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The properties of the solution to the inverse problem on the identification of the leading coefficient of
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Introduction

An inverse problem for the pseudoparabolic equation
(u+L1u)t + Lou=f (01)

with the differential operators L; and Lo of the second order in spacial variables is discussed in
this paper. We are interested in finding the leading coefficients of Lo in (0.1) from the additional
boundary data. Applications of this problem deal with the recovery of unknown parameters
indicating physical properties of a natural stratum which should be determined on the basis
of the investigation of its behaviour under the natural non-steady-state conditions (see [1] for
details). This leads to the interest in studying the inverse problems for (0.1) and its analogue.

The investigation of inverse problems for pseudoparabolic equations goes back into 1980s. The
first result obtained by Rundell in [2] is concerned with the inverse problems of the identification
of an unknown source f in the (0.1) with linear elliptic operators Ly and Lo, L1 = Lo. Rundell
proved the global existence and uniqueness theorems in the case that f depends only on x or t.
Another kind of inverse problems is considered in [3,4]. These works are devoted to problems of
reconstructing the kernels in integral term of (0.1) with the integro-differential operator Ls. As
for the determination of unknown coefficients in (0.1) we mention the results of Mamayusupov [5],
Lubanova and Tani [6]. Mamayusupov proved the uniqueness theorem and found an algorithm
for solving the inverse problem with respect to u(t, x), functions b(y), ¢(y) and a constant a for
the equation

up — Auy = alu+b(y)uy + c(y) + 6(t,2,y), for (z, y) €R?, >0

provided that wu(t,z,0), uy(t,2,0) and u(0,z,y) are given. Here §(¢,z,y) is the Dirac delta
function.

In [6] an inverse problem of identification of an unknown leading coefficient in the operator
L, for (0.1) was discussed (see Problem 1 below). The existence, uniqueness and regularity of
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the solution to the inverse problem were established there. The statement of the inverse problem
was motivated in [1].

A main goal of this paper is to investigate the behavior of the solution to the inverse problem
considered in [6] as 7 — 0. It is well known [7] that when passing to the limit n — 0 equation (0.1)
formally tends to coincide with the standard linear equation of filtration in a porous medium

ur + Lou = f, (0.2)

The direct initial boundary value problem for pseudoparabolic equation in a bounded domain
) C R" approximates the appropriate problem for parabolic equation [8]. In particular, under
certain assumptions the solution u" of equation (0.1) with the initial data u"(0,2) = ug(x) tends
to the solution u of (0.2) with the same initial condition in the L2 -norm for all t > 0 as  — 0. It
was established in [1] that the inverse problem for the pseudoparabolic equation also approximates
weakly the appropriate inverse problem for the parabolic one in the case when L; = 7d?/0x?,
Ly = k(t)0?/0x2, n is a positive real number and k(t) is an unknown coefficient. In the present
paper this result will be extended to the inverse problems for (0.1) and (0.2) with any number
of space variables. Such an investigation is also of an interest in studying the inverse problems
for evolution equations whose principal terms contain unknown coefficients. The considerable
results in this sphere are obtained for parabolic equations (see [9-12] and references given there).

The paper is organized as follows. In Section 1 for the convenience of the reader we repeat
the formulation of the inverse problem for (0.1) and the relevant material from [6] without proofs
and comments, thus making our exposition self-contained. In Section 2 we discuss the behaivior
of the solution to the inverse problem as 7 — 0 and prove the existence and uniqueness theorem
for the relevant parabolic inverse problem. Section 3 contains the conclusions and comments to
the main results of the paper.

1. Preliminaries

Let Q be a domain in R™ with a boundary 092 € C? T an arbitrary real number and
Qr = Q x (0,T). Throughout this paper we use the notation:

|- | and (-,-) are the norm and the inner product of L?(2), respectively;
o

[ -; and (-, ->j are the norm of WJ(Q) and the duality relation between W3 (Q) and W, 7 (Q),
respectively (j = 1,2); as usual W2(2) = L?(Q).
Let M : W3 (Q2) — (W3(Q))* be a linear differential operator of the form

My = —div(M(x)Vv) + m(x)v, (L.1)
where M(x) = (m;;(x)) is a matrix of functions m;;(x), 4,5 = 1,2,...,n. We assume that the
following conditions are fulfilled.

