(z = () =

for z # ¢, where by A*(Z — (, z — () is meant the adjoint of the matrix A(Z — ¢,z — ().

Lemma 2.1. As defined above, ®(z — () is a fundamental solution of the Dirac operator A, i.e.
PoA=FE and Ao® =E on CZ,,(C",C¥), where (k x k) is the type of E.

comp

Proof. The first relation ® o A = E is fulfilled by the very construction of ®. Since A is a
square matrix, if follows from (2) that AA* = —(1/4)AE whence ®* o A* = E on C, (C", CF).

comp

The latter equality is equivalent to Ao ® = E, as desired. O

3. Green formula

Let D be a bounded domain with smooth boundary S = 9D in C". Write v(y) =
(v1(y), ..., v2n(y)) for the unit outward normal vector of S at a point y € S.
If p(x) is a defining function of S then

Vo(y)
v(y) =
)= W)
for y € S, where Vp(y) stands for the real gradient of p at y. The complex vector v, =
Vel .-, Ven) with coordinates v, ; = v+, is called the complex normal of the hypersurface
; ; J j +3j
S. In the coordinates of C™ we obviously have
s 0nl0¢;
I Ven(Q)l

forj=1,...,n.
Denote by d¢ the wedge product d¢; A --- A d(,, and by d([j] the wedge product of all
d¢y,...,d¢, but d¢;.

Lemma 3.1. For each j = 1,...,n, the pullback of the differential form d{ AdC[j] under the em-
bedding S — C™ is equal to (—1)7=(20)" 1w, ;ds, where ds is the area form on the hypersurface
S induced by the Hermitian metric of C™.

Proof. An easy computation shows that the pullback of the differential form dy[j] under the
embedding S < C" is equal to (—1)7~'v;ds, for every j = 1,...,2n. From this the lemma
follows immediately. O
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Denote by o(¢) the principal homogeneous symbol o' (A)(¢, €) of the operator A evaluated at
the point (¢, v.(¢)/2) of the cotangent bundle of a neighborhood of D, where ¢ € S. For example,
the principal homogeneous symbol of the Cauchy-Riemann operator is equal —(1/2)(&1 + 1£2).

We are now in a position to specify the restriction of the Green operator G 4(g,u) of A to
the boundary. By a Green operator of A is meant a bilinear operator G 4 from C>(C", (CF)*) x
C>(C",C*) to differential forms of degree 2n — 1 on C", such that dG(g*,u) = ((Au,g), —
(u, A*g)y)dy holds pointwise in C™.

By [8, § 2.4.2], there is a unique Green operator for A, and its pullback under the embedding
S —C"is

Ga(g,u) = %g.A (%(l/j — W), %(Vj + @un+j)) uds = go(Q)uds
whence _
(n—1)NA*Z-¢(2z—-()

N

Ga(®(z— (), E) = o(C)ds. (4)

Lemma 3.2. Every vector-valued function u € C*(D,CF) has the integral representation

Xpu:—/SGA(@(Z—.),u)—i-/DtI)(z—.)Audv,

where dv is the Lebesque measure in R?™ and xp the characteristic function of D.
Proof. This is a very special case of a general Green formula related to an elliptic system of
differential equations, see for instance [8, § 2.5.4] and elsewhere. O

Needless to say that this formula extends to the case of Sobolev class functions u € H'(D, C¥)
as well as to more general functions on D.

4. Toeplitz operators

Theorem 4.1. Let uy € L%(S,CF). In order that there be a solution u to Au = 0 in the interior
of D, which has finite order of growth at S and coincides with ug on S, it is necessary and
sufficient that

[ 9(uads =0 5)
s
for all solutions of the formal adjoint equation A*g = 0 near D.

Proof. See Theorem 10.3.14 in [6]. O

We denote by H the (closed) subspace of L2(S,C¥) that consists of all functions u satisfying
the orthogonality conditions (5). The elements of H can be actually specified as solutions to
Au = 0 of Hardy class H? in the interior of D, see [6, § 11.2.2]. The orthogonal projection IT of
L?(S,CF) onto H is therefore an analogue of Szegd projection.

