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In article the comparative analysis of differential and integrated consideration of thermodynamic 
process is carried out. It is shown that use of the rule of replacement of variables of integration 
leads to correct output of main thermodynamic functions (an enthalpy, Helmholtz's function and 
Gibbs's function). It occurs through integrated consideration of thermodynamic process when 
parameters change in final (limited) intervals. It is established that Integrated consideration of 
the law of energy conservation in general view for the moving final volume of liquid or gas 
leads to «expanded» option of formula for the first law of thermodynamics. At the same time the 
equations recorded in differential form taking into account different types of technical work. 
Communications between the work of pushing through of some volume of gas and work connected 
with pressure at expansion of gas volume are shown.

Keywords: thermodynamic function, pushing through work, thermodynamic potentials, enthalpy, law 
of energy conservation, moving volume of gas, mobile borders, final volume, final interval of change.

Citation: Zhakatayev T.A., Sakipov K.E., Kakimova K.Sh., Аytmagambetova M.B. About some properties and features of 
differential and integrated representations in the theory of thermodynamic functions, J. Sib. Fed. Univ. Eng. technol., 2016, 
9(8), 1314-1325. DOI: 10.17516/1999-494X-2016-9-8-1314-1325.

	 © Siberian Federal University. All rights reserved
*	 Corresponding author E-mail address: Toksanzh@yandex.kz



– 1315 –

Toksan A. Zhakatayev, Kamalkhan E. Sakipov… About Some Properties and Features of Differential and Integrated…

О некоторых свойствах  
и особенностях дифференциальных  
и интегральных представлений  
в теории термодинамических функций 
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К.Ш. Какимоваб, М.Б. Айтмагамбетоваа
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бКарагандинский государственный технический университет 

Казахстан, 100027, Караганда, ул. Бульвар Мира, 56

В статье проведен сравнительный анализ дифференциального и интегрального рассмотрения 
термодинамического процесса. Показано, что использование правила замены переменных 
интегрирования приводит к корректному выводу основных термодинамических функций 
(энтальпия, функция Гельмгольца и функция Гиббса). Это происходит при интегральном 
рассмотрении термодинамического процесса, когда параметры изменяются в конечных 
(ограниченных) интервалах. Установлено, что интегральное рассмотрение закона сохранения 
энергии в общем виде для движущегося конечного объема жидкости или газа приводит к 
“расширенному” варианту формулы для первого закона термодинамики. При этом уравнения 
записываются в дифференциальной форме с учетом различных видов технической работы. 
Показаны связи между работой проталкивания некоторого объема газа и работой, связанной с 
давлением при расширении объема газа. 

Ключевые слова: термодинамическая функция, работа проталкивания, термодинамические 
потенциалы, энтальпия, закон сохранения энергии, движущийся объем газа, подвижные 
границы, конечный объем, конечный интервал изменения. 

1. Introduction

Thermodynamic functions are widely applied in the theory of metallurgical processes and in 
power system – [1 – 7]. 

At a conclusion of the equations for the isochoric – isothermal potential of F (Helmholtz’s energy) 
and the isobaric – isothermal potential of G (Gibbs’s energy) at the same time it is possible to allocate 
and distinguish two approaches. It is possible to call the first approach differential – [4-7], and the second 
approach – integrated – [8-12]. However in literature the distinctive and similar parties of these two 
aren’t considered and, differing approaches at a conclusion of the main equations for thermodynamic 
processes aren’t analyzed. In the present article we will carry out the analysis, theoretical justification 
and we will specify in what actually similarity and distinction of these two approaches at a conclusion 
of basic formulas for thermodynamic functions.

2. Decision of the task

At the beginning we will consider a conclusion of the main equations on the basis of differential 
ratios, following results of works [3-7]. 

We will write down the first law of thermodynamics in a look 
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From (6) follows 
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From (7) it is visible that size 
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is function of a condition of system (U, S) and full differential of some function which 
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From (14) the proof of an integrated formula (4) also follows. 
Now, following the logic of calculations used in works [8-12], we will carry out a conclusion of 

the main integrated equations (4), (8), (13). Our difference is expressed only that we in addition use the 
schedule of any thermodynamic process in T-S coordinates. Change of thermodynamic functions in 
the intervals final (limited), fixed, between points 1-2 is considered. 

In figure 2 the schedule of any thermodynamic process in T – S coordinates is shown.
From consideration of this drawing it is visible that 
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Integrated formulas (8) and (13) directly follow from a formula (17).    

    At the same time used the graphic analysis of thermodynamic process in T-S and P-V 

coordinates in common.              