I my;(x), Om;;/0x; , 4,5,0 =1,2,...,n, and m(z) are bounded in . M is an operator of

[e]
elliptic type, that is, there exist positive constants m; and msy such that for any v €W} (Q)

maolli < (Mv,v); <malollf. (1.2)
II. There exists a positive constant mg such that for any v € W3 ()
[[Mvl]| < ms|[v]l2. (1.3)

I my;(x) = my(z) for 4,5 =1,2,...,n and m(z) > 0 for x € Q.
We proceed to study the following inverse problem [6].
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PROBLEM 1. For a given constant 7 and functions f(¢,z), g(t,z), B¢, z), Up(z), w(t,x),
©1(t), p2(t) find the pair of functions (u(t, ), k(t)) satisfying the equation

ug + nMuy + k(t) Mu+ g(t, 2)u = f(t,z), (t,z) € Qr, (1.4)

and the conditions

(u+ nMu)|t:0 =Up(z), =€, (1.5)
u’aﬂ = 0(t,xz), te][0,T], (1.6)
/aQ {n% + k(t)%}w(t,m) dS + o1 (DE(t) = pa(t), te[0,T). (1.7)

Here (’% = (n, M(z)V) and n is the unit outward normal to 5.
We use functions a(t,z), h"(t,z) and b(t,z) as the solutions of the Dirichlet problems
Ma=0 in €, a|aQ = [(t, x); (1.8)
Mb=0 inQ, b’BQ = w(t, z),

T 4+ npMA"=0 in Q, h"‘(,m:w(t,x), (1.9)

<MU1,U2>LM = (M(2)Vuy, Vug) + (m(z)v1,v2), v1,ve € WHH(Q);

U(t) = <M0L,b>LM7 F(t,x) = ar — f(t, ) + g(t, x)a, (1.10)
WI(E) = galt) — 1 (Mar 07}, g+ (F(02) — a0, 1),
U = Ma,h" D, = 3 = ().

max, (Ma,h") 7rs @1 ax, e1(t), e, (t)

By a solution {u, k} of Problem 1 we mean that
(1) k(t) is continuous for 0 < ¢t < T
(2) we C(0, T WE(Q));
(3) the equation (1.4) and the conditions (1.5)—(1.7) are satisfied.

The existence and uniqueness of the solution to Problem 1 is established by the following
theorem [6].

Theorem 1.1. Let the assumptions I-II1 be fulfilled and n be a positive constant. Assume that
(i) f € C[0, T LA(Q)), B € CH((0,T); W5*(99)), Up € LX), g € C(Qr),
w e CH[0,T]; W3*(09)), g1 € CL([0,T)), w2 € C([0,T));

(ii) f, Uo, B, w, p1 are nonnegative and
/ h"dxz > hg = constant > 0, ¢ ¢€[0,7T); (1.11)
Q
(iii) there exist constants ay, i = 0,1,2, such that 0 < ap, a1 <1, ap + 1 < 2,

(1—ag)p1(t) + (1 — 1) ¥(t) > as = constant > 0, t € [0,7],
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x(0) 4+ a(0,z) — Up(z)
g(t, J})X(t) + X/(t) + F(tv .7;)

where x(t) =1 (ape1(t) + a1 ¥ (1)) [ [, " da]
(iv) for any t € [0,T)

for almost all x € Q,

0
0 for almost all (t,x) € Qr,

VoWV

i

®"(t) > @ = constant > 0
holds and g(t,x) satisfies the inequality

max g(t, x) gg[ + U + 2~ ' max(a, h”)} ok

gt s S T A

Then Problem 1 has a unique solution (u, k) € C*([0,T); WZ(2)) x C([0,T]). Moreover, u and k
satisfies the estimates

0 <u(t,z) < x(t)+a(t,z) for almost all (t,z) € Qr, (1.12)
)+ )1+ (Ol + e (0]Z) < €.t € 0.7, (1.13)
ko < k(t) < ky (1.14)

with positive constants C and ki = oy ' maxycpo, ) {®"(t) + (lg|(a + x(t)),h")}.

2. Approximation of Parabolic Inverse Problem

As mentioned above, when passing to the limit 7 — 0 equation (0.2) formally tends to coincise
with the linear parabolic equation and Problem 1 transforms to the following parabolic inverse
problem.

