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An expanding spherically symmetric dust cloud is considered in a framework of general relativity. Initial
conditions leading to a shell-crossing singularity are chosen. The way to construct a week solution for
such a case is proposed. Suggested method consists in cutting off the region containing the shell-crossing
and matching the remaining parts of space-time at a thin shell. Junction conditions determine the motion
of that thin shell. The singular part of dust stress-energy tensor is nontrivial only after the shell-crossing
occurs. Before that the solution coincides with Lemaitre—Tolman—Bondi one. A toy model representing
an underdensed region in Universe is discussed.
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The Lemaitre-Tolman—Bondi (LTB) solution describing the evolution of a dust cloud has
recently become quite popular for studying inhomogenities in the Universe. One of the reasons
behind that is the opportunity to explain accelerating expansion of the Universe without intro-
ducing dark energy. See [1] for a comprehensive review and clarification of the idea (before 2008)
and [2] for a more recent progress. Another important feature of the LTB space-time is a possi-
bility of describing voids formation (see [3| including a historical review of voids discovery). And
even more cosmological and theoretical applications of that remarkable solution can be found
in [4].

One of the less studied properties of the LTB solution is the formation of shell-crossing singu-
larities (SCS) for certain initial conditions. The cause for it is the intersection of initially different
dust layers resulting in diverging and even negative density. The employing of frameworks other
then a co-moving one merely brings the metric tensor to a regular form [5] but can’t remove the
singularity because it is in fact a physical but not a coordinate effect. For that reason the initial
conditions leading to a SCS are usually avoided even if it seems unfortunate.

The nature of SCS was investigated by different authors [6-9] and the conclusion is that it
has a different ("weak" or "inessential") type from a shell-focusing singularity and therefore the
solution can be extended beyond the SCS. The first example of such an extension was provided
in [6] for a rather special case of space-time. Further works [8,10] suggest the extension to be a
weak solution of Einstein equations. In [11] such weak solutions are derived treating SCS as a
shock wave and using Rankine-Hugoniot conditions. Unlike the classical solution the weak one
is not unique to the future of the shell-crossing singularity even for well posed initial conditions.
There is a weak or extended solution which has singular part in stress-energy tensor and there is
still a classical solution which is a special case of a weak solution with only regular distributions
involved.

Here we introduce another way to find a weak solution employing Israel-Darmois—Lichne-
rowicz junction formalism [12]. The idea is to cut out the unphysical regions with negative
density and match the remaining parts of the space-time at a thin shell. Of course models with
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thin shells are nothing new in cosmology and were first studied in [13]. However the important
difference is that the thin shell in present work arises from smooth initial conditions.

Israel-Darmois—Lichnerowicz matching procedure can be viewed as a consequence of dealing
with field equations in a framework of tensor distributions [14]. The same is true for relativistic
Rankine-Hugoniot equations which are identical to O’Brien—Singe conditions while written in
general form of energy and momentum conservation across the junction surface [15|. Thus relying
on the matching scheme one can expect to get the same results avoiding complicated issues of
applying generalized functions to nonlinear theory.

The units with G = ¢ = 1 are used throughout.

1. Joining Two Lemaitre-Tolman—Bondi Space-Times at a
Thin Shell

In comoving coordinates the line element for dust LTB solution is

*(1,R)

2 _ 72
ds” = dr 1+ E(R)

dR? — r*(1, R)d?, (1)

where dQ? = df? + sin? 0d¢?. Each layer of the dust is marked with it’s own value of radial
coordinate R. Function r(7, R) determines the distance to the center of the dust particles with
given R. Shell-crossing singularity appears when the layers of dust intersect each other and so
the particles with different R start to have the same value of radial function r(7, R). This leads
to a multi-valued behavior of Misner — Sharp mass m(7,7) = m(R) = (#? — E) /2 as a function
of r [16]. To get rid of the ambiguity one can cut out the layers with multi-valued mass from
some point R = Ry(7) till R = Ra(7) (see Fig. 1). Functions R;(7) and Ra(7) should then be
found by matching the remaining interior and exterior.
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Fig. 1. Radial metric function r(7, R) after the formation of SCS (the expanding interval
[R1(7T), Ra(7)] should be cut off and replaced with the thin shell), 72 > 7

Not a boundary surface but a thin shell should be used while matching because of the gap
between masses m(R;) and m(Rz). The equation of this shell is specified by R = R;(7) for the
inner part of dust cloud and by R = Ra(7) for the outer part. The intrinsic coordinates £ are
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{7,0, ¢} for both. The unit normal has following components

ar o\ ar
Ny = —T1,2 -1 + E172 — (T172d71_’2> . %, (2&)
—1/2
dR1 2\ >
np =115 |1+ FE12— (7“1,2 d;’2> ; (2b)

where index 1 denotes the values of all functions at R = R;(7) while index 2 does the same for
R = Ry(7). The only junction condition is continuity on the shell of the first fundamental form
with the components

o Oz 9z°
Gab = gage(a)efb) = gaﬂaifaaigb- (3)

