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Introduction

An inverse problem for the pseudoparabolic equation

(u + L1u)t + L2u = f (0.1)

with the differential operators L1 and L2 of the second order in spacial variables is discussed in
this paper. We are interested in finding the leading coefficients of L2 in (0.1) from the additional
boundary data. Applications of this problem deal with the recovery of unknown parameters
indicating physical properties of a natural stratum which should be determined on the basis
of the investigation of its behaviour under the natural non-steady-state conditions (see [1] for
details). This leads to the interest in studying the inverse problems for (0.1) and its analogue.

The investigation of inverse problems for pseudoparabolic equations goes back into 1980s. The
first result obtained by Rundell in [2] is concerned with the inverse problems of the identification
of an unknown source f in the (0.1) with linear elliptic operators L1 and L2, L1 = L2. Rundell
proved the global existence and uniqueness theorems in the case that f depends only on x or t.
Another kind of inverse problems is considered in [3,4]. These works are devoted to problems of
reconstructing the kernels in integral term of (0.1) with the integro-differential operator L2. As
for the determination of unknown coefficients in (0.1) we mention the results of Mamayusupov [5],
Lubanova and Tani [6]. Mamayusupov proved the uniqueness theorem and found an algorithm
for solving the inverse problem with respect to u(t, x), functions b(y), c(y) and a constant a for
the equation

ut − ∆ut = a∆u + b(y)uy + c(y) + δ(t, x, y), for (x, y) ∈ R
2, t > 0

provided that u(t, x, 0), uy(t, x, 0) and u(0, x, y) are given. Here δ(t, x, y) is the Dirac delta
function.

In [6] an inverse problem of identification of an unknown leading coefficient in the operator
L2 for (0.1) was discussed (see Problem 1 below). The existence, uniqueness and regularity of
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the solution to the inverse problem were established there. The statement of the inverse problem
was motivated in [1].

A main goal of this paper is to investigate the behavior of the solution to the inverse problem
considered in [6] as η → 0. It is well known [7] that when passing to the limit η → 0 equation (0.1)
formally tends to coincide with the standard linear equation of filtration in a porous medium

ut + L2u = f, (0.2)

The direct initial boundary value problem for pseudoparabolic equation in a bounded domain
Ω ⊂ R

n approximates the appropriate problem for parabolic equation [8]. In particular, under
certain assumptions the solution uη of equation (0.1) with the initial data uη(0, x) = u0(x) tends
to the solution u of (0.2) with the same initial condition in the L2-norm for all t ≥ 0 as η → 0. It
was established in [1] that the inverse problem for the pseudoparabolic equation also approximates
weakly the appropriate inverse problem for the parabolic one in the case when L1 = η∂2/∂x2,
L2 = k(t)∂2/∂x2, η is a positive real number and k(t) is an unknown coefficient. In the present
paper this result will be extended to the inverse problems for (0.1) and (0.2) with any number
of space variables. Such an investigation is also of an interest in studying the inverse problems
for evolution equations whose principal terms contain unknown coefficients. The considerable
results in this sphere are obtained for parabolic equations (see [9–12] and references given there).

The paper is organized as follows. In Section 1 for the convenience of the reader we repeat
the formulation of the inverse problem for (0.1) and the relevant material from [6] without proofs
and comments, thus making our exposition self-contained. In Section 2 we discuss the behaivior
of the solution to the inverse problem as η → 0 and prove the existence and uniqueness theorem
for the relevant parabolic inverse problem. Section 3 contains the conclusions and comments to
the main results of the paper.

1. Preliminaries

Let Ω be a domain in R
n with a boundary ∂Ω ∈ C2, T an arbitrary real number and

QT = Ω × (0, T ). Throughout this paper we use the notation:
‖ · ‖ and (·, ·) are the norm and the inner product of L2(Ω), respectively;

‖ · ‖j and
〈

·, ·
〉

j
are the norm of W j

2 (Ω) and the duality relation between
◦

W j
2 (Ω) and W−j

2 (Ω),

respectively (j = 1, 2); as usual W 0
2 (Ω) = L2(Ω).

