УДК 512.54

О регулярности силовских p-подгрупп симплектических и ортогональных групп над кольцом $\mathbb{Z}/p^m\mathbb{Z}$

Сергей Г. Колесников*

Институт математики, Сибирский федеральный университет, Свободный 79, Красноярск, 660041,

Россия

Николай В. Мальцев[†]

Институт фундаментальной подготовки, Сибирский федеральный университет, Киренского 26, Красноярск, 660074,

Россия

Получена 31.05.2011, окончательный вариант 25.08.2011, принята к печати 10.09.2011

Для симплектических $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ и ортогональных $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$ групп над кольцом классов вычетов целых чисел $\mathbb{Z}/p^m\mathbb{Z}$, p- простое число, $m\geqslant 1$, исследуется аналог вопроса 8.3 Верфрица из Коуровской тетради: при каких n,m,p силовские p-подгруппы групп $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ и $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$ регулярны?

Kлючевые слова: регулярная p-группа, симплектическая группа, ортогональная группа, силовская подгруппа.

Введение

Понятие регулярной p-группы (p — простое число) было введено Φ . Холлом в [1], как обобщение понятия абелевой p-группы, которые легко классифицируются. Согласно [1] конечная p-группа G называется регулярной, если для любых $a,b \in G$ и любого натурального n существует натуральное число k и элементы $c_1,\ldots,c_k \in \langle a,b,\rangle'$ такие, что $(ab)^{p^n}=a^{p^n}b^{p^n}c_1^{p^n}\ldots c_k^{p^n}$.

В этой же статье (см. также [2, теорема 12.4.2]) был доказан следующий критерий регулярности: конечная p-группа G регулярна тогда и только тогда, когда для любых $a,b \in G$ существует элемент $c \in \langle a,b \rangle'$ такой, что $(ab)^p = a^p b^p c^p$. Примеры регулярных групп дают p-группы порядка $< p^p$, а также p-группы ступени нильпотентности < p.

В 1982 г. Верфриц поставил в Коуровской тетради вопрос [3, вопрос 8.3]: для каких n, m, p силовская p-подгруппа общей линейной группы $GL_n(\mathbb{Z}/p^m\mathbb{Z})$ над кольцом классов вычетов целых чисел $\mathbb{Z}/p^m\mathbb{Z}$ по p-примарному модулю является регулярной? Ответ на него получен в [4] для случая m=1 и в [5], [6] во всех случаях, за исключением следующих: m, n>2 и 2n-1. В [6] также рассматривался аналогичный вопрос для силовских <math>p-подгрупп групп Шевалле над этим же кольцом.

^{*}sklsnkv@mail.ru

 $^{^\}dagger$ nvmatsev@mail.ru

[©] Siberian Federal University. All rights reserved

В настоящей статье аналог вопроса Верфрица рассматривается для симплектических $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ и ортогональных $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$ групп. Более точно доказаны следующие две теоремы.

Теорема 1. Силовская p-подгруппа симплектической группы $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ нерегулярна при любом $m \geqslant 1$, если p < 2n, u при любом $m \geqslant 2$, когда p < 4n.

Теорема 2. Силовская p-подгруппа ортогональной группы $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$ нерегулярна при любом $m \geqslant 1$, если p < 2n-2, и при любом $m \geqslant 2$, когда p < 4n-4.

