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An expanding spherically symmetric dust cloud is considered in a framework of general relativity. Initial

conditions leading to a shell-crossing singularity are chosen. The way to construct a week solution for

such a case is proposed. Suggested method consists in cutting off the region containing the shell-crossing

and matching the remaining parts of space-time at a thin shell. Junction conditions determine the motion

of that thin shell. The singular part of dust stress-energy tensor is nontrivial only after the shell-crossing

occurs. Before that the solution coincides with Lemaitre—Tolman–Bondi one. A toy model representing

an underdensed region in Universe is discussed.
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The Lemaitre–Tolman–Bondi (LTB) solution describing the evolution of a dust cloud has
recently become quite popular for studying inhomogenities in the Universe. One of the reasons
behind that is the opportunity to explain accelerating expansion of the Universe without intro-
ducing dark energy. See [1] for a comprehensive review and clarification of the idea (before 2008)
and [2] for a more recent progress. Another important feature of the LTB space-time is a possi-
bility of describing voids formation (see [3] including a historical review of voids discovery). And
even more cosmological and theoretical applications of that remarkable solution can be found
in [4].

One of the less studied properties of the LTB solution is the formation of shell-crossing singu-
larities (SCS) for certain initial conditions. The cause for it is the intersection of initially different
dust layers resulting in diverging and even negative density. The employing of frameworks other
then a co-moving one merely brings the metric tensor to a regular form [5] but can’t remove the
singularity because it is in fact a physical but not a coordinate effect. For that reason the initial
conditions leading to a SCS are usually avoided even if it seems unfortunate.

The nature of SCS was investigated by different authors [6–9] and the conclusion is that it
has a different ("weak" or "inessential") type from a shell-focusing singularity and therefore the
solution can be extended beyond the SCS. The first example of such an extension was provided
in [6] for a rather special case of space-time. Further works [8, 10] suggest the extension to be a
weak solution of Einstein equations. In [11] such weak solutions are derived treating SCS as a
shock wave and using Rankine–Hugoniot conditions. Unlike the classical solution the weak one
is not unique to the future of the shell-crossing singularity even for well posed initial conditions.
There is a weak or extended solution which has singular part in stress-energy tensor and there is
still a classical solution which is a special case of a weak solution with only regular distributions
involved.

Here we introduce another way to find a weak solution employing Israel–Darmois–Lichne-
rowicz junction formalism [12]. The idea is to cut out the unphysical regions with negative
density and match the remaining parts of the space-time at a thin shell. Of course models with
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thin shells are nothing new in cosmology and were first studied in [13]. However the important
difference is that the thin shell in present work arises from smooth initial conditions.

Israel–Darmois–Lichnerowicz matching procedure can be viewed as a consequence of dealing
with field equations in a framework of tensor distributions [14]. The same is true for relativistic
Rankine–Hugoniot equations which are identical to O’Brien–Singe conditions while written in
general form of energy and momentum conservation across the junction surface [15]. Thus relying
on the matching scheme one can expect to get the same results avoiding complicated issues of
applying generalized functions to nonlinear theory.

The units with G = c = 1 are used throughout.

1. Joining Two Lemaitre–Tolman–Bondi Space-Times at a

Thin Shell

In comoving coordinates the line element for dust LTB solution is

ds2 = dτ2 − r′
2
(τ,R)

1 + E(R)
dR2 − r2(τ,R)dΩ2, (1)

where dΩ2 = dθ2 + sin2 θdφ2. Each layer of the dust is marked with it’s own value of radial
coordinate R. Function r(τ,R) determines the distance to the center of the dust particles with
given R. Shell-crossing singularity appears when the layers of dust intersect each other and so
the particles with different R start to have the same value of radial function r(τ,R). This leads
to a multi-valued behavior of Misner – Sharp mass m(τ, r) = m(R) =

(

ṙ2 − E
)

r/2 as a function
of r [16]. To get rid of the ambiguity one can cut out the layers with multi-valued mass from
some point R = R1(τ) till R = R2(τ) (see Fig. 1). Functions R1(τ) and R2(τ) should then be
found by matching the remaining interior and exterior.
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Fig. 1. Radial metric function r(τ,R) after the formation of SCS (the expanding interval
[R1(τ), R2(τ)] should be cut off and replaced with the thin shell), τ2 > τ1