Let M : W 1
2 (Ω) → (W 1

2 (Ω))∗ be a linear differential operator of the form

Mv = −div(M(x)∇v) + m(x)v, (1.1)

where M(x) ≡ (mij(x)) is a matrix of functions mij(x), i, j = 1, 2, . . . , n. We assume that the
following conditions are fulfilled.

I. mij(x), ∂mij/∂xl , i, j, l = 1, 2, . . . , n, and m(x) are bounded in Ω. M is an operator of

elliptic type, that is, there exist positive constants m1 and m2 such that for any v ∈
◦

W 1
2 (Ω)

m1‖v‖
2
1 6

〈

Mv, v
〉

1
6 m2‖v‖

2
1. (1.2)

II. There exists a positive constant m3 such that for any v ∈ W 2
2 (Ω)

‖Mv‖ 6 m3‖v‖2. (1.3)

III. mij(x) = mji(x) for i, j = 1, 2, . . . , n and m(x) > 0 for x ∈ Ω.
We proceed to study the following inverse problem [6].
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Problem 1. For a given constant η and functions f(t, x), g(t, x), β(t, x), U0(x), ω(t, x),
ϕ1(t), ϕ2(t) find the pair of functions (u(t, x), k(t)) satisfying the equation

ut + ηMut + k(t) Mu + g(t, x)u = f(t, x), (t, x) ∈ QT , (1.4)

and the conditions

(u + ηMu)
∣

∣

t=0
= U0(x), x ∈ Ω, (1.5)

u
∣

∣

∂Ω
= β(t, x), t ∈ [0, T ], (1.6)

∫

∂Ω

{

η
∂ut

∂ν
+ k(t)

∂u

∂ν

}

ω(t, x)dS + ϕ1(t)k(t) = ϕ2(t), t ∈ [0, T ]. (1.7)

Here
∂

∂ν
= (n,M(x)∇) and n is the unit outward normal to ∂Ω.

We use functions a(t, x), hη(t, x) and b(t, x) as the solutions of the Dirichlet problems

Ma = 0 in Ω, a
∣

∣

∂Ω
= β(t, x); (1.8)

Mb = 0 in Ω, b
∣

∣

∂Ω
= ω(t, x),

hη + ηMhη = 0 in Ω, hη
∣

∣

∂Ω
= ω(t, x), (1.9)

〈

Mv1, v2

〉

1,M
= (M(x)∇v1,∇v2) + (m(x)v1, v2), v1, v2 ∈ W 1

2 (Ω);

Ψ(t) =
〈

Ma, b
〉

1,M
, F (t, x) = at − f(t, x) + g(t, x)a, (1.10)

Φη(t) = ϕ2(t) −
η

2
〈Mat, h

η〉1,M + (f(t, x) − at, h
η),

Ψ = max
t∈[0,T ]

〈Ma, hη〉1,M , ϕ1 = max
t∈[0,T ]

ϕ1(t), Φ
η

= max
t∈[0,T ]

Φη(t).

By a solution {u, k} of Problem 1 we mean that

(1) k(t) is continuous for 0 6 t 6 T ;

(2) u ∈ C1([0, T ];W 2
2 (Ω));

(3) the equation (1.4) and the conditions (1.5)–(1.7) are satisfied.

The existence and uniqueness of the solution to Problem 1 is established by the following
theorem [6].