1. Вспомогательные результаты

Определим последовательность функций f_n , $n=1,2,\ldots$, от целочисленных аргументов i,j,k, полагая $f_n(i,j,k)=-[(j-i-k)/n]$, здесь [x] — целая часть числа x. Для всякого целого неотрицательного числа l через J^l будем обозначать идеал кольца $\mathbb{Z}/p^m\mathbb{Z}$, порождённый элементом p^l . Множество идеалов $\mathfrak{A}_m^{(k)}=\{J_{ij}=J^{f_n(i,j,k)}\mid 1\leqslant i,j\leqslant n\}$ кольца $\mathbb{Z}/p^m\mathbb{Z}$ образует ковер [7, стр. 195]. Положим $M_n(\mathfrak{A}_m^{(k)})=\{||c_{ij}||\ |\ c_{ij}\in J_{ij}\}$ и обозначим через $\Gamma(\mathfrak{A}_m^{(k)})=\{E_n+C\mid C\in M_n(\mathfrak{A}_m^{(k)})\}$ конгруэнц-подгруппу группы $GL_n(\mathbb{Z}/p^m\mathbb{Z})$ по модулю ковра идеалов $\mathfrak{A}_m^{(k)}$ (E_n — единичная матрица порядка n). Множество квадратных матриц порядка n, все элементы которых лежат в фиксированном идеале J^l , будем обозначать через $M_n(J^l)$.

Нетрудно видеть, что имеют место следующие включения $M_n(\mathfrak{A}_m^{(1)}) \supseteq M_n(\mathfrak{A}_m^{(2)}) \supseteq \dots$. Следующая лемма доказана в [6].

Лемма 1. Пусть $k_1, ..., k_s$ — произвольные натуральные числа $u \ A_i \in M_n(\mathfrak{A}_m^{(k_i)}), \ i = 1, ..., s.$ Тогда $A_1 \cdot A_2 \cdot ... \cdot A_s \in M_n(\mathfrak{A}_m^{(k_1 + ... + k_s)}).$

Далее нам потребуется следующий теоретико-числовой факт.

Пемма 2. Для всякого целого простого числа p > 2 и целого $k, 1 \leqslant k < p$, сумма биномиальных коэффициентов

$$(-1)^k \binom{k}{p+k-1} + \binom{k}{p}$$

 ∂e лится на p^2 .

Доказательство. При k=1 сумма равна нулю. Пусть k>1. Имеют место следующие равенства: $(p+(k-1))\dots(p+1)=sp+(k-1)!,\quad (p-(k-1))\dots(p-1)=tp+(-1)^{k-1}(k-1)!,$ для некоторых $s,t\in\mathbb{Z}$. Поэтому число

$$(-1)^{k}(p+k-1)! + p!(p-k+1)\dots(p-1) =$$

$$= p!((-1)^{k}(p+(k-1))\dots(p+1) + (p-(k-1))\dots(p-1)) =$$

$$= p!((-1)^{k}sp + (-1)^{k}(k-1)! + tp + (-1)^{k-1}(k-1)!) = p!p(t+(-1)^{k}s)$$

делится на p^2 . Оно также делится на взаимно простое с p число k!(p-1)!. Значит, сумма

$$(-1)^k \binom{k}{p+k-1} + \binom{k}{p} = (-1)^k \frac{(p+k-1)!}{k!(p-1)!} + \frac{p!(p-k+1)\dots(p-1)!}{k!(p-1)!}$$

делится на p^2 .

2. Симплектические группы

Пусть p>2 — простое число и $f=\left(egin{array}{cc} O_n & H \\ -H & O_n \end{array} \right),$ где

$$H = \left(\begin{array}{ccccc} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{array}\right)$$

— квадратная матрица порядка n, O_n — нулевая матрица порядка n. Множество матриц $\{x \in GL_{2n}(\mathbb{Z}/p^m\mathbb{Z}) \mid xfx^t = f\}$ образуют группу относительно умножения матриц, которая называется симплектической группой и обозначается $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$. Пересечение $Sp_{2n}(\mathfrak{A}_m^{(1)}) = Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z}) \cap \Gamma_{2n}(\mathfrak{A}_m^{(1)})$, где $\mathfrak{A}_m^{(1)}$ — ковер, определенный выше, является силовской p-подгруппой в $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ (см., например, [8]).

Предложение 1. Для всякого простого числа $p \geqslant 3$ силовская p-подгруппа симплектической группы $Sp_{p+1}(\mathbb{Z}/p\mathbb{Z})$ не является регулярной.