PROBLEM 2. Given f(t,x), g(t,x), 8(t x), uo(xz), ¢1(t), ¢2(t); find the pair of functions
(u(t,x), k(t)) satisfying the equation

w + k() Mu + g(t,2)u = f(t.a), (L)€ O, (2.1)
and the conditions
ul,_, = wuo(x), T €Q, (2.2)
ulpg = Blta), telo,T), (2.3)
k(1) / %wds k() = da(t),  te(0,T). (2.4)
o0

Hereafter, by the solution of Problem 2 we mean a pair ( x), k:( )) such that
a)ueV ={vlveL>0,T;WiQ)), v, € L>=(0,T;L*(Q }k € L>(0,T);

b) system (2.1)—(2.4) is satisfied.

We shall denote the solutions of Problem 1 with the initial data

(u" + nMu”)‘tZO = ug + nMug =Uy (2.5)

and Problem 2 by (u”, k") and (u, k), respectively.
In this section we make use of the inequality

H o < & (ol el + ol 26)

La(09Q)
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—1 _ 2(n—1
valid for any v € W3 () where o = g— o , ge |Hn=h An=1)
q n—
for n = 2. (2.6) is easily derived from the multiplicative inequality [13]. The constant Cs
depends on n, ¢, mes{2, mo and mg. We also use the property of the function h” established by

the following lemma.

forn < 3and ¢ € [1, 0]

n )

Lemma 2.1. Letw € C’([O,T];WS/Z(Q)). Then the solution of the problem (1.9) satisfies the
estimate

[A"]1% +nllh"[|F < nCs (2.7)
where a positive constant C3 depends on my, mo, mes{, ||b]| and does not depend on 7.

Proof. To obtain the estimate (2.7) we multiply the equation (1.9) by A7 in terms of L?(Q)
and integrate by parts in the left-hand side. This gives

Oh"
7+ = [ S, (2.8)
oq OV
By Holder’s inequality for n > 2
oh" oh"
] < | 2 o g
‘/89 av v Lp(aQ)HwHL /= (09) (2.9)

where p = 2(n — 1)/n. From (2.6) and the embedding theorem [13] it follows that for any

v e W Q)

Hav
5}

7‘ L?(8Q) < Callvlly, [0l Lo/ w-1 a0y < Csllv]l2- (2.10)

Here constants Cy and Cs depend on mg, ms, n and mesQ). Applying (2.10) to (2.9) yields

< CyCs[|h|1][bll2 = Ce || |1

Estimating the right-hand side of (2.8) with the help of this inequality, one can obtain the
estimate (2.7). The lemma is proved. O
The main result of this section is formulated in the next theorem.

Theorem 2.2. Let n € (0,n9], n > 2, the condition (ii) of Theorem 1.1 and the assumptions
I-IIT are fulfilled. Let

(") f € L2(0,T;WA(2)) N C(@Qr), § € C([0,T]; Wa'*(09)), uo € W2(Q), g € C(Qy),
w e CY([0,T); Wa'?(09)), g1 € CH([0,T)), g2 € C([0,T));

(iii") up and B obey the compatibility condition uo(ac)‘{m = 5(0,z),

a(0,z) —ug(x) — noMug >0, z€Q, (2.11)
F(t,x) = 07 (ta .’E) € QT)
o1(t) + U(t) > g = const >0, te€0,7). (2.12)

(iv"") there exist positive constants ¢, ¢, such that

?2 < ¢2(t) < 623 te [07T]7 (213)
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Then

ul — wu x — weakly in L°°(0,T; WZ(Q)),
TSy * — weakly in L>®(0,T;L*(Q)) and weakly in L*(0,T;W;(Q)),

Uy
KT — K * — weakly in L°°(0,T)

as 1 — 0. Moreover,

0 < r(n) < E'"Nt) < a;l@Q—ktn[lg%(ga,h”)) =ko (2.14)
€10,

where r(n) is a continuous function of n on [0,19] and r(0) > 0.

Proof. Without loss of generality we can assume 7 to be chosen so that ny < 1,

0< 0 = g5 — max {2 Mayllp] + lacll[A7 |} < @7(2) < B (2.15)
tefo, 7] L 2

-1
0 1/2
rréaTxg(t»w) < @ [no (é1(8) + (1)) + 2Cay’ e, Hall}

because of (2.7). Therefore the hypotheses of the theorem imply that all assumptions of The-
orem 1.1 are fulfilled with ag = ay = 0. This shows that Problem 1 has a unique solution
(u(t,x), k"(t)) € CH([0,T); W (2)) x C([0,T]) and the estimates (1.12)—(1.14) hold for any 7,
0 < 1 < 1. Our next step is to get a uniform lower bound (2.14) for k" and then uniform
estimates for the derivatives of u'.
Let us set
w'(t,x) = at,x) —u"(t, x). (2.16)

