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Kostant Partition Function for sp,(C)
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In this note, we obtain exact values of the partition function of Kostant for the simple Lie algebra
s5pa(C). Using the values of the partition function, we can find the weight multiplicities of irreducible
representations of sp4(C) by a simple computation.
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Introduction

Let L be a finite dimensional complex semi-simple Lie algebra with a Cartan subalgebra H
and root system ® and suppose ®* denotes the set of positive roots. Recall that the Weyl vector
is defined by

Suppose A is an integral dominant weight of L and V(\) is the corresponding irreducible L-
module. For any other integral dominant weight p, we define the multiplicity of p in A to be the
dimension of

VI, ={veV(\):Vhe H hwv=pu(h)v}.

There exists a compact formula for computing weight multiplicities, known as Kostant’s multi-
plicity formula. It can be stated as follows,

dim V(A = Y e@)Pw+p) = (1 + p))

weW

Here W is the Weyl group of L, ¢(w) is the sign of w, and P is the Kostant partition function.
By definition, for any weight ~, P(~) is the number of ways to write v as a linear combination of
positive roots with non-negative coefficients, (see [1] for details). Although the Kostant partition
function is a well-known classical notion in Lie algebra, an explicit expressions for it, might not
be easy to find in the literature. In this note, we give an explicit formula for the values of the
partition function, in the case L = sps(C).
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1. Generalities

In this elementary section, we give a review of theories concerning the Lie algebra sps(C).
We also fix a set of notations we will use in the next sections.
The symplectic Lie algebra, sp4(C), is a 10-dimensional simple Lie algebra defined by

sp4(C) = {x € Maty(C) : sz = —27 s},

o 0 I
“\ - o

A Cartan subalgebra for sp,(C) is H which consists of diagonal matrices

where

h = diag(ay, az, —ai, —az),
where a1,a9 € C. For ¢ = 1,2, define a functional p; : H — C by p;(h) = a;. So the set
@ = {11 <i,j <2} —{0)
is a root system for sp,(C). Also, the set
II={Ri = p1 — p2, Ro = 2ps}

is a basis for ®. Finally
AL =1, A2 =+ e

are fundamental weights of sp4(C). Note that, we also have the following simple relations;

H1 = A1

Ho = —Ai+ A
Ri = 2\ — X
Ry = —=2X\1 42X
AN = R+ %Rz
A = Ri+ Rs.

We denote the Weyl group by W. It is generated by the reflection o, o € 11, where
2(8,a)

(o, )

oa(B) = —

b

for 5 € ®. Let 01 = or, and o2 = og,. In the following table, we give the elements od W by
their actions on the elements 1 and ps, their expressions as products of o1 and o2, and their
sign, e(w).

The Weyl group of sp4(C)

w | w(p) | w(ue) | presentation | e(w)
w1 M1 o 1 1
wa 142 1 o1 -1
w3 1 — 2 lop -1
Wy 42 — 1 0102 1
Ws —H2 M1 0207 1
we — 1 42 010201 -1
wr ) — 1 020102 -1
wsg — — 2 (0102)* 1
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Let A = a\; 4+ bA2 be an integral dominant weight of sps(C). We denote the corresponding
sp4(C)-module by V(\). Using Weyl’s dimension formula, (see [1], page 267), we have

dimV(\) = é(a +1)(b+ 1)(a+b+2)(a+2b+3).

Equivalently, if A = pu1 + quo, we have

dim V() = 0+ 2+ )p+a+3)p—a+1).

Now, we are going to compute the weight multiplicities for sp4(C). These are very important
for decomposition of a sp4(C)-module in to the direct sum of irreducible constituents. For this
purpose, we use the Kostant multiplicity formula;

dimV(\), = Z eW)PBwA+p) — (n+p)),

weW

where p = A1 + A2 and P is the partition function, i.e. P (u) is the number of ways to write u as
a linear combination of positive roots with non-negative integer coefficients.

Suppose A = pu1 + quo and p = ru; + sps. Since we have p = 2u;1 + uso, so using the above
table,

[
]

dim V(M) (W) P(wi(A+p) — (1 — p))

=1

[
NE

e(wi)P(wi((p+2)p + (g + Dp2)
1

—((r+2)p1 + (s + 1) p2))
= Bllp—7r)m +(q—s)p2)
—PB((g—r— D+ (p—s+p2)
—PB((p = 7)1 — (g + s+ 2)p2)
Plg—7r— D1+ (p+ 5+ 3)u2).
It is enough to know the values of () for the following cases,

-
Il

_|_

Case 1: v =1iuj + juz such that 7,57 > 0 and ¢ 4 7 is even.

Case 2: v =1u; — juz such that ¢ > 7 > 0 and 7 + j is even.

2. Values of the Partition Function

In what follows, we obtain the exact values of PB(vy). We know that the positive roots of
sp4(C) are
Pr = p1 — p2, B2 =pa+p2, B3 =21, Ba=2ps.