Theorem 1.1. Let the assumptions I–III be fulfilled and η be a positive constant. Assume that

(i) f ∈ C([0, T ];L2(Ω)), β ∈ C1([0, T ];W
3/2
2 (∂Ω)), U0 ∈ L2(Ω), g ∈ C(QT ),

ω ∈ C1([0, T ];W
3/2
2 (∂Ω)), ϕ1 ∈ C1([0, T ]), ϕ2 ∈ C([0, T ]);

(ii) f , U0, β, ω, ϕ1 are nonnegative and

∫

Ω

hη dx > h0 = constant > 0, t ∈ [0, T ]; (1.11)

(iii) there exist constants αi, i = 0, 1, 2, such that 0 6 α0, α1 6 1, α0 + α1 < 2,

(1 − α0) ϕ1(t) + (1 − α1) Ψ(t) > α2 = constant > 0, t ∈ [0, T ],
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χ(0) + a(0, x) − U0(x) > 0 for almost all x ∈ Ω,

g(t, x)χ(t) + χ′(t) + F (t, x) > 0 for almost all (t, x) ∈ QT ,

where χ(t) = η (α0ϕ1(t) + α1Ψ(t))
[∫

Ω
hη dx

]−1
;

(iv) for any t ∈ [0, T ]
Φη(t) > Φη

0 = constant > 0

holds and g(t, x) satisfies the inequality

max
QT

g(t, x) 6
Φη

0

η

[

ϕ1 + Ψ + 2η−1 max
[0,T ]

(a, hη)
]−1

≡
k0

η
.

Then Problem 1 has a unique solution (u, k) ∈ C1([0, T ];W 2
2 (Ω))×C([0, T ]). Moreover, u and k

satisfies the estimates

0 6 u(t, x) 6 χ(t) + a(t, x) for almost all (t, x) ∈ QT , (1.12)

‖u(t)‖
2
1 + ‖ut(t)‖

2
+ η

(

‖u(t)‖
2
2 + ‖ut(t)‖

2
2

)

6 C, t ∈ [0, T ], (1.13)

k0 6 k(t) 6 k1 (1.14)

with positive constants C and k1 = α−1
2 maxt∈[0,T ] {Φ

η(t) + (|g|(a + χ(t)), hη)} .

2. Approximation of Parabolic Inverse Problem

As mentioned above, when passing to the limit η → 0 equation (0.2) formally tends to coincise
with the linear parabolic equation and Problem 1 transforms to the following parabolic inverse
problem.

Problem 2. Given f(t, x), g(t, x), β(t, x), u0(x), φ1(t), φ2(t); find the pair of functions
(u(t, x), k(t)) satisfying the equation

ut + k(t) Mu + g(t, x)u = f(t, x), (t, x) ∈ QT , (2.1)

and the conditions

u
∣

∣

t=0
= u0(x), x ∈ Ω, (2.2)

u
∣

∣

∂Ω
= β(t, x), t ∈ [0, T ], (2.3)

k(t)

∫

∂Ω

∂u

∂ν
ω ds + φ1(t) k(t) = φ2(t), t ∈ (0, T ). (2.4)

Hereafter, by the solution of Problem 2 we mean a pair (u(t, x), k(t)) such that
a) u ∈ V =

{

v| v ∈ L∞(0, T ;W 2
2 (Ω)), vt ∈ L∞(0, T ;L2(Ω))

}

, k(t) ∈ L∞(0, T );
b) system (2.1)–(2.4) is satisfied.
We shall denote the solutions of Problem 1 with the initial data

(

uη + ηMuη
)

∣

∣

∣

t=0
= u0 + ηMu0 ≡ U0 (2.5)

and Problem 2 by (uη, kη) and (u, k), respectively.
In this section we make use of the inequality

∥

∥

∥

∥

∂v

∂ν

∥

∥

∥

∥

Lq(∂Ω)

6 C2

(

‖v‖α
2 ‖v‖1−α

1 + ‖v‖1

)

(2.6)
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valid for any v ∈ W 2
2 (Ω) where α =

n

2
−

n − 1

q
, q ∈

[

2(n−1)
n ,

2(n − 1)

n − 2

]

for n 6 3 and q ∈ [1,∞]

for n = 2. (2.6) is easily derived from the multiplicative inequality [13]. The constant C2

depends on n, q, mesΩ, m2 and m3. We also use the property of the function hη established by
the following lemma.