The function w(t, z) satisfies the equation
W)+ nMw) + k() Mw + g(t, 2)w” = F(t,2),  (t7) € Qr, (2.17)

and the conditions

(w" + nMw")‘tzo = a(0,2) — Up(x), x €, (2.18)
w|,, = 0, telo0,T], (2.19)
owy ow"
/8(2 {nay + k"ay}wds = (p1+O)k" + 77<Mat,h">1’M — o, t €[0,T]. (2.20)

As was shown in [6], multiplying (2.17) by A"(t,z) in terms of L?(Q), the integration by parts
in the left side and substituting (2.20) into the resulting equation leads to the equation

£(0) (1(8) + 9(0) + ~(w. 7)) = 87(0) = (a(t.2) a — ") ) (2:21)

by virtue of (1.8), (1.9), (1.10), (1.11).

According to Theorem 1.1 the pair (w”, k") € C*([0,T]; W3(Q)) for every 0 < T < +o0.
Since the problems (2.17)—(2.20) and (2.17)—(2.19),(2.21) are equivalent, the pair (w,k) also
solutions the problem (2.17)—(2.19),(2.21).

Let us set

E?" = min k"(t). 2.22
0 = min (t) (2.22)

- 331 -



A. Sh.Lyubanova On the Approximation of a Parabolic Inverse Problem by Ppseudoparabolic One

We multiply (2.17) by Mw" in terms of the inner product of L?(f2) and integrate by parts in the
following way:

1d 9 n d 2 n 2
S wlRar 4 DM 4 R M
ow
= —<gw",Mw">LM OQFst + <F,Mw’7>17M. (2.23)
By (1.2),(1.3),(2.6) and the Young inequality,
1 2 2 kg 0|2
‘/m O as| < C7<(W + D)IFIE + w3 50) + =2 M7 (2.24)

where C7 = const > 0 depends on Cy, mes{2, m;, i = 1,2,3. Then (1.1),(2.23), (2.24) give

¢ ¢
Cs

foll a4 [ tariPar < oy [l @29
0

The positive constants Cg and Cy depends on C7, HgHCl@T), m;, i = 1,2,3. In accordance with
Gronwall’s lemma, it follows from (2.25) that

ClO
(kg

t
]2 0g + nllMw|? + K] / | Mw?|2dr < (2.26)

Here C'p =const > 0 depends on Cs, Cy and does not depend on 1 and k.

Let us come back to the equation (2.21). We first note that the numerator of (2.21) is bounded
below by a positive constant independent of k; when 7 is small enough. Indeed, by (2.7) and
(2.26),

[(gw, h")| < Cuan'/? (2.27)
The constant C1; > 0 depends on Cs, C1 and does not depend on 7 and k. Thus, (2.13), (2.15)
and (2.27) give

¢o —n(Mag, h"), = (F, ") + (qu", h") > ¢, — Cran'/. (2.28)

Here the positive constant C12 depends on Ciy, [|9]log, ), maxie(o,r] [lal| and does not depend
on 7 and k(. If we choose 1y < (QQCfgl)Q, then ¢, — C12m'/? > 0. Furthermore, by (2.10),(2.26),

77h7l ‘ - wd
w /{mayws

where C13 = const > 0 depends on Cy, Cs, Cig, 10, m;, i = 1,2,3, and does not depend on 7
and k(. Thus, by (2.12), (2.21), (2.22), (2.28), (2.29), we have

Ch3
(kg)t/4

(2.29)

+ | (Mw”, W7 <

ki > Cig (kY4 [az(kg)1/4 + 013]_1,

whence
ask] + 013(k8)3/4—014 > 0. (2.30)

Here C14 = ¢, — C1on'/?, Since there exists a unique positive real root yg of the equation

G(y) = agy* + Ci39® — Ciy = 0,
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(2.30) implies (k)*/* > yo > 0. From the obvious inequality
(a2 +Ci3)y® — Ca, 0<y <1,
Gy) < X
(a2 + C13)y* — Cua, 1<y < o0,
we conclude that gy > y* if
y* = Cllz{g(az + 013)_1/3 < 1;

otherwise, yo > (y*)3/4. Thus we get
kd > min{y*7(y*)4/3} = r(n) > 0. (2.31)