    Thus we have proved that the basic thermodynamic formulas for Gibbs's function - G, 

Helmholtz - F and enthalpies – H it is possible to bring out of integrated consideration of 

thermodynamic process correctly. When all changes of the main sizes happen in final 

(limited, fixed) limits, points 1-2 in figure 2. From the integrated equation (17) it is also 

visible that variables for the G-(13) function are P and T. Therefore, integrated 

consideration leads without any complications to the same obvious results, as differential 

consideration. At the same time, the initial, starting moment is the physical law of 

conservation and transformation of energy expressed in thermodynamic sizes - (1).                                  

    By consideration of mechanical work which is spent for change of volume of gas the 

formula [8-13] is used  

                                                                                                                                                       

                                                         

                    

where F-force, N, the s-passable way, m, P-pressure, Pa, V-the volume, m3. 

    From the point of view of mechanics force is function from the passable way of  F=F (s). 

From this it follows that the following function    is integrated. It is standard. 

However, in mechanics it isn't accepted to integrate as work expression  .  
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Fig. 1. Scheme of Thermodynamic Process in P-V coordinates [8-12].
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Fig. 2. The scheme of thermodynamic process in T-S coordinates 
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Further on the basis of (14) and (15) we will receive
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Helmholtz - F and enthalpies – H it is possible to bring out of integrated consideration of 

thermodynamic process correctly. When all changes of the main sizes happen in final 

(limited, fixed) limits, points 1-2 in figure 2. From the integrated equation (17) it is also 

visible that variables for the G-(13) function are P and T. Therefore, integrated 
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where F-force, N, the s-passable way, m, P-pressure, Pa, V-the volume, m3. 
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Though, from the point of view of mathematics the   function can always have an 

inverse function of  . Therefore, by consideration of some physical processes function 

and an independent variable (argument) aren't rearranged by places at integration. The 

thermodynamics shows us that such shift by places when the argument turns into function, 

and function plays an argument role (an independent variable) it makes a certain physical 

sense. As an important example we will give definition of entropy of   (see 

formula (16)) where the absolute temperature of T in this case plays a role of the integrated 

T=T (Q) function, the expression standing under integral, and an independent variable is 

the amount of heat of Q.      

    In this regard we had had some new, additional views on interpretation of two types of 

thermodynamic work of PdV, VdP and their communication with other members in the 

general law of energy conservation. In work [11] (paragraph 2-1) the following equations 

which express the first law of thermodynamics and the law of energy conservation in 

moving volume are presented, you look also [5-7]: 

                                                  

              ,           (18)  

 

                                              ,                                                 (19)  

 

where   - warmth, J, M – the mass of gas, kg, g – the acceleration of gravity, m /s2, h-

height showing change of potential energy, m, ,   - stream speeds in two various 

sections, m/s,  - technical work, J.      

    On the basis of comparison of two various records (types) of the law of energy 

conservation (the law of thermodynamics) in [5-9, 11, 12] for specific work of expansion of 

gas the following equation is received 

     

                     .     (20)     

   

In the equation (20) all members are carried to unit of mass, =[J/kg], v=[m3/kg],  = 

[J/kg]. However, at a conclusion of the equation (20) in certain cases can make a 

mechanical mistake. In our opinion, the first law of thermodynamics in her expanded 

record, or in other words, the law of energy conservation in the moving volume of a gas 

stream taking into account different types of transformation and change of energy, it is 

necessary to write down in the form of (18) or in the following look 

 (see formula (16)) where the absolute temperature of T in this case plays a role of the 

integrated T=T (Q) function, the expression standing under integral, and an independent variable is 
the amount of heat of Q. 

In this regard we had had some new, additional views on interpretation of two types of 
thermodynamic work of PdV, VdP and their communication with other members in the general law of 
energy conservation. In work [11] (paragraph 2-1) the following equations which express the first law 
of thermodynamics and the law of energy conservation in moving volume are presented, you look also 
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and an independent variable (argument) aren't rearranged by places at integration. The 

thermodynamics shows us that such shift by places when the argument turns into function, 

and function plays an argument role (an independent variable) it makes a certain physical 

sense. As an important example we will give definition of entropy of   (see 

formula (16)) where the absolute temperature of T in this case plays a role of the integrated 

T=T (Q) function, the expression standing under integral, and an independent variable is 

the amount of heat of Q.      

    In this regard we had had some new, additional views on interpretation of two types of 

thermodynamic work of PdV, VdP and their communication with other members in the 

general law of energy conservation. In work [11] (paragraph 2-1) the following equations 

which express the first law of thermodynamics and the law of energy conservation in 

moving volume are presented, you look also [5-7]: 
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where   - warmth, J, M – the mass of gas, kg, g – the acceleration of gravity, m /s2, h-

height showing change of potential energy, m, ,   - stream speeds in two various 

sections, m/s,  - technical work, J.      