Definition 4.2. Let M(z) be a (k x k)-matriz whose entries are bounded functions on S. By a
Toeplitz operator Tyy with multiplier M is meant the operator uw — II(Mu) in H.

More generally, if ¥ is a (k x k)-matrix of pseudodifferential operators of order 0 on S,
then ¥ maps L2(S,C*) continuously into L?(S,CF). Therefore, the composition Ty = IV is a
continuous self-mapping of H which we call a generalised Toeplitz operator.

If the projection II is a classical pseudodifferential operator on S, then from the equality
12 = II it follows readily that the order of IT just amounts to zero. Hence, the generalised Toeplitz
operators on S form a subalgebra of the C*-algebra of all zero order classical pseudodifferential
operators on C>(S, CF).

- 209 -



Dmitrii P. Fedchenk A Class of Toeplitz Operators in Several Complex Variables

5. The generalised Cauchy type integral

To clarify the nature of the generalised Szegd projection II we introduce the singular Cauchy
type integral

Cu(z) = —p.v. /s GA(P(z—.),u) (6)

for z € S, where u € L?(S,C*). The principal value of the integral on the right-hand side exists
for almost all z € S and it induces a bounded linear operator in L?(S, C*).

Lemma 5.1. The operators (1/2)I & C are projections on the space L?(S,CF).

Proof. This follows from the equality C? = (1/4) by a trivial verification, cf. for instance [9]. O

The generalised Cauchy type integral (6) is a classical pseudodifferential operator of order 0
in C>°(S,CF). We finish this section by evaluating its principal homogeneous symbol. To this
end, we identify the cotangent space TS of S at a point z € S with all linear forms on TFR?"
which vanish on the one-dimensional subspace of T:R?" spanned by v(z). Since TFR?" = R?",
one can actually specify TS as the hyperplane through the origin in R?" which is orthogonal to
the vector v(z).

Lemma 5.2. For each z € S and £ € T} S, the symbol of order 0 of the operator C is equal to
* E
o0(0)(z€) = o (A%) ( ) o
Proof. By assumption, the Laplacian A*A is a second order elliptic differential operator on
C>(U,C¥). It has a parametrix P which is a (k x k)-matrix of scalar pseudodifferential operators
of order —2 on U. The operator ® differs from PA* by a smoothing operator, and so it has the
principal homogeneous symbol (02(A*A)) 1ol (A*) which is a left inverse for o1 (A).
Formula (6) just amounts to saying that

Cu(z) = =®(a(¢)u({)ls),

where (g is the surface layer on S. We thus see that the pseudodifferential operator C on S is
the restriction to S of the pseudodifferential operator

U =—-Poo(z)

defined in a neighborhood of S. This latter is of order —1 and its principal symbol is easily
evaluated, namely

o (W)(2,8) = =0 (®)(2,8) 0(2) = —(0* (A" A)(2,6)) " o ()

for z in a neighborhood of S and £ € C"\ {0}. A familiar argument now shows that the principal
symbol of C is given by the formula

1

2P /O:o o (W) (2, tv(z) + &) dt =

a%(C)(z,¢)
_ @ / TR AY (2t (2) + €))L 0L (A (2 0 (2) + €) dit

27 o

for all z € S and ¢ € R?"\ {0} orthogonal to v(z). Note that the integral on the right-hand side
diverges, however, its Cauchy principal value exists, which is due to the condition (v(z),&) = 0.
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Since

o?(A" A)(z,€) = 7[€1°E,

we shall have established the desired equality if we prove that

1 /°° 11
Ar J_oo [tv(2) + €2 41¢
for all z € S and ¢ € R?"\ {0} orthogonal to the vector v(z). A trivial verification shows that
[tv(2) + €2 =12 + [¢[?

whence

L/m;dt_i Tl 11
A [ oo ltr(2) + €2 An Jo o+ [g2 T 4l

as desired. 0

6. Index of Toeplitz operators

We now return to generalised Toeplitz operators Ty = II¥ in H introduced in Section 4., see
Definition 4.2 and below. Here, II is a projection of L?(S,C*) onto H. We restrict ourselves to
the case where II is a classical pseudodifferential operator of order zero in C*(S,C*). We are
interested in characterizing those Toeplitz operators in H which possess the Fredholm property.
To this end we extend Ty from H to all of L2(S,C*) in a special manner and use Fredholm
criteria for operator algebras with symbols.