Доказательство. Положим n=(p+1)/2 и пусть $a=\left(\begin{array}{cc}E_n+C&O_n\\O_n&E_n+D\end{array}\right)$ — клеточнодиагональная матрица с клетками

$$E_n + C = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 0 & 1 & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}, \qquad E_n + D = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Пусть также $b = E_{2n} + e_{n,n+1}$ (через e_{ij} обозначаем матрицу, у которой на пересечении i-й строки и j-го столбца стоит единица и нули на остальных местах; порядок матрицы e_{ij} всегда ясен из контекста). Матрицы a и b лежат в силовской p-подгруппе $Sp_{2n}(\mathfrak{A}_1^{(1)})$.

Вычислим a^p и b^p . Имеем $b^p = E_{2n} + p \, e_{n,n+1} = E_{2n}$. Далее, $C^p = D^p = O_n$, так как C и D нильпотентны степени n < p. Биномиальные коэффициенты $\binom{p}{i}$, $i = 1, \ldots, p-1$, кратны p, поэтому $(E_n + C)^p = E_n + \sum_{i=1}^{p-1} \binom{p}{i} C^i + C^p = E_n$ и, аналогично, $(E_n + D)^p = E_n$. Значит, $a^p = E_n$

Найдем
$$(ab)^p$$
. Пусть $Q = ab - E_{2n} = e_{1,2} + \ldots + e_{n,n+1} - e_{n+1,n+2} - \ldots - e_{2n-1,2n} + \sum_{j-i>1} \alpha_{ij} e_{ij}$.

Тогда $(ab)^p = (E_{2n} + Q)^p = E_{2n} + \sum_{i=1}^{p-1} \binom{p}{i} Q^i + Q^p = E_{2n} + Q^p$. Для того чтобы вычислить произведение Q^p , подставим в него вместо матрицы Q ее разложение в сумму элементарных матриц. После раскрытия всех скобок мы получим сумму произведений элементарных матриц, где каждое произведение содержит ровно p = 2n-1 сомножителей. Теперь заметим, что произведение элементарных матриц $e_{i_1,j_1} \cdot e_{i_2,j_2} \cdot \ldots \cdot e_{i_s,j_s}$ отлично от нулевой матрицы только, если $j_k = i_{k+1}, k = 1, \ldots, s-1$. В случае, когда указанное произведение отлично от нулевой матрицы, оно равно e_{i_1,j_s} , а сумма разностей $j_k - i_k, k = 1, \ldots, s$, равна $j_s - i_1$. Так как максимальное значение разности j-i для верхней нильтреугольной матрицы e_{ij} порядка 2n равно 2n-1, а число 2n-1 раскладывается в сумму 2n-1 натуральных чисел единственным способом (только в сумму единиц), то существует единственное ненулевое произведение p

элементарных верхних нильтреугольных матриц порядка 2n, а именно, $e_{1,2} \cdot e_{2,3} \cdot \ldots \cdot e_{2n-1,2n}$, и равно оно $e_{1,2n}$. Поэтому $Q^p = e_{12} \cdot \ldots \cdot e_{n,n+1}(-e_{n+1,n+2}) \cdot \ldots \cdot (-e_{2n-1,2n}) = (-1)^{n-1}e_{1,2n}$ и, значит, $(ab)^p = E_{2n} + (-1)^{n-1}e_{1,2n}$.

Вычислим теперь G'^p , где $G=\langle a,b\rangle$. Согласно [8, стр. 647] $[Sp_{2n}(\mathfrak{A}_1^{(1)}),Sp_{2n}(\mathfrak{A}_1^{(1)})]=Sp_{2n}(\mathfrak{A}_1^{(2)})$. Так как $Sp_{2n}(\mathfrak{A}_1^{(2)})\subseteq \Gamma(\mathfrak{A}_1^{(2)})$ и по лемме $1\left[\Gamma(\mathfrak{A}_1^{(2)})\right]^p\subseteq \Gamma(\mathfrak{A}_1^{(2p)})=\{E_{2n}\}$ $(f_{2n}(i,j,2p)\geqslant 1$ для всех i,j), то $G'^p=\{E_{2n}\}$. Однако, $b^{-p}a^{-p}(ab)^p\neq E_{2n}$, поэтому группа $Sp_{2n}(\mathfrak{A}_1^{(1)})$ нерегулярна.

