УДК 536.63

Высокотемпературная теплоемкость и термодинамические свойства силленита Bi₂₄GaPO₄₀

В.М. Денисов^а*, Л.А. Жереб⁶, Л.А. Иртюго^а, В.П. Жереб^а, Л.Т. Денисова^а*

^а Сибирский федеральный университет, Россия 660041, Красноярск, пр. Свободный, 79 ⁶ Сибирский государственный аэрокосмический университет им. академика М.Ф. Решетнева, Россия 660014, Красноярск, пр. им. газеты "Красноярский рабочий", 31¹

Received 2.12.2011, received in revised form 9.12.2011, accepted 16.12.2011

Получены экспериментальные значения теплоемкости в широком интервале температур для оксидного соединения Bi₂₄GaPO₄₀ со структурой силленита.

Ключевые слова: теплоемкость, термодинамические свойства, диаграмма состояния, Bi₂₄GaPO₄₀.

Введение

Исследование термодинамических характеристик оксидных соединений на основе Bi₂O₃ имеет прикладное значение в связи с их ценными свойствами [1-3]. Изучение таких характеристик соединения со структурой силленита Bi₂₄GaPO₄₀ представляет и научный интерес.

Целью настоящей работы является определение высокотемпературной теплоемкости и расчет термодинамических функций соединения Bi₂₄GaPO₄₀.

Результаты и их обсуждение

Тройная оксидная фаза со структурой силленита $Bi_{24}GaPO_{40}$ образуется в состоянии стабильного равновесия в системе $Bi_2O_3 - Ga_2O_3 - P_2O_5$ и плавится инконгруэнтно при 1173 К [4]. На рисунке 1 представлена фазовая диаграмма квазибинарного разреза $Bi_2O_3 - Bi_{24}GaPO_{40}$, построенная по результатам дифференциально-термического (ДТА) и рентгенофазового (РФА) анализов равновесных образцов, полученных твердофазным синтезом исходных компонентов

^{*} Corresponding author E-mail address: antluba@mail.ru

¹ © Siberian Federal University. All rights reserved

Рис. 1. Фазовая диаграмма системы Bi₂O₃ – Bi₂₄GaPO₄₀

α-Bi₂O₃ квалификации ос.ч. и GaPO₄ в α-кварц-модификации. Ортофосфат галлия получали, как в [4]. Оксид галлия растворяли в азотной кислоте, затем добавляли 85 %-ную ортофосфорную кислоту квалификации ос.ч., взятую в небольшом избытке. Полученный при упаривании раствора продукт промывали на воронке Бюхнера ледяной водой, этиловым спиртом и эфиром. Воздушно-сухие осадки прокаливали при 1200 К. Идентификацию полученного ортофосфата галлия выполняли с помощью ДТА, РФА и химического анализа. Область гомогенности фазы со структурой силленита со стороны оксида висмута определена построением треугольников Таммана по величинам тепловых эффектов перитектического (δ -Bi₂O₃ \leftrightarrow \pm Bi₂₄GaPO₄₀) и перитектоидного (α -Bi₂O₃ \leftrightarrow δ \pm Bi₂₄GaPO₄₀) превращений при 1103 и 1008 К соответственно. Пологий ликвидус на составе фазы со структурой силленита указывает на ее частичную диссоциацию при плавлении.

Монокристаллы соединения Bi₂₄GaPO₄₀ выращивали из платинового тигля методом Чохральского из расплава стехиометрического состава на затравки из германата висмута со структурой силленита – Bi₁₂GeO₂₀, ориентированные в направлениях 100 и 110 при скорости вытягивания менее 3 мм/ч и скорости вращения затравки около 40 об/мин. Были получены монокристаллы желтого цвета диаметром до 10 мм и длиной до 30 мм.

Измерение теплоемкости (C_p) силленита $Bi_{24}GaPO_{40}$ осуществляли по методике, описанной ранее [5]. Учитывая высокую агрессивность как чистого Bi_2O_3 , так и соединений на его основе [1, 6], все эксперименты проводили в платиновых тиглях. Измерения теплоемкости $Bi_{24}GaPO_{40}$ делали на приборе STA 449 C Jupiter (NETZSCH).

Рис. 2. Влияние температуры на теплопроводность Bi₂₄GaPO₄₀

Полученные экспериментальные значения теплоемкости в виде зависимости $C_p = f(T)$ представлены на рис. 2.