Lemma 6.1. A Toeplitz operator Ty in H is Fredholm if and only if so is the operator
Ey :=TgIl + (I —1I)
in L?(S,CF).
Proof. We see that Ty is the restriction of the pseudodifferential operator
Ey=Tylla(I-1): HoH - Ho H

on H.

If Ey is Fredholm then ind Ey is finite. But ind Fy = ind Ty +ind (I —II), where Ty : H — H
and (I —II) : Ht — H*. Tt is clear that ind (I — II) = 0, whence ind Ty is also finite. And
moreover, ind Fy = ind Ty. O

The operator Eyy on L2(S,C¥) is pseudodifferential of order zero. Its principal homogeneous
symbol just amounts to ¢°(Ey) = o°(I)o?(¥)o" (1) + ¢%(I — II) away from the zero section of
T*S. Given any s € R, the operator Fy in H*(S,CF) is known to be Fredholm if and only if it
is elliptic, i.e. 0%(Fy)(z,&) is invertible for all (z,£) € T*S with &€ # 0. Moreover, the index of
this operator is actually independent of the particular choice of s and it can be evaluated by the
familiar Atiyah—Singer formula [10].
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7. Concluding remarks

In the sequel we restrict our attention to a special Clifford algebra corresponding to the case
n = 4. Clifford algebras have important applications in variety of fields including string theory,
special relativity and quantum logic. The algebra in question is called the algebra of octonions

and denoted by 0. To wit,
(1 1)
q2 0

0
+ EE ]), 7 is the fundamental quaternion unit and the bar denotes the
2244

0
where ¢; =
i (82’1
conjugate of a quaternion.
Let us rewrite the action of the operator A on a quaternion-valued function in complex

coordinates, that is

51 —52 —53C 64C U1

Au — ( ) +<?3] —0s *5?4] ) ( uy + usj ) _ qz <?1 ?45 ?3C Ug
02 — 049 01— 03y U + 4] 03¢ =04 Oy —0o uz |’

—54C —53( 82 81 Uy

¢ being the complex conjugation and 5j = 0/0z;.

The octonions have the dimension eight. Because of nonassociativity they can not be repre-
sented as quaternion (2 x 2)-matrices with usual multiplication. The product of two octonions
O = (a,b) and P = (¢, d) is defined via the Cayley—Dickson construction by

(a,b)(c,d) = (ac — db, da + be).

It corresponds to the special multiplication of the matrices

a —b c —d ac—db —da — bc
D‘B—<5 a) <J 5)_<c13+ac? Ed+éa)'
It remains to show that the multiplication O is alternative, i.e. O(OP) = (OO)P and
(PBO)O =P(OO) for all matrices O, P.

Lemma 7.1. The matrices O constitute an alternative algebra.

Proof.
a —b ac—db —da — be
OOF) = < b a ) ( cb+ad —bd+ éca ) B
_( aac— adb — cbb — adb —daa — béa + bbd — béa
“ \ acb— dbb+ acb+ aad —bda — bbé — bda + ¢aa
and

aa —bb —ba — ba ¢ —d -
ab+ab —bb+ aa d ¢ /)

aac — bbe — dba — dba  —daa + dbb — baé — baé
cab + cab — bbd + aad —abd — abd — ¢bb + caa

(OO)¥
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where
adb + adb — dba — dba = [a, db] + [a, db] = [a + @, db] = 0
and
acb + ach — cab — cab = [a, c]b + [a,c]b = [a + a,c]b = 0.
The equality (PO)O = P(OO) is verified similarly. O

To specify the class of multipliers we describe those (2 x 2)-matrices M (z) which commute

with o1 (A)(z, ¢).
Lemma 7.2. A (2 x 2)-matriz M commutes with o*(A)(z,¢) if and only if M is of the form

M:(gf(c _E/(C)’ (7)

C being quaternion conjugation and X, Y are arbitrary (2 X 2)-matrices with complexr entries.