Предложение 2. Для всякого простого числа p > 3 такого, что число n = (p+1)/4 — целое, силовская p-подгруппа симплектической группы $Sp_{2n}(\mathbb{Z}/p^2\mathbb{Z})$ не является регулярной.

Доказательство. Прежде чем приступить к доказательству предложения, слелаем два замечания. Во-первых, из равенства 2n=(p+1)/2 и леммы 1 следует, что произведение любых (p+1)-й матрицы из $M_{2n}(\mathfrak{A}_2^{(1)})$ равно нулевой матрице. Во-вторых, произведение числа, кратного p на любую матрицу из $M_{2n}(J)$, тоже равно нулевой матрице.

Пусть $a=E_{2n}+A$, где $A=\left(egin{array}{cc} C & Q \\ O_n & D \end{array} \right)$ и C,D,Q следующие квадратные матрицы порядка n :

$$C = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 0 & 0 & 1 & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \end{pmatrix},$$

$$D = -e_{12} - e_{23} - \ldots - e_{n-1,n}$$

Матрицы a и $b = E_{2n} + B = E_{2n} + p e_{2n,1}$ лежат в силовской p-подгруппе $Sp_{2n}(\mathfrak{A}_2^{(1)})$.

Вычислим $(ab)^p$. Имеем $(ab)^p = (E_{2n} + A + B + AB)^p = E_{2n} + \sum_{k=1}^p \binom{k}{p} (A + B + AB)^k$. Матрица

B лежит в нильпотентном ступени 2 идеале $M_{2n}(J)$ кольца $M_{2n}(\mathbb{Z}/p^2\mathbb{Z})$. Поэтому любое произведение, составленное из матриц A или B, содержащее не менее двух сомножителей, равных B, равно нулевой матрице. Отсюда при k>1 следует

$$(A+B+AB)^k = ((A+B)+AB)\dots((A+B)+AB) =$$

$$= (A+B)^k + AB(A+B)^{k-1} + (A+B)AB(A+B)^{k-2} + \dots + (A+B)^{k-1}AB =$$

$$= (A+B)^k + ABA^{k-1} + A^2BA^{k-2} + \dots + A^kB$$

и, значит,

$$\binom{k}{p}(A+B+AB)^k = \binom{k}{p}\left[(A+B)^k + ABA^{k-1} + A^2BA^{k-2} + \dots + A^kB\right] =$$
$$= \binom{k}{p}(A+B)^k = \binom{k}{p}A^k$$

для k = 2, ..., p - 1. Поэтому

$$(ab)^p = E_{2n} + \binom{1}{p}(A+B+AB) + \sum_{k=2}^{p-1} \binom{k}{p} A^k + (A+B+AB)^p =$$

$$= E_{2n} + (A+B)^p + \sum_{k=1}^{p-1} {k \choose p} A^k.$$

Вычислим a^{-p} и b^{-p} . Имеем $b^{-p}=(E_{2n}+p^2e_{2n,1})^{-1}=E_{2n}^{-1}=E_{2n}$. Для вычисления a^{-p} воспользуемся разложением в ряд Маклорена функции $(1+x)^{-p}$:

$$(E_{2n} + A)^{-p} = E_{2n} + \sum_{k=1}^{p-1} (-1)^k \binom{k}{p+k-1} A^k.$$

Ряд конечный, поскольку $A^p = O_{2n}$ (матрица A является верхней нильтреугольной и ее степень нильпотентности равна 2n < p.

