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Представлена краткая характеристика детерминированного и вероятностно-статисти
ческого методов расчёта потерь электроэнергии (ЭЭ) в распределительных электрических 
сетях 6–35 кВ. Определено оптимальное сочетание веса детерминированного и вероятностно-
статистического подходов при комбинированном расчёте потерь ЭЭ по критерию минимума 
ошибки.
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Introduction

Application of the principles of the combined association of deterministic and stochastic methods 
became a defining trend for constructing algorithms for calculating power loss with high precision and 
the desired confidence level [1-3]. Determination of power losses with high reliability (accuracy and 
reliability) it is necessary to solve a number of problems of operation, reconstruction and optimization 
of power distribution networks.

Electricity losses  – the value of monthly reporting as a measure of evaluating the quality of 
performance and the technical condition of networks, the basis of justification of tariffs for electricity 
and valuation losses. Especially important are the requirements for the accuracy and reliability of the 
determination of power losses in assessing the effectiveness of interventions aimed at reducing losses, 
the solution of optimization problems in a production staged by the criterion of minimum electric 
energy losses [4, 5].

Combined approach in the determination of power losses

The most effective and common methods of calculating power losses are based on the use of 
averages (mathematical expectations) load, defined capacity:
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The last in the map any workload at any arbitrary point in time are the most accurate and 

reliable integrated parameters of electric modes, taking into account compact point the whole set of 

modes (multimode) for a given time interval T. 

For circuit electrical distribution system with m longitudinal sections of the load losses of 

electricity in general are determined by the exact summation (direct integration) of active power 

losses on all set of modes of analyzed time period T (day, month, quarter, year) according to the 

expression: 
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Under the aforementioned write the expression for energy loss as the sum of the main 

component WM , determined by average load and variance W  component reflecting the 

deviation of loads from the average values. 

The main component WM
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Given the deterministic and random parameters of the networks most natural account of multimodal 
by combining deterministic and probabilistic and statistical methods into a single combined algorithm 
of calculation of power losses [1-3] that in the greatest measure allows to consider the properties and use 
possibilities and advantages of combining algorithms. Thus it is necessary to allocate two directions 
of this Association.

The first direction of the combined method of determining electricity losses in distribution 
networks is the direct mutual addition of deterministic-stochastic approaches and the model balancing 
the primary and the dispersion component of energy losses [2, 3]. A deterministic algorithm for 
calculating the technical component of losses, based on the operation data systems head of accounting 
and using the information on the composition, configuration and circuit parameters, is implemented 
in the form:
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and the equivalent voltage source is a power center electrical distribution system: 
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which calculates base established regime at the average loads and cumulative power losses in the 

elements of the electrical distribution system. If the average value of the coefficient fk , defined by 

d daily measurements of the released electric power PW
 
and QW in the network are not taken into 

account the individual characteristics of the mode of power consumption of different network 

fragments, which leads to additional error. The unification of the deterministic method into a single 

algorithm with stochastic allows to compensate for the lack. 

Stochastic method of calculating the power losses is based on the factor model of electrical 

loads. The theoretical foundations of such modeling, a statistical model of the established regimes 

and the practical implementation of the corresponding probabilistic-statistical apparatus in the 

problem of determining the integral characteristics of the modes are presented in [6-11]. 

The account of the multimodal network is performed using the correlation moment matrix, 

is a compact statistical model which is obtained based on the method of principal component is a 

private implementation of factor analysis [9-11]. 
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This representation of loads has been effective since retrieving (7) acceptable accuracy 
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Simulation (7)÷(10) allows to obtain expressions for the correlation moments of the 
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 Calculation of electricity losses is based on a calculation of the established regime and K of 

solutions of systems of linear equations (10). 

In light of the definition of the main component of the power losses at medium loads WM  

(4) and variance W based stochastic approach (12) and comparing expressions (4) and (12) 

specifies the shape factor: 
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in the distribution networks allows alternately specify the basic and dispersion components of 
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the total energy losses, identified by both algorithms (4) and (12) are balanced to the same value, as 

a rule, the results of two or three approximations [2, 3]. 

The proposed combined method allows to reduce the component of error arising from the 

spread of the influence calculated according to (5), (6) only the main part fk of the whole scheme. 

The accuracy of the calculation of the technical (load) power losses for overhead lines in the general 

case depends on a consideration of the totality of regime and atmospheric conditions. 