Proof. Here the multiplication O M is considered in the usual way. Straightforward calculation
shows that
X —-1bY —[b,X] —[a,Y
oan_( @XI=bYIC —bX]-laYiC\
[b7X] + [a7Y]O [a7X] - [b7Y]O

An easy computation shows that [a, X] = 0 if and only if X is of the form

()

waC w1

where wy, wy are arbitrary complex numbers. O
Needless to say that X is a (2 x 2)-matrix of nonlinear operators. From the equality

1,.2 1--2 12 1,.2

Xlx2? — Wiwi — Wy — (w7 + wiwj)e
O\ (wiw? + wiwd)c wiw? — wiw3
QW1 1wy 1wy 2W3

it follows readily that the matrices X of the form (8) constitute an unital algebra. Since det X =
w? + |wz|?, a matrix X is invertible if and only if X # 0.

Since the kernel and cokernel of a nonlinear operator X fail to be vector spaces, the index of
X is no longer defined. By the index of a differentiable nonlinear operator is usually meant the
index of its Fréchet derivative. However, the operators in question are not Fréchet differentiable
in the sense of complex vector spaces.

Lemma 7.3. The corresponding operator (8) is not differentiable unless ws # 0.

Proof. This follows by immediate computation. O

We conclude that there is no suitable Fredholm problems over the field of complex numbers
for Toeplitz operators with multipliers of special kind. From now on all consideration are over
the field of real numbers.

Using Lemma 5.1 we establish a very useful formula for the projection II, namely, II =
(1/2)I +C. Thus,

Tan = (1/2)M* +CM*,
Tare = (1/2)M? + CM?,

and so
TanTarz = Tapare — [C, M?]((1/2)M* — CM™). (9)
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Lemma 7.4. Assume that M and M? are (2 x 2)-matrices of smooth functions on S. Then
Thrr2arr = Thar2Tan modulo compact operators on H.

Proof. If a (2 x 2)-matrix M commutes with o'(A)(z,&), it is of the form (7), and so the
adjoint matrix M* has the same form. Hence it follows that M* commutes with o*(A)(z, ), and
so M commutes with the adjoin o!(A*)(z,&), too. Now an elementary analysis shows readily
that

C(Mu)(z) = —p.v. /S M(Q)®(= — Qo (C)u(C)ds =
— M(Cu)(z) + / GA®(z — C), (M(2) — M(Q))u)c

holds almost everywhere on the boundary for all u € L?(S,C%). In particular, if u € H, then
COME) = (/D)) + [ Gal®(z = 0. (M(:) = MO

for almost all z € S. From these two equalities we conclude that the remainder [C, M?]((1/2)M*—
CM?) in (9) is a pseudodifferential operator of order —2 on the surface S. O

One deduces from the proof of Lemma 7.4 that T, n, = Tar, Thr, holds actually up to trace
class operators, if n = 1. In this case the results of [11] apply to evaluate the index of Fredholm
Toeplitz operators.

Lemma 7.4 allows one to develop the Fredholm theory of Toeplitz operators with operator-
valued multipliers of the form (7).
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OO0 oaHOM KJIacce TEeMJINIEBBIX OIIEPATOPOB B CJIydae MHOTUX
KOMIIJIEKCHBIX ITepeMEeHHbIX

Hmvurpuii I1. PemgueHko

MHucTuTyT MaTeMaTuKu ¥ QyHJIaAMEHTAIBHONW MH(MOPMATHKY
Cubupckuii dhesepasbHbIil YHUBEPCUTET

Csobopunrit, 79, Kpacuosipck, 660041

Poccus

Umobv, u3yuams MenAUYESd, aA2e0Dbl, C8A3AHKBLE C onepamopamu, Jupara 6 okpecmHocmu 3aMKHYymMot
ozparusennoti obaacmu D ¢ 2aadkoti epanuueti 6 C™, mol pacemampusaem cunzyAAPpHBLTL UHMEZPaL MUNG
Kowu. Muv, svimucasem e20 24a6Hbil CuUME04, 0eAGA TEM CaAMbLM NEPELIT Wa2 K NOCMPoeHuto Gopmya
undexca das onepamopos Ténauua.

Karoueswie caosa: onepamopv. Jlupakxa, unmezpas muna Kowu, cumeos, mMensuyesv, onepamopvl, uH-
dexc.
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