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The aim of the article is to find conditions on the coefficients of the Taylor expansion of a
holomorphic function in C that guarantee an absence of zeros.

Let a function f = f(z) with respect to complex variable z be holomorphic in a neighborhood
of zero in the complex plane C:

o0
flz)=> brek, f(0)=bo=1. (1)
k=0
Let ;- be a circle of the form
v=A{z: |z|=r}, r>0.

Theorem 1. For function f to be an entire function of finite order of growth which has no zeros,
it is necessary and sufficient that for sufficiently small r there exists ko € N such that

1d
/Tzk]{ =0 npuscex k=ko. (2)

In this case the minimum kg is equal to the order of function.

Recall that the entire function f(z) has a finite order (of growth) if there exists a positive
number A such that N
f(z)=0("") for |z] =R — +o0.

The infimum of such numbers A is called the order of function (see, e.g., [2,3]).

Proof. Let the function f be a function of finite order of growth, which has no zeros in C
then it is well known that it has the form: f(z) = e¥(*), where ((2) is a polynomial of some
degree kg (see, e.g., [2, Ch. 7, Sec. 1.5]). Then

1df 1,

—— = —¢'(2)dz=0 upu k> ko.
/%» 2 f Yr zk

Conversely, suppose that condition (2) is fulfilled. Since f(z) is holomorphic function in a

neighborhood of zero and f(0) # 0 then values of f(z) lie in a neighborhood of f(0) and this
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neighborhood does not contain the point 0 for sufficiently small |z|. Therefore, the holomorphic
function ¢(z) =In f(z), In1 = 0 is defined in the neighborhood of zero.
Let

p(2) =Y arz¥, ag=1Inf(0) =Inb.
k=0

Then, for sufficiently small r we have

1 1df 1 / 1,
— | == =— | —¢'(2)dz = ka. (3)
2mi [, 2k f  2mi ), Zk

When condition (2) is fulfilled we see that ar = 0 under k& > ko. Therefore, p(x) is a
polynomial of degree ko. Consequently, f(z) = e#(*) is an entire function of finite order k. O

There exists a recursive relationship between coefficients of f and ¢(z) (see, e.g., [1, §2,
Lemma 2.3]).

Lemma 1. The following relations are true:

by bo 0 ... 0

(D120 b by ... O

R

0
kb, br_1 bpo ... by
and

aq -1 0 ... 0
b, — Do |2a2 a1 —2 .0
kay, (k/’_l)ak_l (k—?)ak_g ...oay

Therefore, we have the following statement.

Corollary 1. For function f to be an entire function of finite order ko which has no zeros, it is
necessary and sufficient that the determinant

b1 by 0o ... 0
202 b e 0 wunder k> ko, (4)
kb br—1 bg—2 ... b

where ko 1s the minimum number with this property.

Example 1. Let
E

f(Z)=62=1+kZ:12!,

1
R k> 1.

Let us substitute these values into (4). When k = 1 determinant is not equal to zero. For
k > 1 all determinants are equal to zero since the first two columns are the same. Then function
f(2) is of order 1 and it has no zeros in the complex plane.

i.e, bo = 1, bk =
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O nyasax rosoMopdHBIX QYHKINI

Oabra B. Xomgoc

Nucruryr maremaruku u dyHIaAMEHTAJILHON NH(MOPMATUKHI
Cubupckuii desepabHbIil YHUBEPCUTET

Ceobommsrit, 79, Kpacrosipck, 660041

Poccus

Leav cmamovu: natimu yaosus Ha koapduuyuenmu, Tetnopa 2oromopprot pynrkyuu C, xomopoie eapam-
mupyrom omcymcmeue Yy ree Hyased.

Karoueswie crosa: 2onomoppran pyrnkyua, Hyau GyrKyuy, yeave Gyrryuu. .
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