Используя полученные равенства, находим

$$b^{-p}a^{-p}(ab)^{p} = \left(E_{2n} + \sum_{k=1}^{p-1} (-1)^{k} {k \choose p+k-1} A^{k} \right) \left(E_{2n} + (A+B)^{p} + \sum_{k=1}^{p-1} {k \choose p} A^{k} \right) =$$

$$E_{2n} + (A+B)^{p} + \sum_{k=1}^{p-1} \left((-1)^{k} {k \choose p+k-1} A^{k} + {k \choose p} A^{k} \right).$$

Ввиду леммы 2 для $k = 1, \dots, p-1$ имеют место равенства

$$(-1)^k \binom{k}{p+k-1} A^k + \binom{k}{p} A^k = \left((-1)^k \binom{k}{p+k-1} + \binom{k}{p} \right) A^k = O_{2n},$$

следовательно, $b^{-p}a^{-p}(ab)^p = E_{2n} + (A+B)^p$.

Найдем p-ю степень произвольной матрицы $W = ||w_{ij}|| \in M_{2n}(\mathfrak{A}_2^{(1)})$. По лемме 1 элемент $w_{ij}^{(p)}$ матрицы W^p лежит в идеале $J^{f_{2n}(i,j,p)}$. Значение функции $f_{2n}(i,j,p)$ равно единице при $i=1,\ j=2n$ и больше единицы в остальных случаях. Поэтому $W^p=w_{1,2n}^{(p)}e_{1,2n}$. Для вычисления элемента $w_{1,2n}^{(p)}$ представим матрицу W в виде суммы элементарных матриц и воспользуемся формулами их умножения. Так как все элементы матрицы W, лежащие на главной диагонали и ниже нее, принадлежат идеалу J, то любое произведение, содержащее не менее двух матриц $w_{ij}e_{ij}$ с i>j, равно нулю. Ненулевым будет только единственное произведение

$$\left(\prod_{k=1}^{2n-1} w_{k,k+1} e_{k,k+1}\right) w_{2n,1} e_{2n,1} \left(\prod_{k=1}^{2n-1} w_{k,k+1} e_{k,k+1}\right).$$

Стало быть,
$$w_{1,2n}^{(p)} = w_{2n,1} \prod_{k=1}^{2n-1} w_{k,k+1}^2$$
.

Используя последнее равенство, находим $b^{-p}a^{-p}(ab)^p=E_{2n}+(A+B)^p=E_{2n}+p\,e_{1,2n}\neq E_{2n}$. Однако, элемент b, а, следовательно, и коммутант подгруппы $\langle a,b\rangle$, лежат в нормальной подгруппе $H=\langle E_{2n}+||w_{ij}||\ |w_{ij}\in J,\ 1\leqslant i,j\leqslant 2n\rangle\cap Sp_{2n}(\mathfrak{A}_2^{(1)})$. Так как H является элементарной абелевой p-группой, то p-я степень любого элемента из $\langle a,b\rangle'$ равна единице. Поэтому элемент $E_{2n}+p\,e_{1,2n}$ не представим в виде произведения p-х степеней элементов из $\langle a,b\rangle'$. Значит, группа $Sp_{2n}(\mathfrak{A}_2^{(1)})$ нерегулярна. Предложение доказано.

Поскольку подгруппы и фактор группы регулярной группы тоже регулярны, то из предложений 1 и 2 вытекает теорема 1.

Заметим также, что согласно [8] ступень нильпотентности группы $Sp_{2n}(\mathfrak{A}_m^{(1)})$ равна 2nm-1, а p-группы ступени нильпотентности меньше, чем p регулярны [2, стр. 205]. Поэтому из теоремы 1 следует полное решение вопроса о регулярности силовской p-группы группы $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ при m=1,2.