Now, we have
4

PB(y) = {(r1,re,73,74) 11 € Zyry 2 0,7 = Zriﬁi}|~
i=1
Let v = ipu1 + jus. If it is possible to write v as non-negative integer linear combination of 3;s,
then we have

i+ e = T4+ refo + 1383+ rafs
(r1 4 ro+2r3)ur + (=11 + 72 + 2ry) po,
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so we must have
t1=r1+1re+2r3, j=—r1+rs+2r4.

Hence we obtain the the following results;

1. If i + j is odd, then B(v) = 0.

2. If i < 0, then P(v) = 0.

3. If —j >4 >0, then P(y) = 0.

It is enough to know the values of P(u) for the following cases,
Case 1: v =13 + juz such that 7,5 > 0 and ¢ 4 j is even.
Case 2: v =1y — jug such that ¢ > 5 > 0 and ¢ + j is even.

Let v = ipu1+jpus such that ¢, § > 0 and i47 is even. Then B(~) is the number of non-negative
integer solutions of

T1 + T2 + 27‘3 = Z
—ri+ret+2ry = j
Adding up two equations, we obtain
1+ J
T2 —+ rs + T4 = .
2
Also, subtraction gives '
t—J
ry = 5 +7r4—1s.

So, PB(~) is the number of integer solutions of the following system;

r+y+z = Z—;]
r+2y < 4
r+2z =2 j
z,y,z2 = 0

We consider two cases: j < @ and i < j. In the first case, we see that () is the number of
solutions of the system:;

1+
<
T+y 9
r+2y < 1
z,y = 0

Lemma 2.1. The number of integer solutions of the system

xr+y

k
T,y 0

<
=2

s equal to
(k+1)(k+2)
—
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Proof. For 0 <1 <k, let
Ar={(z,)): 220, z+1<k}.
So, we have |4;| = k — 1+ 1. Thus

k
N ST (k+1)2(k+2)

=1

Corollary 2.1. The number of the integer solutions of the system

N

k
l
0

Tty
0<y
T

VoA

18 equal to

(I+1)(2k+2-1)
5 .

Lemma 2.2. The number of the integer solutions of the system

r+2y < k
z,y = 0

s equal to
(k +2)?

n—=-—— -——,

4

if k is even, otherwise

(ke 1)(k+3)

4
Proof. For 0 <[ < k, suppose

Ar={(z,0) 2 >0,z + 20 < k}.

Then, we have
A =k—21+1,
and hence, for even k

(k+2)?

n=143+---+(k+1)= 1

and for odd k, we have

n:2+4+---+(k’+1)zw.

Corollary 2.2. Suppose n is the number of integer solutions of the system

z+2y < k
0<l < y
zr = 0
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If k is even, then we have
(k —20+2)?
4 )

and otherwise
(k—=204+1)(k—2l+3)

1 .

We return to the system

+.
.

r+y
T+ 2y
r,Y

A\VARV/ANV/AN
)

o S,

where j < 7 and 7 + j is even. One can split this system into two complementary systems as
follows,

2
rhy <

0<y
x

and

So, using Lemmas 3-2 and 3-4, we obtain

Corollary 2.3. Let v = ipu1 + jus such that 0 < j < i and t+ j is even. If j is even, then

B(y) = (i—j+2)(i;3j+4)+2j2’

and if j is odd, then we have

B(y) = (i—j+2)(z’+3jé+4)+2(j2—1).

Now, suppose we have 7 < j. It is easy to see that in this case, () is the number of solutions
of the system
T+ 2y

< 4
z,y = 0.
Hence, we obtain;
Corollary 2.4. Let v =ipy + jpus such that 0 < i< j and i+ j is even. If i is even, then
(i

2
P(v) = 22) ,

while in the other case (1)1 3)
1+ 1)(2 +
PB() = 1
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Finally, we consider the case v = iu; — jug, with ¢ + j even and 0 < j < i. Again, P(y) is
the number of non-negative integer solutions of the system

T‘1+7"2+27’3 = 1
—ri+re+2ry = —j

Adding up two equations, we obtain

i—j
ro+1r3+1r4 = 5
Also, subtraction gives
1+
r = + 174 —7T3.
2
We see that if (rq,r3,74) satisfies
i—J
ro+71r3+1r4 = 5
T2 Z 0
T3 2 0
Ta 2 0

then (r1,7r9,73,74) iS & non-negative integral solution to the above system, and moreover every
solution can be obtain by this method. Hence the required number is just the number of solutions
of the simple sysytem

and so we have
Corollary 2.5. Suppose v = iuy — jusz, with i + j even and 0 < j < i.Then we have

m(v):(ifj+2)8(ifj+4).
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Oyukius pasdbuenus Kocranra mis spy(C)

Xacan Pedarar
Moxammag HTaxpupu

B smoti cmamuve noayvens, mounsie 3nauenus Gyrnkuuy pasbuenus Kocmanma das npocmot anzeb-
pot JTu sp4(C). Hcnoavsysa snavenus Gynrxyuu pasbuerus npocmuimy 6bHUCACHUAMY HaATOEHb: 6eCO6bLE
xpammocmu nenpusodumux npedcmasaenut spa(C).

Karoueswie caosa: cumnaexmuveckas arzebpa Jlu, gyrnkyua pasbuenus Kocmanma, epynna Betias, ee-
COBaGA KPATMHOCTD.
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