Lemma 2.1. Let ω ∈ C([0, T ];W
3/2
2 (Ω)). Then the solution of the problem (1.9) satisfies the

estimate

‖hη‖2 + η‖hη‖2
1 6 ηC3 (2.7)

where a positive constant C3 depends on m1, m2, mesΩ, ‖b‖ and does not depend on η.

Proof. To obtain the estimate (2.7) we multiply the equation (1.9) by hη in terms of L2(Ω)
and integrate by parts in the left-hand side. This gives

‖hη‖2 + η
〈

Mhη, hη
〉

1
= η

∫

∂Ω

∂hη

∂ν
ω ds. (2.8)

By Hölder’s inequality for n > 2

∣

∣

∣

∫

∂Ω

∂hη

∂ν
ω ds

∣

∣

∣
6

∥

∥

∥

∂hη

∂ν

∥

∥

∥

Lp(∂Ω)
‖ω‖Lp/(p−1)(∂Ω) (2.9)

where p = 2(n − 1)/n. From (2.6) and the embedding theorem [13] it follows that for any
v ∈ W 2

2 (Ω)
∥

∥

∥

∂v

∂ν

∥

∥

∥

Lp(∂Ω)
6 C4‖v‖1, ‖v‖Lp/(p−1)(∂Ω) 6 C5‖v‖2. (2.10)

Here constants C4 and C5 depend on m2, m3, n and mesΩ. Applying (2.10) to (2.9) yields

∣

∣

∣

∫

∂Ω

∂hη

∂ν
ω ds

∣

∣

∣
6 C4C5‖h

η‖1‖b‖2 ≡ C6‖h
η‖1.

Estimating the right-hand side of (2.8) with the help of this inequality, one can obtain the
estimate (2.7). The lemma is proved. 2

The main result of this section is formulated in the next theorem.

Theorem 2.2. Let η ∈ (0, η0], n > 2, the condition (ii) of Theorem 1.1 and the assumptions
I–III are fulfilled. Let

(i′′) f ∈ L2(0, T ;W 1
2 (Ω)) ∩ C(QT ), β ∈ C1([0, T ];W

3/2
2 (∂Ω)), u0 ∈ W 2

2 (Ω), g ∈ C(QT ),

ω ∈ C1([0, T ];W
3/2
2 (∂Ω)), ϕ1 ∈ C1([0, T ]), ϕ2 ∈ C([0, T ]);

(iii′′) u0 and β obey the compatibility condition u0(x)
∣

∣

∂Ω
= β(0, x),

a(0, x) − u0(x) − η0Mu0 > 0, x ∈ Ω, (2.11)

F (t, x) > 0, (t, x) ∈ QT ,

φ1(t) + Ψ(t) > α2 = const > 0, t ∈ [0, T ]. (2.12)

(iv′′) there exist positive constants φ2, φ
2

such that

φ
2

6 φ2(t) 6 φ2, t ∈ [0, T ], (2.13)
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Then

uη → u ∗ − weakly in L∞(0, T ;W 2
2 (Ω)),

uη
t → ut ∗ − weakly in L∞(0, T ;L2(Ω)) and weakly in L2(0, T ;W 1

2 (Ω)),

kη → k ∗ − weakly in L∞(0, T )

as η → 0. Moreover,

0 < r(η) 6 kη(t) 6 α−1
2

(

φ2 + max
t∈[0,T ]

(ga, hη)
)

≡ k2 (2.14)

where r(η) is a continuous function of η on [0, η0] and r(0) > 0.

Proof. Without loss of generality we can assume η0 to be chosen so that η0 6 1,

0 < Φη0

0 ≡ φ2 − max
t∈[0,T ]

{η0

2
‖Mat‖1‖b‖ + ‖at‖‖h

η0‖
}

6 Φη(t) 6 φ2, (2.15)

max
QT

g(t, x) 6 Φη0

0

[

η0

(

φ1(t) + Ψ(t)
)

+ 2C3η
1/2
0 max

t∈[0,T ]
‖a‖

]−1

because of (2.7). Therefore the hypotheses of the theorem imply that all assumptions of The-
orem 1.1 are fulfilled with α0 = α1 = 0. This shows that Problem 1 has a unique solution
(uη(t, x), kη(t)) ∈ C1([0, T ];W 2

2 (Ω)) × C([0, T ]) and the estimates (1.12)–(1.14) hold for any η,
0 < η 6 η0. Our next step is to get a uniform lower bound (2.14) for kη and then uniform
estimates for the derivatives of uη.