Effect on power losses in overhead lines (through parameters R(tp) is a function of the 

temperature of the wire) intramonth changes of regime-atmospheric factors (air temperature, speed 

and wind direction, solar radiation, etc.) and electrical energy consumption is taken into account in 
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 Calculation of electricity losses is based on a calculation of the established regime and K of 
solutions of systems of linear equations (10).

In light of the definition of the main component of the power losses at medium loads MΔW (4) 
and variance σΔW based stochastic approach (12) and comparing expressions (4) and (12) specifies the 
shape factor:
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using the correction factor [12-14]. Minimization of error is achieved by dynamic amendments 
depending on the structure and network utilization [14, 15]. The total error of calculation 
of electricity losses in the network is characterized with reliability of 0.95 the average value 
(close to zero) in the interval from -0,05 to -0,09 % and the greatest variation from -2.5 to  
1.5 %.

Another implementation of the combined approach (algorithm) associated with the direct use of 
the results of deterministic 
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is determined by the results cyclically performed d-calculation of the established regimes, each of 

which calculated total value of power losses jP in the network for the interval j of graphs nodal 

loads. 

The change in the average selective value of the relative error for various combinations of 

deterministic and probabilistic-statistical results of calculation of energy losses for a statistically 

representative set of schemes of distribution grids presented in the appendix. 

App 

 Determination of the optimal weight (ratio) of the results of deterministic and stochastic 

algorithms for calculation of power losses by the combined method. Optimal according to criterion 

 (12) calculation methods of electric energy 
losses in the composition of the weighted average value [1].

using the correction factor [12-14]. Minimization of error is achieved by dynamic amendments 

depending on the structure and network utilization [14, 15]. The total error of calculation of 

electricity losses in the network is characterized with reliability of 0,95 the average value (close to 

zero) in the interval from -0,05 to -0,09 % and the greatest variation from -2,5 to 1,5 %. 

Another implementation of the combined approach (algorithm) associated with the direct use of the 

results of deterministic detW  (4) and stochastic stochW  (12) calculation methods of electric energy 

losses in the composition of the weighted average value [1]. 

  stochestim WWW det ,    (15) 

where ,  is the best (optimal) values of the weights that are associated with ratios  1
 
that 

determine the weight (part) of the result of each algorithm in the calculation of the weighted 

average value of losses of electricity (16). 

  stochestim WWW )1(det     (16) 

are determined by statistical tests on a representative sample of  N schemes of distribution networks. 

The optimality criterion of the composition of the weighted average value adopted low average 

linear deviation (relative error): 

%100
)(1)(

1





 



N

i irefer

ireferiestim
estim W

WW

N
W


           (17) 

where the estimated value )(iestimW of losses in the i-th diagram are calculated for the weights of 

a stochastic variable with the result of this step, for example, equal to 0,1 and with decreasing order 

of magnitude around the minimum of function (17); ireferW  is the reference value of the power 

losses in the i-th scheme with m-branches 

 
 

 
m

j

T

j

d

j
jjrefer tPdttPW

1 0 1
)(     (18) 

is determined by the results cyclically performed d-calculation of the established regimes, each of 

which calculated total value of power losses jP in the network for the interval j of graphs nodal 

loads. 

The change in the average selective value of the relative error for various combinations of 

deterministic and probabilistic-statistical results of calculation of energy losses for a statistically 

representative set of schemes of distribution grids presented in the appendix. 

App 

 Determination of the optimal weight (ratio) of the results of deterministic and stochastic 

algorithms for calculation of power losses by the combined method. Optimal according to criterion 

	 (15)

where α, η is the best (optimal) values of the weights that are associated with ratios η = 1 – α
 
that 

determine the weight (part) of the result of each algorithm in the calculation of the weighted average 
value of losses of electricity (16).

using the correction factor [12-14]. Minimization of error is achieved by dynamic amendments 

depending on the structure and network utilization [14, 15]. The total error of calculation of 

electricity losses in the network is characterized with reliability of 0,95 the average value (close to 

zero) in the interval from -0,05 to -0,09 % and the greatest variation from -2,5 to 1,5 %. 