It is clear that r(n) is continuous function of n on [0, 7] and (0) > 0.
Now the uniform estimates of «” and Mu" become evident. By (2.26) and (2.31),

t
[ + nl| M2 + () / 1M Pdr < Cus(r(m) ™ + Cre. (2.32)

The constants C15, Ci depends on Cho, ||al|¢ (o, 77,w2 ()) 2and does not depend on 7. The uniform
estimate of u; can be derived from (2.17)—(2.19), (2.21), (2.31) and (2.32). Multiplying (2.17) by
Muw; in terms of the inner product of L?(2) and integrating by parts in the resulting equation
we obtain

1 1d

7|2 T Mw |2 w2
k(1) [|lwy ||1,M + 7 (0) (| Mw]||* + 5 dtH w"||
1 ow; 1
= - F—tds— F 7 Maw” ) 933
kn(t) /asz v y k”(t)< T gw, wt>1,M ( )

By the smoothness of f, the embedding theorem and (2.10)?

n
/ PV g
o0 81/

The constant Cy7 depends on Cy, n and mes{2. Therefore, taking into account (2.31), (2.32),
(2.34) we can readily derive the estimate

< Crr(Ilflle + lalluzi)) llwill (2.34)

Cis
(r(n))t/?

from (2.33). Here the constant Cis depends on k1, ¢, [[Muol|, |Fl¢¢g, ) and does not depend
on n. (2.17), (2.19) and (2.35) lead to the estimate

t t
/ [l ar dr + 1 / IMw?|? dr + [ Muw?|? < (2.35)
0 0

C
2 < 19
B (e ()12
where the constants C9 and Cy depend on Cig, k2, [|F||lc(o,17;2(0)) HgHC@T) and does not

depend on 7. Thus, from (2.14), (2.32), (2.35), (2.36) it follows that there exists a subsequence
(u™ k™) of (u", k") and a pair of functions (u, k) such that

[wel* + nllewe] + Cao (2.36)

u™  — u  *— weakly in L>(0,T;W3(Q)), (2.37)
u®  — w; *— weakly in L>(0,T;L*(Q)) and weakly in L*(0,T;W3(Q)), (2.38)

k" — k% — weakly in L*(0,T) (2.39)
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as ; — 0. By the compactness theorem [14], (2.37)—(2.39) implies
u - in L0, T; W} (Q)), (2.40)
K — weakly in  L*(0,7) asm — 0. (2.41)

We are now in a position to show that the pair (u, k) is a solution of Problem 2. In fact, the
pair (u™, k™) satisfies the identity
T T
/ [(w + gu™,v) + m(Mul vy, + km (Mum o), Yt = / (Foo)dt  (2.42)
0 0

for every v € L2(0,T; W3 (Q)). In view of (2.37)—(2.41) we can pass to the limit in (2.42). Since

T
771/ (Muf,v), dt — 0
0

as ; — 0 (because of (2.36)), we have
/ {(ut,v) + k(t) (Mu,v), + (gu,v)}dt :/ (f,v) dt (2.43)
0 0

for every v € L?(0,T; W3 (Q)). Moreover, by (1.12), (2.14), (2.16), (2.31), (2.32), (2.35) and
(2.36), the estimates

r(0) < k(t) < dyaz, (2.44)
0 < u(t,z) < aft,x), (2.45)
/ 2 dr -+ 32l <imm "l ar (2.46)
0 i1 L>(0,T;L?(Q)) X ml(r(O))3/2 0 til1 ) .
019 1/2
llue |l os 0,7;02(0)) < <7(r(0))1/2 + Co + ||at\|%x(0,T;L2(Q))) (2.47)

are valid. From (2.43)—(2.47) it follows that the pair (u, k) satisfies equation (2.1) for almost all
(t,z) € Qr. Furthermore, by (1.6), (2.5), (2.37), (2.38) u(t,z) obeys (2.2), (2.3).

It remains to prove that the condition (2.4) is also fulfilled. Let v(t, ) = v(t,z)h(t) where
o(t,x) and h(t) are arbitrary functions of classes L>(0,T; W4 (Q)) and L?(0,T), respectively,
1_}|BQ = w. Then the identity

T
/0 {(U’Z’ +gu™,0) +m(Mu', v), 4+ KT ) ((Mu™,T) , + ¢1(f))}hdt

T
= /0 ((f,0) + ¢2)h dt (2.48)

holds because of (1.7). A passage to the limit in (2.48) similar to the above yields

T T
/ {(ut+gu,@)0+k(t)(<Mu,z7>LM +¢1)}hdt:/ ((f,0) + ¢2)h dt. (2.49)
0 0

By virtue of (2.1), integrating by parts in the second term of the left-hand side of (2.49) gives

/T {k(t) U ) ds+ g (1)(t) — ¢>2(t)} h(t) dt = 0
0

o0 aV
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for any h(t) € L?(0,T), which implies that the pair (u, k) satisfies (2.4) for almost all t € (0,7T).
The theorem is proved. g

Under the hypotheses of Theorem 2.2 the solution to Problem 2 is unique in the class V' x
L>(0,T).