Let us set
wη(t, x) = a(t, x) − uη(t, x). (2.16)

The function w(t, x) satisfies the equation

wη
t + ηMwη

t + kη(t) Mwη + g(t, x)wη = F (t, x), (t, x) ∈ QT , (2.17)

and the conditions

(wη + ηMwη)
∣

∣

t=0
= a(0, x) − U0(x), x ∈ Ω, (2.18)

wη
∣

∣

∂Ω
= 0, t ∈ [0, T ], (2.19)

∫

∂Ω

{

η
∂wη

t

∂ν
+ kη ∂wη

∂ν

}

ωdS = (ϕ1 + Ψ)kη + η
〈

Mat, h
η
〉

1,M
− ϕ2, t ∈ [0, T ]. (2.20)

As was shown in [6], multiplying (2.17) by hη(t, x) in terms of L2(Ω), the integration by parts
in the left side and substituting (2.20) into the resulting equation leads to the equation

kη(t)
(

ϕ1(t) + Ψ(t) +
1

η
(wη, hη)

)

= Φη(t) − (g(t, x)(a − wη), hη) (2.21)

by virtue of (1.8), (1.9), (1.10), (1.11).
According to Theorem 1.1 the pair (wη, kη) ∈ C1([0, T ]; W 2

2 (Ω)) for every 0 < T < +∞.
Since the problems (2.17)–(2.20) and (2.17)–(2.19),(2.21) are equivalent, the pair (w, k) also
solutions the problem (2.17)–(2.19),(2.21).

Let us set
kη
0 = min

t∈[0,T ]
kη(t). (2.22)
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We multiply (2.17) by Mwη in terms of the inner product of L2(Ω) and integrate by parts in the
following way:

1

2

d

dt
‖w‖2

1,M +
η

2

d

dt
‖Mwη‖2 + kη

0‖Mwη‖2

= −
〈

gwη,Mwη
〉

1,M
−

∫

∂Ω

F
∂wη

∂ν
ds +

〈

F,Mwη
〉

1,M
. (2.23)

By (1.2),(1.3),(2.6) and the Young inequality,

∣

∣

∣

∫

∂Ω

F
∂wη

∂ν
ds

∣

∣

∣
6 C7

(( 1

(kη
0 )1/2

+ 1
)

‖F‖2
1 + ‖wη‖2

1,M

)

+
kη
0

4
‖Mwη‖2 (2.24)

where C7 = const > 0 depends on C2, mesΩ, mi, i = 1, 2, 3. Then (1.1),(2.23), (2.24) give

‖w‖2
1,M + η‖Mwη‖2 + kη

0

∫ t

0

‖Mwη‖2dτ 6
C8

(kη
0 )1/2

+ C9

∫ t

0

‖w‖2
1,Mdτ. (2.25)

The positive constants C8 and C9 depends on C7, ‖g‖C1(QT ), mi, i = 1, 2, 3. In accordance with

Gronwall’s lemma, it follows from (2.25) that

‖w‖2
1,M + η‖Mwη‖2 + kη

0

∫ t

0

‖Mwη‖2dτ 6
C10

(kη
0 )1/2

. (2.26)

Here C10 =const > 0 depends on C8, C9 and does not depend on η and kη
0 .