Not a boundary surface but a thin shell should be used while matching because of the gap
between masses m(R1) and m(R2). The equation of this shell is specified by R = R1(τ) for the
inner part of dust cloud and by R = R2(τ) for the outer part. The intrinsic coordinates ξa are
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{τ, θ, φ} for both. The unit normal has following components

nτ = −r′1,2 ·
∣

∣

∣

∣

∣

1 + E1,2 −
(

r′1,2

dR1,2

dτ

)2
∣

∣

∣

∣

∣

−1/2

· dR1,2

dτ
, (2a)

nR = r′1,2 ·
∣

∣

∣

∣

∣

1 + E1,2 −
(

r′1,2

dR1,2

dτ

)2
∣

∣

∣

∣

∣

−1/2

, (2b)

where index 1 denotes the values of all functions at R = R1(τ) while index 2 does the same for
R = R2(τ). The only junction condition is continuity on the shell of the first fundamental form
with the components

gab ≡ gαβeα
(a)e

β
(b) ≡ gαβ

∂xα

∂ξa

∂xβ

∂ξb
. (3)

For interior and exterior parts of the considered dust it is given by

dσ2
± =

(

1 − 1

1 + E1,2

(

r′1,2

dR1,2

dτ

)2
)

dτ2 − r2
1,2dΩ2. (4)

The matching yields

r′1
2

1 + E1

(

dR1

dτ

)2

=
r′2

2

1 + E2

(

dR2

dτ

)2

; (5)

r1 = r2. (6)

The first equation has two solutions but only the one with opposite signs provides the required
mass discontinuity

r′1√
1 + E1

· dR1

dτ
= − r′2√

1 + E2

· dR2

dτ
. (7)

The other solution gives only the classical LTB spacetime.

The full time derivative of (6)

ṙ1 + r′1
dR1

dτ
= ṙ2 + r′2

dR2

dτ
(8)

together with (7) forms a linear system on dR1/dτ and dR2/dτ . The solution of this system is

dR1,2

dτ
=

ṙ2,1 − ṙ1,2

r′1,2

·
√

1 + E1,2
√

1 + E1,2 +
√

1 + E2,1

. (9)

The velocity of the thin shell follows immediately from the above equation

dr

dτ
= ṙ1,2 + r′1,2

dR1,2

dτ
=

ṙ1

√
1 + E1 + ṙ2

√
1 + E2√

1 + E1 +
√

1 + E2

. (10)

For marginally bound case this coincides exactly with the shock velocity derived in [11] from
Rankine–Hugoniot equations.
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2. A Toy Model

Let’s consider an LTB space-time with a negative curvature as an example. The solution has
the parametric form

r =
m(R)

E(R)
(cosh η − 1) ,

τ =
m(R)

E(R)3/2
(sinh η − η) − τ0(R). (11)

With smooth initial conditions one can always choose r(τ = 0, R) = R. With that the solution
depends on only two arbitrary functions, say the initial energy density and the initial parameter
η profiles ρ0(R), η0(R). All the other functions can be expressed as follows

m(R) =

R
∫

0

4πρ0(R)R2 dR, (12)

E(R) =
m(R)

R
(cosh η0(R) − 1) , (13)

τ0(R) =
m(R)

E(R)3/2
(sinh η0(R) − η0(R)) . (14)

The square of initial velocity has the form

v0(R)2 = E(R) +
2m(R)

R
=

m(R)

R
(cosh η0(R) + 1) . (15)

Following [3] let’s take initial conditions at the time of last scattering. It is shown in [3] that
final state of the evolution is less sensitive to the initial density perturbations then to the initial
velocity perturbations. So for the sake of simplicity we use a homogeneous initial density profile
ρ0 = const. The shape of η0(R) function is chosen in a way that allows formation of a SCS,
namely

η0(R) = η∞ + (ηc − η∞)
(

1 + a2R
2/R2

0

)

e−a1R2/R2

0 , (16)

where ηc and η∞ determine the Friedmann-like behavior of the curvature near the center and at
infinity consequently:

E(R → 0) ≈ 4πρ0

3
(cosh ηc − 1) R2, E(R → ∞) ≈ 4πρ0

3
(cosh η∞ − 1) R2. (17)

Now we should solve the system of matching conditions (6) and (7). For numerical calculations
it is convenient to work with a new variable s = R/R0 The first step is to find a point (τscs, sscs)
of the globally earliest occurrence of the shell-crossing singularity. Before the shell-crossing
formation the considered matching is trivial and (6) has a unique solution s1 = s2. An arbitrary
co-moving surface can be chosen as a junction surface so one can set also s1 = s2 = sscs. But
this single root splits into several distinct ones as the shell-crossing occurs. For smooth initial
conditions the above splitting first appears when

r′ = 0 and r′′ = 0 (18)

simultaneously.
Instead of dealing with the DAE system (6) and (7) directly one can use standard methods

to solve it’s consequence (10) which is merely an ODE to find the motion of the thin shell. R1(τ)
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Fig. 2. Numerical solution of junction conditions with η∞ = 0.01, ηc = 0.15, a1 = 15, a2 = 20

and R2(τ) are then calculated from r(τ) = r(τ,R1(τ)) = r(τ,R2(τ)). The results are displayed
at Fig. 2.

Present time Hubble constant and density of the weak solution are shown at Fig. 3. Vertical
dotted lines correspond to a positions of the thin shells. Both interior and exterior parts of the
weak solution coincide with classical LTB solution but there is a gap between them.

3. Discussion

Stress-energy tensor of the extended solution has the form

Tαβ = Tαβ
dust

+ Sabeα
(a)e

β
(b)δΣ(x). (19)

Here δΣ(x) is a Dirac’s delta function with support on the thin shell. Tαβ
dust

is a stress-energy
tensor of the dust. Sab is a surface stress-energy tensor related to the extrinsic curvature Kab

via the Lanczos equation

Sab = −nµnµ

8π
([Kab] − [Ka

a ]gab) . (20)

Before the SCS occurs the components of Sab are all equal to zero and the space-time is described
by Lemaitre–Tolman–Bondi solution. After the SCS appears all diagonal components of Sab

become nontrivial and can now be expressed in the form of a perfect fluid

Sab = (σ + p)vavb − pgab (21)

where va = vαeα
(a) and the 4-velocity of the shell vα differs from the 4-velocity of the dust.

Because of the spherical symmetry the expressions for surface energy density and pressure are
simply σ = Sτ

τ and p = −Sθ
θ = −Sφ

φ . Both of them are positive in our toy model.
Thereby we have constructed a weak solution of Einstein equations with the same initial

conditions as classical LTB solution and with positive energy density everywhere including the
thin shell. So the main conclusion for that paper is that initial conditions leading to shell crossings
should not be forfeited just because of the singularity as it can be replaced with a thin shell.
Such initial conditions should be considered equally with any others.
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Fig. 3. Hubble constant and density at the present time:
1 — η∞ = 0.01, ηc = 0.15, a1 = 15, a2 = 20,
2 — η∞ = 0.01, ηc = 0.09, a1 = 10, a2 = 30
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О слабом решении уравнений Эйнштейна для
расширяющейся пыли

Сергей Ф. Тегай

В рамках общей теории относительности исследуется расширяющееся сферически симметрич-

ное облако некогерентной пыли. Рассматриваются начальные условия, приводящие к пересече-

нию различных слоев этого облака. Разработан способ построения слабого решения уравнений

Эйнштейна для данной модели. Предлагаемый метод состоит в вырезании области координат,

содержащей нефизические эффекты, и сшивке оставшихся частей пространства-времени на тон-

кой оболочке. Движение этой оболочки находится из условий сшивки. Тензор энергии-импульса

полученного решения содержит сингулярную часть, отличную от нуля только после возникно-

вения каустики. До этого момента решение совпадает с решением Леметра–Толмена–Бонди. В

качестве примера приведена модель, описывающая формирование полости с низкой плотностью

в изначально однородной Вселенной.

Ключевые слова: пересечение слоев пыли, решение Леметра–Толмена–Бонди, неоднородная

космология.
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