Theorem 2.3. Let the conditions of Theorem 2.2 be fulfilled. Then Problem 2 has a unique
solution (u(t,x),k(t)). The pair (u(t,z),k(t)) satisfies the estimates (2.44)—(2.47) and u; €
12(0,T; W5 ().

Proof. The existence of the solution to Problem 2 and the estimates (2.44)-2.47) were proved
in Theorem 2.2. It remains to establish the uniqueness.

Let (ui(t,z), k1(t)) and (ua2(t,x), k2(t)) be two solutions of Problem 2. Then the pair
(w(t,z), p(t)) = (ug — ua, k1(t) — ka2(t)) solutions the problem

wy — k1 (t)Mw = —p(t) Mus, (t,z) € Qr, (2.50)
wl,_y = wly, =0, (2.51)
Fa (1) /m gij wds = — “giég o), teloT). (2.52)

Multiplying (2.50) by Mw in terms of the inner product of L?(f2) and integrating by parts, we
can easily obtain

1d
2 dt
From (2.6) with ¢ = 2, (2.14), (2.52) and the Young inequality it follows that

[wll ar + Fr@)IMw]* < Ip@)] [|Mus]| || Mwl]. (2.53)

1/2
[p(O)] [ Mus || | Mw]| < Cor [[Mus|| [w][}/3 | Muw]*?

7(0) 2 0511
< —= ||M
2 IMwl|™ + 2r3(0)

[Muz||* w2 5 (2.54)

where C; = const > 0 depends on Cs, ¢, r(0), as, m,, i = 1,2,3. Since ugy € L>(0,T; W3 (),
according to Gronwall’s lemma, (2.51),(2.53) and (2.54) implies that w = 0 for almost all (t,z) €
Qr and p = 0 for almost all ¢t € (0,T). The theorem is proved. O

Conclusions

In this paper we discussed the behaivior of the solution to the Problem 1 as n — 0. It was
established that Problem 1 for the pseudoparabolic equation approximates weakly Problem 2
for the parabolic one under the hypotheses of Theorem 2.2 when 1 — 0. Theorems 1.1 and 2.2
remains true if w € C([0,T]; W;’/Q(aQ)) and ¢1 € C([0,T]).

In general Problem 1 does not approximate Problem 2. As was shown in [1], if the initial and
boundary data do not satisfy (2.11), then Problem 1 may be unsolvable.

Theorem 2.2 implies that Problem 2 for the relevant parabolic equation is solved relying on the
results on Problem 1. The uniqueness of the solution to Problem 2 is provided by Theorem 2.3.
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O06 annpokcuManuy nmapadoimdeckoii oopaTHoii 3aa49n
IceBaoNnapadoImvIecKoil 3aaaveii

Awuna II1. JIrobanoBa

Hccaedyemea obpammas 3adava udeHmudurayuy 00H020 U3 CMApuUx Koddihuyuenmos ncesdonapabo-

auveckozo ypasHenua. Jloxasvieaemcs, wmo obpamuaa 3a0a4a 0aA NCe8IONAPAOOAUMECKO20 YDABHEHUSA

ANNPOKCUMUPYEM COOMBEMCNBYIOWYIO 00pamHyto 3adayy 0Af NAPAOOAUMECKO20 YPABHERUSA. YCmanas-

AUBAEMCA TMAKIHCE CYULECTNBOBAHUE U eJUHCTMEEHHOCTND peweruA, napa6(mu%ec1c012 o6pamH012 3adavu.

Knouesvie caosa: gusvmpayus, obpammvie 3a0a4u 0ai YpasHeHuli 8 HaCTHBLT NPou3BoOHbLT, Nncesdona-

pa60/Lu%ec7<zoe YypasHeHUE, napa60/m%ecnoe YpasHeEHUE, TMEOPEMDL CYULECTNBOBAHUA U eduHCMBEHHOCTNU.
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