Let us come back to the equation (2.21). We first note that the numerator of (2.21) is bounded
below by a positive constant independent of kη

0 when η0 is small enough. Indeed, by (2.7) and
(2.26),

∣

∣

(

gwη, hη
)∣

∣ 6 C11η
1/2 (2.27)

The constant C11 > 0 depends on C2, C10 and does not depend on η and kη
0 . Thus, (2.13), (2.15)

and (2.27) give

φ2 − η
〈

Mat, h
η
〉

1,M
−

(

F, hη
)

+
(

gwη, hη
)

> φ
2
− C12 η1/2. (2.28)

Here the positive constant C12 depends on C11, ‖g‖C(QT ), maxt∈[0,T ] ‖a‖ and does not depend

on η and kη
0 . If we choose η0 < (φ

2
C−1

12 )2, then φ
2
−C12η

1/2 > 0. Furthermore, by (2.10),(2.26),

1

η

(

wη, hη
)

6

∣

∣

∣

∫

∂Ω

∂wη

∂ν
ω ds

∣

∣

∣
+

∣

∣

(

Mwη, hη
)∣

∣ 6
C13

(kη
0 )1/4

(2.29)

where C13 = const > 0 depends on C4, C5, C10, η0, mi, i = 1, 2, 3, and does not depend on η
and kη

0 . Thus, by (2.12), (2.21), (2.22), (2.28), (2.29), we have

kη
0 > C14 (kη

0 )1/4
[

α2(k
η
0 )1/4 + C13

]−1
,

whence

α2k
η
0 + C13(k

η
0 )3/4 − C14 > 0. (2.30)

Here C14 = φ
2
− C12η

1/2, Since there exists a unique positive real root y0 of the equation

G(y) ≡ α2y
4 + C13y

3 − C14 = 0,
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(2.30) implies (kη
0 )3/4 > y0 > 0. From the obvious inequality

G(y) 6

{

(α2 + C13)y
3 − C14, 0 6 y < 1,

(α2 + C13)y
4 − C14, 1 6 y < +∞,

we conclude that y0 > y∗ if

y∗ = C
1/3
14 (α2 + C13)

−1/3 < 1;

otherwise, y0 > (y∗)3/4. Thus we get

kη
0 > min

{

y∗, (y∗)4/3
}

≡ r(η) > 0. (2.31)

It is clear that r(η) is continuous function of η on [0, η0] and r(0) > 0.
Now the uniform estimates of uη and Muη become evident. By (2.26) and (2.31),

‖uη‖2
1 + η‖Muη‖2 + r(η)

∫ t

0

‖Muη‖2dτ 6 C15(r(η))−1/2 + C16. (2.32)

The constants C15, C16 depends on C10, ‖a‖C([0,T ];W 1
2 (Ω)) and does not depend on η. The uniform

estimate of uη
t can be derived from (2.17)–(2.19), (2.21), (2.31) and (2.32). Multiplying (2.17) by

Mwη
t in terms of the inner product of L2(Ω) and integrating by parts in the resulting equation

we obtain

1

kη(t)
‖wη

t ‖
2
1,M +

η

kη(t)
‖Mwη

t ‖
2 +

1

2

d

dt
‖Mwη‖2

= −
1

kη(t)

∫

∂Ω

F
∂wη

t

∂ν
ds −

1

kη(t)

〈

F + gwη, Mwη
t

〉

1,M
. (2.33)

By the smoothness of f , the embedding theorem and (2.10)?
∣

∣

∣

∣

∫

∂Ω

F
∂wη

t

∂ν
ds

∣

∣

∣

∣

6 C17

(

‖f‖C(Ω) + ‖a‖w2
2(Ω)

)

‖wη
t ‖1 (2.34)

The constant C17 depends on C4, n and mesΩ. Therefore, taking into account (2.31), (2.32),
(2.34) we can readily derive the estimate