3. Ортогональные группы

Пусть p > 2 — простое число и

$$f = \left(\begin{array}{ccccc} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{array}\right)$$

— квадратная матрица порядка 2*n*. Множество матриц

$$\{x \in GL_{2n}(\mathbb{Z}/p^m\mathbb{Z}) \mid xfx^t = f, \det(x) = 1\}$$

образуют группу относительно умножения матриц, которая называется унимодулярной ортогональной группой и обозначается $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$. Пересечение

$$O_{2n}^+(\mathfrak{A}_m^{(1)}) = O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z}) \cap \Gamma_{2n}(\mathfrak{A}_m^{(1)}),$$

где $\mathfrak{A}_m^{(1)}$ — ковер, определенный в п.1, является силовской p-подгруппой в $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$ (см., например, [9, §1.2]).

Предложение 3. Пусть p > 2 — простое число. Силовская p -подгруппа ортогональной группы $O_{p+3}^+(\mathbb{Z}/p\mathbb{Z})$ не является регулярной.

Доказательство. Положим 2n = p + 3. Рассмотрим матрицы

$$a = \left(\begin{array}{cc} E_n + C & O_n \\ O_n & E_n + D \end{array}\right),$$

где

$$C = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 0 & 0 & 1 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}, \qquad D = \begin{pmatrix} 0 & -1 & 0 & \dots & 0 & 0 \\ 0 & 0 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix},$$

И

$$b = E_{2n} + e_{n-1,n+1} - e_{n,n+2}.$$

Так как произведение $e_{n-1,n+1} \cdot e_{n,n+2}$ равно нулевой матрице, то

$$b^p = E_{2n} + p e_{n-1,n+1} - p e_{n,n+2} = E_{2n}.$$

Далее, степень нильпотентности матриц C и D равна n < p, поэтому

$$(E_n + C)^p = E_n + \sum_{k=1}^{p-1} {k \choose p} C^k + C^p = E_n$$

и, аналогично, $(E_n + D)^p = E_n$. Отсюда

$$a^{p} = \begin{pmatrix} (E_{n} + C)^{p} & O_{n} \\ O_{n} & (E_{n} + D)^{p} \end{pmatrix} = \begin{pmatrix} E_{n} & O_{n} \\ O_{n} & E_{n} \end{pmatrix} = E_{2n}.$$

Вычислим $(ab)^p$. Имеем

$$ab = \left(\begin{array}{cc} E_n + C & R \\ O_n & E_n + D \end{array} \right),$$

где

$$R = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & -1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & -1 & 0 & \dots & 0 \\ 0 & -1 & 0 & \dots & 0 \end{pmatrix}.$$

Пусть

$$Q = ab - E_{2n} = \sum_{j-i>2} \alpha_{ij} e_{ij} +$$

$$+e_{1,2}+\ldots+e_{n-1,n}-e_{n+1,n+2}-\ldots-e_{2n-1,2n}+e_{1,3}+\ldots+e_{n-1,n+1}-e_{n,n+2}.$$

Тогда

$$(ab)^p = (E_{2n} + Q)^p = E_{2n} + \sum_{k=1}^{p-1} {k \choose p} Q^k + Q^p = E_{2n} + Q^p.$$

Из леммы 1 следует, что все элементы матрицы $Q^p=||q_{ij}^{(p)}||$, кроме, быть может, $q_{1,2n-1}^{(p)}$, $q_{1,2n}^{(p)}$ и $q_{2,2n}^{(p)}$, равны нулю. Вычислим $q_{1,2n-1}^{(p)}$. Число 2n-2 представляется в виде суммы из p=2n-3 натуральных чисел единственным образом $2n-2=2+1+\ldots+1$. Поэтому элементарную матрицу $e_{1,2n-1}$ можно представить в виде произведения (2n-3)-х верхних треугольных элементарных матриц только, если разность между вторым и первым индексом одной из матриц произведения равна 2, а у остальных 1. Учитывая, что коэффициент при $e_{n,n+1}$ в разложении Q равен нулю, как и коэффициенты при $e_{i,i+2}$, $i=n+1,\ldots,2n-2$, получим

$$q_{1,2n-1}^{(p)}e_{1,2n-1} = e_{1,2} \dots e_{n-1,n}(-e_{n,n+2})(-e_{n+2,n+3}) \dots (-e_{2n-2,2n-1}) + e_{1,2} \dots e_{n-2,n-1}e_{n-1,n+1}(-e_{n+1,n+2}) \dots (-e_{2n-2,2n-1}) = 2(-1)^{n-1}e_{1,2n-1}.$$