    On the basis of comparison of two various records (types) of the law of energy 

conservation (the law of thermodynamics) in [5-9, 11, 12] for specific work of expansion of 

gas the following equation is received 
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In the equation (20) all members are carried to unit of mass, =[J/kg], v=[m3/kg],  = 

[J/kg]. However, at a conclusion of the equation (20) in certain cases can make a 

mechanical mistake. In our opinion, the first law of thermodynamics in her expanded 

record, or in other words, the law of energy conservation in the moving volume of a gas 

stream taking into account different types of transformation and change of energy, it is 

necessary to write down in the form of (18) or in the following look 
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At the same time we assume that there are unambiguous (continuous) inverse functions 
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  At the same time, from the point of view of physics of process of  . Therefore, 

formulas (18), (21) are true. Our these representations are confirmed also by results of work 

[14]. Therefore, the equations (18), (21) are only expanded option of a formula (1) where 

possible types of change of energy of a stream of the gas moving in a potential gravitational 

field and other possible types of technical work are in addition considered. In other words, 

without formulas (18) and (21), the size    and    - formulas (20), (22) - (24) can't be 

connected directly among themselves in any way.     
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Existence of some physical law, (18), (19), (21) doesn’t mean similar at all that between his 
independent variables surely there has to be some direct functional link of 
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    Existence of some physical law, (18), (19), (21) doesn't mean similar at all that between 

his independent variables surely there has to be some direct functional link of  . 

In which there is no binding member , watch a formula (20).         

    It should be noted that work of pushing through of    doesn't appear 

"automatically" when replacing the variable  on , you watch formulas 

(19) - (23) as it can seem in certain cases.   

    The matter is that work of pushing through of   is absolutely independent variable in 

the general expression (18). Work of pressure at pushing through of liquid volume can be 

performed by external foreign forces.           

    Formulas (18), (21) can also be brought out of the general law of energy conservation in 

the moving final volume of liquid or gas [15 – a formula (11)], [16]. For this case we will 

formulate the law of energy conservation in the form of the following integrated ratio, fair 

for the mobile final volume of the continuous environment 
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Where ie  - internal energy per unit mass, J/kg, pot,ge  - the potential energy of unit of mass 

of liquid connected with leveling height, J/kg, w   - the speed of the movement of liquid or 

gas, m/s, fq - a thermal flow of Fourier, W/m2, Rq  - a thermal stream from radiation, 

W/kg, mq  - a thermal stream from mass sources of heat, W/kg, np


 - a vector of density of 

superficial force, Pa, mf


- the mass density of volume force, N/kg, m
techl  - all types of 

technical work carried to unit of mass and to a unit of time, W/kg.      

    Carrying out some transformations and calculations similar to that which are carried out 

in work [15], we have proved that from an integrated formula (26) the equations for final 

thermodynamic process (18), (21) turn out. The formula (26) differs from a formula (11) 

from work to [15] those that at the right part there is an additional member for technical 

work  m
techl , J/kg.               
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in work [15], we have proved that from an integrated formula (26) the equations for final 

thermodynamic process (18), (21) turn out. The formula (26) differs from a formula (11) 

from work to [15] those that at the right part there is an additional member for technical 

work  m
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tensor of superficial pressure forces, n  - a single normal to a surface of the considered 

volume.  

    As integration volume same for all members, all integrals it is possible to unite in one 

general integral. Rejecting integral, leaving only under integrated  expression, from (30) it 

is possible to receive  
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     Thus, emergence of two members of the equations follows from property of mobility 

(expansion or compression) borders of the considered volume: 1-convective part for a full 

derivative 
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2 – a possibility of change of a total energy of individual volume of liquid as a result of 

volume deformation (compression or expansion) with an invariable weight in total amount  
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We will accept that volume forces and thermal streams iq  are absent, liquid wdiv =0 

aren't squeezed. Also liquid doesn't proceed outside and doesn't flow in inside into this 

considered volume. Under these conditions it is possible to integrate (30), presenting her in 

the form 
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    The analysis shows that the equation (34) can be integrated, accepting an assumption that 

liquid ideal which has no tangent tension, exists only the hydrostatic pressure of  

. In case of the one-dimensional movement from (34) have received the following 

equation   
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where at each member the sign  means change in a final interval, for example p  = 