∫ t

0

‖wη
τ‖

2
1,M dτ + η

∫ t

0

‖Mwη
τ‖

2 dτ + ‖Mwη‖2
6

C18

(r(η))1/2
(2.35)

from (2.33). Here the constant C18 depends on k1, c, ‖Mu0‖, ‖F‖C(QT ) and does not depend

on η. (2.17), (2.19) and (2.35) lead to the estimate

‖wt‖
2 + η‖wt‖

2
1,M 6

C19

(r(η))1/2
+ C20 (2.36)

where the constants C19 and C20 depend on C18, k2, ‖F‖C([0,T ];L2(Ω)), ‖g‖C(QT ) and does not

depend on η. Thus, from (2.14), (2.32), (2.35), (2.36) it follows that there exists a subsequence
(uηl , kηl) of (uη, kη) and a pair of functions (u, k) such that

uηl → u ∗ − weakly in L∞(0, T ;W 2
2 (Ω)), (2.37)

uηl
t → ut ∗ − weakly in L∞(0, T ;L2(Ω)) and weakly in L2(0, T ;W 1

2 (Ω)), (2.38)

kηl → k ∗ − weakly in L∞(0, T ) (2.39)
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as ηl → 0. By the compactness theorem [14], (2.37)–(2.39) implies

uηl → u in L4(0, T ;W 1
2 (Ω)), (2.40)

kηl → k weakly in L4(0, T ) as ηl → 0. (2.41)

We are now in a position to show that the pair (u, k) is a solution of Problem 2. In fact, the
pair (uηl , kηl) satisfies the identity

∫ T

0

{(

uηl
t + guηl , v

)

+ ηl

〈

Muηl
t , v

〉

1
+ kηl

〈

Muηl , v
〉

1

}

dt =

∫ T

0

(f, v) dt (2.42)

for every v ∈ L2(0, T ;
◦

W 1
2 (Ω)). In view of (2.37)–(2.41) we can pass to the limit in (2.42). Since

ηl

∫ T

0

〈

Muηl
t , v

〉

1
dt → 0

as ηl → 0 (because of (2.36)), we have

∫ T

0

{

(

ut, v
)

+ k(t)
〈

Mu, v
〉

1
+

(

gu, v
)

}

dt =

∫ T

0

(f, v) dt (2.43)

for every v ∈ L2(0, T ;
◦

W 1
2 (Ω)). Moreover, by (1.12), (2.14), (2.16), (2.31), (2.32), (2.35) and

(2.36), the estimates

r(0) 6 k(t) 6 φ2α
−1
2 , (2.44)

0 6 u(t, x) 6 a(t, x), (2.45)
∫ T

0

‖ut‖
2
1 dτ + ‖Mu‖2

L∞(0,T ;L2(Ω)) 6
C18

m1(r(0))3/2
+

∫ T

0

‖at‖
2
1 dτ, (2.46)

‖ut‖L∞(0,T ;L2(Ω)) 6

( C19

(r(0))1/2
+ C20 + ‖at‖

2
L∞(0,T ;L2(Ω))

)1/2

(2.47)

are valid. From (2.43)–(2.47) it follows that the pair (u, k) satisfies equation (2.1) for almost all
(t, x) ∈ QT . Furthermore, by (1.6), (2.5), (2.37), (2.38) u(t, x) obeys (2.2), (2.3).

It remains to prove that the condition (2.4) is also fulfilled. Let v(t, x) = v̄(t, x)h(t) where
v̄(t, x) and h(t) are arbitrary functions of classes L∞(0, T ;W 1

2 (Ω)) and L2(0, T ), respectively,
v̄
∣

∣

∂Ω
= ω. Then the identity

∫ T

0

{

(

uηl
t + guηl , v̄

)

+ ηl

〈

Muηl
t , v̄

〉

1,M
+ kηl(t)

(〈

Muηl , v̄
〉

1,M
+ φ1(t)

)

}

h dt

=

∫ T

0

((f, v̄) + φ2)h dt (2.48)

holds because of (1.7). A passage to the limit in (2.48) similar to the above yields

∫ T

0

{

(

ut + gu, v̄
)

0
+ k(t)

(〈

Mu, v̄
〉

1,M
+ φ1

)

}

h dt =

∫ T

0

((f, v̄) + φ2)h dt. (2.49)

By virtue of (2.1), integrating by parts in the second term of the left-hand side of (2.49) gives

∫ T

0

{

k(t)

∫

∂Ω

∂u

∂ν
ω ds + φ1(t)k(t) − φ2(t)

}

h(t) dt = 0
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for any h(t) ∈ L2(0, T ), which implies that the pair (u, k) satisfies (2.4) for almost all t ∈ (0, T ).
The theorem is proved. 2

Under the hypotheses of Theorem 2.2 the solution to Problem 2 is unique in the class V ×
L∞(0, T ).