Таким образом,

$$b^{-p}a^{-p}(ab)^p = E_{2n} + 2(-1)^{n-1}e_{1,2n-1} + q_{2,2n}^{(p)}e_{2,2n} + q_{1,2n}^{(p)}e_{1,2n} \neq E_{2n}.$$

Вычислим теперь G'^p , где $G = \langle a, b \rangle$. По теореме 1.2.4. из [9] имеем

$$[O_{2n}^+(\mathfrak{A}_1^{(1)}), O_{2n}^+(\mathfrak{A}_1^{(1)})] \subseteq O_{2n}^+(\mathfrak{A}_1^{(2)}).$$

Так как $O_{2n}^+(\mathfrak{A}_1^{(2)})\subseteq \Gamma(\mathfrak{A}_1^{(2)})$ и по лемме 1

$$\left[\Gamma(\mathfrak{A}_{1}^{(2)})\right]^{p} \subseteq \Gamma(\mathfrak{A}_{1}^{(2p)}) = \{E_{2n}\},\$$

то
$$G'^p=\{E_{2n}\}.$$
 Однако, $b^{-p}a^{-p}(ab)^p\neq E_{2n},$ поэтому группа $O_{2n}^+(\mathfrak{A}_1^{(1)})$ нерегулярна. \square

Предложение 4. Для всякого простого числа p такого, что число n = (p+5)/4 — целое, силовская p-подгруппа ортогональной группы $O_{2n}^+(\mathbb{Z}/p^2\mathbb{Z})$ не является регулярной.

Доказательство. Простые вычисления с матрицами

$$a = E_4 + e_{13} - e_{24}, \quad b = E_4 + 3e_{31} - 3e_{42}.$$

показывают, что силовская 3-подгруппа группы $O_4^+(\mathbb{Z}/3^2\mathbb{Z})$ не является регулярной.

Пусть p > 3. Положим

$$A = \left(\begin{array}{cc} C & Q \\ O_n & D \end{array} \right),$$

где C, D, Q следующие квадратные матрицы порядка n:

$$C = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 0 & 0 & 1 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & -1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & -1 & 0 & \dots & 0 \\ 0 & -1 & 0 & \dots & 0 \end{pmatrix},$$

и

$$B = p e_{2n-1,1} - p e_{2n,2}.$$

Матрицы $a = E_{2n} + A$ и $b = E_{2n} + B$ лежат в силовской p-подгруппе $O_{2n}^+(\mathfrak{A}_2^{(1)})$. Дословно повторив рассуждения из предложения 2, получим равенство

$$b^{-p}a^{-p}(ab)^p = E_{2n} + (A+B)^p.$$

По лемме 1 имеем $(A+B)^p \in M_{2n}(\mathfrak{A}_2^{(p)})$. Так как $f_{2n}(i,j,p) \geqslant 2$ для всех пар (i,j), отличных от $(1,2n-1),\,(1,2n),\,(2,2n)$, то

$$(A+B)^p = \alpha e_{1,2n-1} + \beta e_{1,2n} + \gamma e_{2,2n}.$$

Вычислим коэффициент α . Для этого, как обычно, разложим A+B в сумму элементарных матриц и выберем те произведения, которые дают $e_{1,2n-1}$:

$$\left(e_{1,2}\dots e_{n-2,n-1}(e_{n-1,n+1}(-e_{n+1,n+2}) + e_{n-1,n}(-e_{n,n+2}))(-e_{n+2,n+3})\dots(-e_{2n-1,2n})\right) \times \\ \times (-p e_{2n,2}) \times \\ \times \left(e_{2,3}\dots e_{n-2,n-1}(e_{n-1,n+1}(-e_{n+1,n+2}) + e_{n-1,n}(-e_{n,n+2}))(-e_{n+2,n+3})\dots(-e_{2n-2,2n-1})\right) + \\ \left(e_{1,2}\dots e_{n-2,n-1}(e_{n-1,n+1}(-e_{n+1,n+2}) + e_{n-1,n}(-e_{n,n+2}))(-e_{n+2,n+3})\dots(-e_{2n-2,2n-1})\right) \times \\ \times (p e_{2n-1,1}) \times \\ \left(e_{1,2}\dots e_{n-2,n-1}(e_{n-1,n+1}(-e_{n+1,n+2}) + e_{n-1,n}(-e_{n,n+2}))(-e_{n+2,n+3})\dots(-e_{2n-2,2n-1})\right) = \\ = 8p e_{1,2n-1}.$$

Таким образом, $\alpha = 8p \neq 0$ и, следовательно, $b^{-p}a^{-p}(ab)^p \neq E_{2n}$. Завершают доказательство предложения рассуждения, аналогичные тем, что и в заключении доказательства предложения 2.

Из предложений 3 и 4 следует теорема 2. Как и в случае симплектических групп заметим, что ступень нильпотентности группы $O_{2n}^+(\mathfrak{A}_m^{(1)})$ согласно [10, следствие 1] равна (2n-2)m-1. Поэтому из теоремы 2 вытекает полное решение вопроса о регулярности группы $O_{2n}^+(\mathfrak{A}_m^{(1)})$ при m=1,2.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 09-01-00717)

Список литературы

- [1] P.Hall, A conribution to the theory of groups of prime-power order, *Proc. London Math. Soc.*, **s2-36**(1934), №1, 29–95.
- [2] М.Холл, Теория групп, М., ИЛ, 1962.
- [3] Коуровская тетрадь, Нерешенные вопросы теории групп, ред. Мазуров В.Д., Хухро Е.И.,16-е издание, 2006, http://www.math.nsc.ru/
- [4] А.В.Ягжев, О регулярности силовских p-подгрупп полных линейных групп над кольцами вычетов, Mamem. заметми, **56**(1994), №6, 106–116.
- [5] С.Г.Колесников, О регулярности силовских p-подгрупп групп $GL_n(\mathbb{Z}_{p^m})$, Иссл. по матем. анализу и алгебре, $\mathbf{3}(2001)$, 117-124.
- [6] С.Г.Колесников, О регулярных силовских p-подгруппах групп Шевалле над кольцом \mathbb{Z}_{p^m} , Сиб. матем. экурнал, **46**(2006), №6, 1289–1295.
- [7] М.И.Каргаполов, Ю.И.Мерзляков Основы теории групп, М., Наука, 1977.
- [8] Ю.В.Сосновский, Коммутаторное строение симплектических групп, *Матем. заметки*, **24**(1978), №5, 641–648.
- [9] Ю.В.Сосновский, Коммутаторное строение и изоморфизмы классических групп, Диссертация на соискание уч. степ. к.ф.-м.н., Новосибирск, 1980.
- [10] В.М.Левчук, Коммутаторное строение некоторых подгрупп групп Шевалле, Укр. мат. экурнал, 44(1992), №6, 786–795.

On the Regularity Sylow's p-subgroups of Symplectic and Orthogonal Groups over Ring $\mathbb{Z}/p^m\mathbb{Z}$

Sergey G. Kolesnikov Nikolay V. Maltsev

For symplectic $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ and orthogonal $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$ groups over residue ring of integers $\mathbb{Z}/p^m\mathbb{Z}$, p-prime integer, $m \ge 1$, we investigate analog Wehrfritz's question 8.3 from Kourovka notebook: for which n, m, p Sylow p-subgroups of groups $Sp_{2n}(\mathbb{Z}/p^m\mathbb{Z})$ and $O_{2n}^+(\mathbb{Z}/p^m\mathbb{Z})$ are regular?

Keywords: regular p-group, symplectic group, orthogonal group, Sylow subgroup.