For interior and exterior parts of the considered dust it is given by

1 dR1 2\’
dai = (1 7 o <r'172 I ) dr? — riQdQ? (4)
The matching yields
it (R 1y (dRa) (5)
1+E,\dr ) 1+E\dr )"’
ry = To. (6)

The first equation has two solutions but only the one with opposite signs provides the required
mass discontinuity

R R -
\/1+E1 dr B \/1—|—E2 dT.
The other solution gives only the classical LTB spacetime.
The full time derivative of (6)
dR dR
P 4Pt = g 4y (8)
dr dr

together with (7) forms a linear system on dR;/d7 and dR2/dr. The solution of this system is

dRyo 7121 — 712 V1+Eip2 )

dr T2 ' VI+Ei2+/1+E

The velocity of the thin shell follows immediately from the above equation

dr . ’ dRLQ 7.'1\/1+E1+'f"2\/].+E2
- = 7”1,2 +/’11)2 == . (10)
dr dr VI+E +V1+E,

For marginally bound case this coincides exactly with the shock velocity derived in [11] from
Rankine-Hugoniot equations.
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2. A Toy Model

Let’s consider an LTB space-time with a negative curvature as an example. The solution has
the parametric form

_ m(R)
r = B(R) (coshn —1),
T f%])?minhn—m—m(m. (1)

With smooth initial conditions one can always choose r(7 = 0, R) = R. With that the solution
depends on only two arbitrary functions, say the initial energy density and the initial parameter
n profiles po(R), no(R). All the other functions can be expressed as follows

R
m(R) = [ 4npo(R)R? dR, (12)

/
B(R) = ") (coshn(R) - 1), (13)
n(R) = oy Ginh () = m(R). (14

The square of initial velocity has the form

m(R
vo(R)* = E(R) + B E% ) (coshmo(R) +1). (15)
Following [3] let’s take initial conditions at the time of last scattering. It is shown in [3] that
final state of the evolution is less sensitive to the initial density perturbations then to the initial
velocity perturbations. So for the sake of simplicity we use a homogeneous initial density profile
po = const. The shape of 7g9(R) function is chosen in a way that allows formation of a SCS,
namely

10(R) = Noo + (e — oo (1 + a2R2/R2) e~ /15 (16)

where 7. and 7 determine the Friedmann-like behavior of the curvature near the center and at
infinity consequently:

E(R —0) ~ 47;'”0 (coshnm. —1)R%,  E(R — o0) ~ 47;”0 (coshme —1)R2.  (17)

Now we should solve the system of matching conditions (6) and (7). For numerical calculations
it is convenient to work with a new variable s = R/Ry The first step is to find a point (Tscs, Sses)
of the globally earliest occurrence of the shell-crossing singularity. Before the shell-crossing
formation the considered matching is trivial and (6) has a unique solution s; = s3. An arbitrary
co-moving surface can be chosen as a junction surface so one can set also s; = s = s4.5. But
this single root splits into several distinct ones as the shell-crossing occurs. For smooth initial
conditions the above splitting first appears when

=0 and r"=0 (18)

simultaneously.
Instead of dealing with the DAE system (6) and (7) directly one can use standard methods
to solve it’s consequence (10) which is merely an ODE to find the motion of the thin shell. R;(7)
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Fig. 2. Numerical solution of junction conditions with 7, = 0.01,7. = 0.15,a; = 15,a2 = 20

and Ry(7) are then calculated from r(7) = (7, Ry (7)) = r(7, R2(7)). The results are displayed
at Fig. 2.

Present time Hubble constant and density of the weak solution are shown at Fig. 3. Vertical
dotted lines correspond to a positions of the thin shells. Both interior and exterior parts of the
weak solution coincide with classical LTB solution but there is a gap between them.

3. Discussion
Stress-energy tensor of the extended solution has the form

_ maf b B
T =T + 57 e‘("a)e(b)ég(x). (19)
Here 6x(x) is a Dirac’s delta function with support on the thin shell. T;fst is a stress-energy
tensor of the dust. S% is a surface stress-energy tensor related to the extrinsic curvature K@

via the Lanczos equation
ntn,,

Sab = oy ([Ka ] - [Ks]gab) . (20)

Before the SCS occurs the components of S, are all equal to zero and the space-time is described
by Lemaitre-Tolman—Bondi solution. After the SCS appears all diagonal components of S,
become nontrivial and can now be expressed in the form of a perfect fluid

Sab = (0 + D)VaVy — PYab (21)

where v, = vael,, and the 4-velocity of the shell v® differs from the 4-velocity of the dust.
Because of the spherical symmetry the expressions for surface energy density and pressure are
simply o = ST and p = ng = 7533. Both of them are positive in our toy model.