Theorem 2.3. Let the conditions of Theorem 2.2 be fulfilled. Then Problem 2 has a unique
solution (u(t, x), k(t)). The pair (u(t, x), k(t)) satisfies the estimates (2.44)–(2.47) and ut ∈
L2(0, T ;W 1

2 (Ω)).

Proof. The existence of the solution to Problem 2 and the estimates (2.44)–2.47) were proved
in Theorem 2.2. It remains to establish the uniqueness.

Let (u1(t, x), k1(t)) and (u2(t, x), k2(t)) be two solutions of Problem 2. Then the pair
(w(t, x), p(t)) = (u1 − u2, k1(t) − k2(t)) solutions the problem

wt − k1(t)Mw = −p(t) Mu2, (t, x) ∈ QT , (2.50)

w
∣

∣

t=0
= w

∣

∣

∂Ω
= 0, (2.51)

k1(t)

∫

∂Ω

∂w

∂ν
ω ds = −

φ2(t)

k2(t)
p(t), t ∈ [0, T ]. (2.52)

Multiplying (2.50) by Mw in terms of the inner product of L2(Ω) and integrating by parts, we
can easily obtain

1

2

d

dt
‖w‖2

1,M + k1(t)‖Mw‖2
6 |p(t)| ‖Mu2‖ ‖Mw‖. (2.53)

From (2.6) with q = 2, (2.14), (2.52) and the Young inequality it follows that

|p(t)| ‖Mu2‖ ‖Mw‖ 6 C21 ‖Mu2‖ ‖w‖
1/2
1,M ‖Mw‖3/2

6
r(0)

2
‖Mw‖2 +

C4
21

2r3(0)
‖Mu2‖

4 ‖w‖2
1,M (2.54)

where C21 = const > 0 depends on C2, φ2, r(0), α3, mi, i = 1, 2, 3. Since u2 ∈ L∞(0, T ;W 2
2 (Ω),

according to Gronwall’s lemma, (2.51),(2.53) and (2.54) implies that w = 0 for almost all (t, x) ∈
QT and p = 0 for almost all t ∈ (0, T ). The theorem is proved. 2

Conclusions

In this paper we discussed the behaivior of the solution to the Problem 1 as η → 0. It was
established that Problem 1 for the pseudoparabolic equation approximates weakly Problem 2
for the parabolic one under the hypotheses of Theorem 2.2 when η → 0. Theorems 1.1 and 2.2

remains true if ω ∈ C([0, T ];W
3/2
2 (∂Ω)) and ϕ1 ∈ C([0, T ]).

In general Problem 1 does not approximate Problem 2. As was shown in [1], if the initial and
boundary data do not satisfy (2.11), then Problem 1 may be unsolvable.

Theorem 2.2 implies that Problem 2 for the relevant parabolic equation is solved relying on the
results on Problem 1. The uniqueness of the solution to Problem 2 is provided by Theorem 2.3.
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Об аппроксимации параболической обратной задачи
псевдопараболической задачей

Анна Ш. Любанова

Исследуется обратная задача идентификации одного из старших коэффициентов псевдопарабо-

лического уравнения. Доказывается, что обратная задача для псевдопараболического уравнения

аппроксимирует соответствующую обратную задачу для параболического уравнения. Устанав-

ливается также существование и единственность решения параболической обратной задачи.

Ключевые слова: фильтрация, обратные задачи для уравнений в частных производных, псевдопа-

раболическое уравнение, параболическое уравнение, теоремы существования и единственности.
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