Another implementation of the combined approach (algorithm) associated with the direct use of the 

results of deterministic detW  (4) and stochastic stochW  (12) calculation methods of electric energy 

losses in the composition of the weighted average value [1]. 

  stochestim WWW det ,    (15) 

where ,  is the best (optimal) values of the weights that are associated with ratios  1
 
that 

determine the weight (part) of the result of each algorithm in the calculation of the weighted 

average value of losses of electricity (16). 

  stochestim WWW )1(det     (16) 

are determined by statistical tests on a representative sample of  N schemes of distribution networks. 

The optimality criterion of the composition of the weighted average value adopted low average 

linear deviation (relative error): 

%100
)(1)(

1





 



N

i irefer

ireferiestim
estim W

WW

N
W


           (17) 

where the estimated value )(iestimW of losses in the i-th diagram are calculated for the weights of 

a stochastic variable with the result of this step, for example, equal to 0,1 and with decreasing order 

of magnitude around the minimum of function (17); ireferW  is the reference value of the power 

losses in the i-th scheme with m-branches 

 
 

 
m

j

T

j

d

j
jjrefer tPdttPW

1 0 1
)(     (18) 
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Fig. 1. - Diagram of the electrical network 35/10 kV 

The network, built on a radial type, made of the same wire aluminum-steel 70/11 full 

resistance 35,043,00

_
jz  Ohm/km. Parameters of transformers are given in table. 1. 

Table 1. The parameters of transformers of electric networks 

The 

section of 

the 

network 

 

Type transformer 

(oil transformer 

regulation under 

load) 

(In Russian) 

kVUnom ,  ,TR  ,TX  SGT ,  SBT ,  

1 – 4 ТMN-6300/35 35 11 1,40 14,6 7,51 46,29 
2 – 3 ТМN-4000/35 35 11 2,60 23,0 5,47 32,65 
5 – 6 ТМN-6300/35 35 11 1,40 14,6 7,51 46,29 
8 – 7 ТМN-1600/35 35 11 12,4 49,2 4,16 22,45 

A power consumption regime determined branch daily charts (fig. 2.) is approximated using 

a d=12 intervals of constancy (tab. 2).   

 Ohm/km. Parameters of transformers are given in table. 1.
A power consumption regime determined branch daily charts (Fig. 2.) is approximated using a 

d=12 intervals of constancy (Table. 2).
The load is set at nodes 3 and 7, graphs a) with 

 

a) b)                                        c) 

a) lighting in residential buildings; b) the food industry; c) light industry. 
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On the basis of the thus formed data (5), (6), (20) system head of accounting determined by 
the value of the power losses in a deterministic method (4), implemented in the industrial program 
«REG10PVT» [14-16].

Using the energy consumption data (19) and respectively medium loads (1) calculated power 
losses of the stochastic method (12) through the program «SETI» [8].

For a given sample schemes of distribution grids as a result of comparing the weighted average 
(combined) electricity losses (15) formed with different combination α of the results of deterministic 
and stochastic methods, reference values (18) the obtained dependence (Fig. 3) changes in average 
sample values δaver = δΔW of the relative error (17).

It is the smallest value of δaver = 0,020 % with the empirical dispersion σ2 = 8,73, lie in a narrow 
range of variation sign of the error α = [0,7; 0,8].

Clarification of the minimum value of the function (17) in the interval in increments of α = 0,01 
(Fig. 3.) gives minor amendment sample mean error δaver = 0,019 %
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a fixed step for each scheme. Volume independent of experiments on random δ (17) is determined by 
the number of circuits N the sample.

With the reliability 

Give interval estimates of the average error. Every experience (experiment) is implemented 

according to the results of calculation of electricity losses deterministic and stochastic methods and 

the analysis of the resulting weighted average loss in weight   change in the interval from 0 to 1 

with a fixed step for each scheme. Volume independent of experiments on random  (17) is 

determined by the number of circuits N the sample. 

With the reliability 95,0  of and the number of degrees of freedom 

191201  Nk  in accordance with the value of the student distribution quantiles is 

086,2t  [19]. Then with a precision of 41,1
19
95,2086,2 

k
t  

 
mathematical expectation 

of the error of 019,0aver  is covered by confidence interval 

  %)42,1;38,1(;   averaver  and a reliability of 0,95. 

Conclusion 

The performance of the above combined approaches allows to obtain the estimated value of 

the loss in electricity with high reliability, that is, with an average error approaching zero and scatter 

not exceeding the error of the original data. The credibility of the computed value of losses is higher 

than to the desired parameter W derived from independent use of deterministic or probabilistic-

statistical methods. 
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