Thereby we have constructed a weak solution of Einstein equations with the same initial
conditions as classical LTB solution and with positive energy density everywhere including the
thin shell. So the main conclusion for that paper is that initial conditions leading to shell crossings
should not be forfeited just because of the singularity as it can be replaced with a thin shell.
Such initial conditions should be considered equally with any others.
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Fig. 3. Hubble constant and density at the present time:
1 — 1 =0.01,7m, = 0.15,a; = 15,a2 = 20,
2 — oo = 0.01,7. = 0.09,a; = 10,a2 = 30

References
[1] K.Enqvist, Gen. Rel. Grav., 40(2008), 451.

[2] J.Garcia-Bellido, T.Haugbglle, JCAP, 04(2008), 003;
J.Zibin, A .Moss, D.Scott, Phys. Rev. Lett., 101(2008), 251303;
T.Clifton, P.G.Ferreira, L.Land, Phys. Rev. Lett., 101(2008), 131302;
T.Clifton, P.G.Ferreira, J.Zuntz, JCAP, 07(2009), 029.

[3] K.Bolejko, A.Krasinski, C.Hellaby, Mon. Not. R. Astron. Soc., 000(2004), 1.
[4] R.Sussman, arXiv:1005.0717v2 [gr-qc], 2010.

[5] R.P.A.C.Newman, Class. Quantum Grav. 3(1986), 527;
P.Szekeres, A.Lun, J. Austral Math Soc Ser B, 41(1999), 167.

[6] A.Papapetrou, A.Hamoui, Ann. Inst. Henri Poincare, Sect. A, 6(1967), 343.

— 48 —



Sergey Ph. Tegai On a Week Solution of Einstein Equations for Expanding Dust

[7] F.J.Tipler, Phys. Lett., 64A(1977), 8.

[8] C.J.S.Clarke, Class. Quantum Grav., 15(1998), 975.

[9] B.C.Nolan, Phys. Rev., D, 60(1999), 024014.

[10] C.J.S.Clarke, N.O’Donnell, Rend. Sem. Mat. Univ. Politec. Torino, 50(1992) 39.
[11] B.C.Nolan, Class. Quantum Grav., 20(2003), 575.

[12] G.Darmois, Les equations de la gravitation Einsteinienne (Mémorial des science Mathé-
matiques, Fascicule XXV) (Paris: Gauthier—Villairs), 1927;
A.Lichnerowicz, Theories relativistes de la gravitation et de 1’electromagnetisme (Paris:
Masson), 1955;
W.Israel, Nuovo Cim., 44(1966), 1.

[13] K.Tomita, ApJ, 529(2000), 26-37;
K.Tomita, Mon. Not. R. Astron. Soc., 326(2001), 287-292.

[14] M.Mars, J.M.M.Senovilla, Class. Quantum Grav., 10(1993), 1865;
R.Steinbauer, J.A.Vickers, Class. Quantum Grav., 23(2006), R91.

[15] A.H.Taub, Phys. Rev., 74(1948), 328;
E.M.Smoller, B.Temple, Journées équations aux dérivées partielles Art., (1995), no. 17.

[16] P.D.Lasky, A.W.C.Lun, R.B.Burston, ANZIAM J., 49(2007), 53.

O cnabom pereHnM ypaBHeHUil DHINTEHA JIJIs
pacHInpsoeiicss nbljaa

Cepreit ®@. Teraii

B pamxazx obweti meoput 0mHOCUMENLHOCTNU UCCACOYEMCA PACUUPAIOULEECA CHEPUECKU, CUMMEMPUY-
Hoe 06aaKo Hexozepenmuol nowy. Paccmampusarlomes navasvrvle Yeaosus, npusodaujue K nepecede-
HUIO PABAUNHDLT CA0e8 Imoz20 obaaka. Paspaboman cnocob mocmpoenus caab020 pewenus ypasrhenutl
Durwmetina oas dannoti modeau. Ilpedrazaemoili memod cocmoum 6 vipe3aruu, 06AacmU KoopouHam,
codepoicauets nepusauneckue sPhermos, U cCuUBKe OCNABUUTCA HACMET NPOCTPAHCMEA-6DEMEHY 1A, TMOH-
Kol obonouke. Jeuorcenue amotl 0604A0WKY HATOOUMCA U3 YCAOBUL CUUBKY. TEH30D IHEP2UU-UMNYADCG
NOAYUEHHO20 PEULEHUS COOEPIAHCUM, CUHLYAAPHYIO HACTND, OMAUYHYIO OM HYASL TOALKO NOCAE B03HUKHO-
senus kaycmuku. o amoezo momenma pewenue cosnadaem ¢ pewenuem Jlemempa—Tormena—Bondu. B
Kawecmee NpumMepa npusedena Modeasv, ONUCHEAULAA HOPMUPOBAHUE NOAOCTY € HUSKOT NAOTMHOCTBIO
6 UBHAYAALHO 00HOPOOHOT Bceeaennod.

Kmouesvie crosa: nepecevenue caoes nwuiau, pewenue Jlemempa—Toamena—Bondu, mHeodnopodrasn
KOCMOAORUA.
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