2 1p p . The fact that (35) expresses the law of energy conservation is confirmed by the 

following check according to the theory of dimension  
 

2 3p
   

  - also 

expresses the work made in unit of volume at change of pressure upon final size. The right 

part of a formula (35) shows that generally the work performed by pressure forces consists 

of two parts: 1 work connected with change of pressure - VdP, 2 – the work connected with 

change of volume – PdV. Such "variety", increase in a type of work for superficial pressure 

is connected with transition from superficial integral to volume for expression in formulas 

(26), (30), (34) according to Ostrogradsky-Gauss's theorem. In other words, integrated 

consideration contains (includes) all possible types of works which are connected with 

changes of volume and pressure of gas. In this sense integrated consideration is "slightly 

richer", than differential consideration of thermodynamic process.                
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 also expresses the work made in unit of volume at 

change of pressure upon final size. The right part of a formula (35) shows that generally the work 
performed by pressure forces consists of two parts: 1 work connected with change of pressure – VdP, 
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2 – the work connected with change of volume – PdV. Such “variety”, increase in a type of work for 
superficial pressure is connected with transition from superficial integral to volume for expression 
in formulas (26), (30), (34) according to Ostrogradsky-Gauss’s theorem. In other words, integrated 
consideration contains (includes) all possible types of works which are connected with changes of 
volume and pressure of gas. In this sense integrated consideration is “slightly richer”, than differential 
consideration of thermodynamic process. 

Thus, differential ratios and vice versa follow from the integrated description, these two methods 
of the description are absolutely equivalent with each other on the end result for thermodynamic 
sizes. 

In work [15] it is proved that formulas (members) (32) and (33) turn out not only as a result of 
expansion of volume border. Leads to the same formulas also presence of a convective stream of 
weight and energy through the closed fixed surface which limits the set elementary volume of the 
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thermodynamic sizes.      

    In work [15] it is proved that formulas (members) (32) and (33) turn out not only as a 

result of expansion of volume border. Leads to the same formulas also presence of a 

convective stream of weight and energy through the closed fixed surface which limits the 

set elementary volume of the    , where h – an enthalpy. We will consider a 

well-known formula for full,  substantiate  derivative some physical quantity  - [17]    

 

                 .                         (36)      

 

Results [15] and formula (32) show that the convective component in (36) can result: 1 

changes of volume, expansion or compression of border of volume (by integrated 

consideration), 2 flowing or an effluence of a stream of mass of substance which it is 

connected are transferred with itself by a stream of this scalar . By 

differential consideration when volume is considered elementary and his external borders 

aren't mobile. 

 

    Conclusions       

 

1. Use of the rule of replacement of variables of integration leads to correct conclusion of 

the main thermodynamic functions (an enthalpy, Helmholtz's function and Gibbs's 

function) by integrated consideration of thermodynamic process in final intervals of change 

of parameters.   

2. Integrated consideration of the law of energy conservation in a general view for moving 

final volume of liquid or gas leads to "expanded" option of formula for the first law of 

thermodynamics written down in differential form taking into account different types of 

technical and thermodynamic work. 
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thermodynamic sizes.      

    In work [15] it is proved that formulas (members) (32) and (33) turn out not only as a 

result of expansion of volume border. Leads to the same formulas also presence of a 

convective stream of weight and energy through the closed fixed surface which limits the 

set elementary volume of the    , where h – an enthalpy. We will consider a 

well-known formula for full,  substantiate  derivative some physical quantity  - [17]    

 

                 .                         (36)      

 

Results [15] and formula (32) show that the convective component in (36) can result: 1 

changes of volume, expansion or compression of border of volume (by integrated 

consideration), 2 flowing or an effluence of a stream of mass of substance which it is 

connected are transferred with itself by a stream of this scalar . By 

differential consideration when volume is considered elementary and his external borders 

aren't mobile. 

 

    Conclusions       

 

1. Use of the rule of replacement of variables of integration leads to correct conclusion of 

the main thermodynamic functions (an enthalpy, Helmholtz's function and Gibbs's 

function) by integrated consideration of thermodynamic process in final intervals of change 

of parameters.   

2. Integrated consideration of the law of energy conservation in a general view for moving 

final volume of liquid or gas leads to "expanded" option of formula for the first law of 

thermodynamics written down in differential form taking into account different types of 

technical and thermodynamic work. 
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and his external borders aren’t mobile.

Conclusions 

1. Use of the rule of replacement of variables of integration leads to correct conclusion of the 
main thermodynamic functions (an enthalpy, Helmholtz’s function and Gibbs’s function) by integrated 
consideration of thermodynamic process in final intervals of change of parameters. 

2. Integrated consideration of the law of energy conservation in a general view for moving final 
volume of liquid or gas leads to «expanded» option of formula for the first law of thermodynamics 
written down in differential form taking into account different types of technical and thermodynamic 
work.
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