Сглаженные значения Ср описаны уравнением (Дж/моль-К)

$$C_{p} = a + b \cdot 10^{-3} T - c \cdot 10^{5} T^{-2} = 1711, 0 - 11, 3 \cdot 10^{-3} T - 399 \cdot 10^{5} T^{-2}.$$
 (1)

С использованием соотношения (1) рассчитаны термодинамические функции (изменение энтальпии $H_T^o - H_{298}^o$ и энтропии $S_T^o - S_{298}^o$). Для этого пользовались известными уравнениями, связывающими теплоемкость C_p с функциями энтальпии и энтропии:

$$H_{T} - H_{o} = \int C_{p}(T) dT, \qquad (2)$$

$$S_{T} - S_{o} = \int \frac{C_{p}(T)}{T} dT.$$
(3)

Полученные результаты приведены в таблице.

Т, К	С _р , Дж/(моль·К)	Н _т [°] – Н ₂₉₈ , кДж/моль	S [°] _T −S [°] ₂₉₈ , Дж/(мольК)
298	1258,65		
300	1264,60	4,31	8,44
320	1318,06	46,78	91,82
340	1362,33	88,27	173,1
360	1399,39	128,9	252,0
380	1430,73	168,9	328,6
400	1457,44	208,3	402,6
420	1480,40	247,2	474,3
440	1500,28	285,6	543,7
460	1517,58	323,7	610,7
480	1532,74	361,4	675,7
500	1546,10	398,9	738,5
520	1557,91	436,1	799,4
540	1568,41	473,0	858,4

Таблица. Термодинамические функции $Bi_{24}GaPO_{40}$

Т, К	С _р , Дж/(моль К)	Н _т ^о – Н ₂₉₈ , кДж/моль	S [°] _T – S [°] ₂₉₈ , Дж/(моль·К)
560	1577,79	509,8	915,6
580	1586,19	546,3	971,1
600	1593,74	582,7	1025
620	1600,55	618,9	1077
640	1606,71	655,0	1128
660	1612,30	691,0	1178
680	1617,38	726,8	1226
700	1622,01	762,6	1273
720	1626,25	798,2	1319
740	1630,13	883,8	1363
760	1633,69	869,3	1407
780	1636,96	904,7	1449
800	1639,97	940,0	1491
820	1642,75	975,3	1531
840	1645,32	1010	1571
860	1647,69	1046	1610
880	1649,89	1081	1648
900	1651,93	1116	1685
920	1653,82	1151	1721
940	1655,58	1186	1757
960	1657,21	1221	1792
980	1658,74	1255	1826
1000	1660,16	1290	1859

Продолжение табл.

Сравнить полученные результаты с данными других авторов не представлялось возможным, ибо такие сведения в литературе отсутствуют. Тем не менее можно отметить, что значение удельной теплоемкости С^о_p для соединения Bi₂₄GaPO₄₀ близко к таковым для других оксидных соединений со структурой силленита [3].

Список литературы

1. Денисов В.М., Белоусова Н.В., Моисеев Г.К. и др. Висмутсодержащие материалы: строение и физико-химические свойства. Екатеринбург: УрО РАН, 2000. 526 с.

2. Юхин Ю.М., Михайлов Ю.И. Химия висмутовых соединений и материалов. Новосибирск: СО РАН, 2001. 360 с.

3. Каргин Ю.Ф., Бурков В.И., Марьин А.А. и др. Кристаллы Ві₁₂М_хО_{20±δ} со структурой силленита. Синтез, строение, свойства. М.: ИОНХ, 2004. 316 с.

4. Жереб Л.А. Взаимодействие в системах: Bi₂O₃ – P₂O₅–Э₂O₃, где Э – В, Al, Ga, Fe: Дис.... канд. хим. наук. М.: ИОНХ АН СССР, 1983. 171 с.

5. Денисов В.М., Денисова Л.Т., Иртюго Л.А. и др. Теплофизические свойства Ві₄Ge₃O₁₂ // ФТТ. 2010. Т. 52. № 7. С. 1274 – 1277.

6. Белоусова Н.В., Денисов В.М., Антонова Л.Т. и др. Смачивание платины и палладия расплавами на основе Bi₂O₃ // Расплавы. 2006. № 5. С. 3 – 7.

High-temperature Heat Capacity and the Thermodynamic Properties of Bi₂₄GaPO₄ Sillenite

Viktor M. Denisov^a, Liudmila A. Zhereb^b, Liliya A. Irtyugo^a, Vladimir P. Zhereb^a and Liubov T. Denisova^a ^a Siberian Federal University, 79 Svobodny, Krasnoyarsk 660041 Russia ^b Siberian State Aerospace University, Россия 660014, Красноярск, 31 Krasnoyarsky Rabochy, Krasnoyarsk, 660014 Russia

Experimental data for the heat capacity of the $Bi_{24}GaPO_{40}$ oxide compound have been obtained for a wide temperature range.

Keywords: heat capacity, thermodynamic properties, phase diagram, Bi₂₄GaPO₄₀.