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We consider a generalization of the Bernoulli numbers and polynomials to several variables, namely, we
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Introduction

The Bernoulli numbers bµ are the coefficients of the Taylor series expansion of the function

T (ξ) =
ξ

eξ − 1
:

T (ξ) =
∑
µ>0

bµ
ξµ

µ!
.

The Bernoulli numbers were introduced by J. Bernoulli in connection with the problem of sum-
mation of powers of consecutive integers: 1µ + 2µ + ...+ xµ.

The Bernoulli polynomials

Bµ (x) =

µ∑
k=0

Ck
µbµ−kx

k, Ck
µ =

µ!

k! (µ− k)!
,

where bµ = Bµ (0) are the Bernoulli numbers were considered by J. Bernoulli [1] for natural x,
and for any x these polynomials were first studied by Euler [2] who used the generating function
in 1738:

ξ

eξ − 1
exξ =

∑
µ>0

Bµ (x)
ξµ

µ!
.

Also J. L. Raabe (1801–1859) [3] studied the Bernoulli polynomials, he found two important
formulas and introduced this term (J. L. Raabe, 1851). The Bernoulli and Euler polynomials
were later systematically studied by N.Nörlund [4].

The Bernoulli numbers have wide applications in computer technology [5], combinatorial
analysis [6,7] and in numerical analysis [8]. Gould [9] remarks that many sums involving binomial
coefficients greatly benefit from the use of Bernoulli numbers. There is a number of papers about
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different generalizations of Bernoulli numbers and polynomials [10–15]. For example, Temme [16]
uses generalized Bernoulli polynomials with complex powers.

In 1880 Appell (1855–1930) [17] characterized certain polynomial sequences Bµ (x) by the
property DBµ (x) = µBµ−1 (x). Polynomials satisfying this condition are called Appell polyno-
mials. For the Bernoulli polynomials this formula can be called the differentiation formula.

It was Euler who first defined a differential operator of infinite order
D

eD − 1
=

∑
µ>0

bµ
Dµ

µ!
,

where D is a differential operator, now this operator is called the Todd operator and denoted
Td (D). It connects the solutions of the difference equation f (x+ 1) − f (x) = φ (x) and the
differential equation Df (x) = Td (D)φ (x). The Bernoulli polynomials can be considered as a
result of the Todd operator action on the monomial xµ:

Bµ (x) =
D

eD − 1
xµ. (1)

The following identities hold for the Bernoulli polynomials:
the argument addition formula

Bµ (x+ y) =

µ∑
k=0

Ck
µBk (x) y

µ−k; (2)

the differentiation formula
B′

µ (x) = µBµ−1 (x) ; (3)

the complement formula
Bµ (x) = (−1)µBµ (1− x) ; (4)

the multiplication formula

Bµ (mx) = mµ−1

µ−1∑
k=0

Bµ

(
x+

k

m

)
. (5)

In this article we consider a generalization of the Bernoulli numbers and polynomials to the
case of several variables, namely, we define the Bernoulli numbers associated with a rational cone,
and the corresponding Bernoulli polynomials. For functions in several variables we construct a
Todd operator associated with a rational cone K, and prove (Theorem 1) that the Bernoulli
polynomials are the result of the Todd operator action on monomials. Further on, we formulate
and prove multidimensional analogs of formulas (2)–(5) for the Bernoulli polynomials.

1. A Todd operator and the Bernoulli polynomials in several
variables

A multidimensional analog of the Euler differential operator of infinite order
D

eD − 1
is called

the Todd operator (see, for example, [18]). The Todd operator [19] helps to connect volumes and
a number of lattice points of convex polytopes. This formula is closely related to the Hirzebruch-
Riemann-Roch theorem for smooth projective toric varieties. Note the articles [20–23] in which

the operator
D1

ea1D1 − 1
...

Dn

eanDn − 1
, where aj are some constants, is considered.

Now we define the Bernoulli numbers, polynomials and a Todd operator associated with a
rational cone K. Let a1, . . . , an be linearly independent vectors with integer coordinates aj =
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(
aj1, . . . , a

j
n

)
, aji ∈ Z. A rational cone generated by the vectors a1, . . . , an, is the set K = {y ∈

Rn : y = λ1a
1 + · · ·+ λna

n, λj ∈ R+, j = 1, . . . , n}.
Note that such cone is simplicial, i.e. each element of the cone is represented by the cone

generators in a unique way.
For points u, v ∈ Rn we define a partial order relation >

K
the following way:

u>
K
v ⇔ u ∈ v +K,

where v+K is a shift of the cone K by the vector v. Besides, let us write u�
K

v, if u ∈ K\{v+K},

i.e. if the condition u>
K

v is not fulfilled. Let Zn = Z × · · · × Z, and note that each element

y ∈ K ∩Zn can be expressed as a linear combination of the basis vectors y = λ1a
1 + · · ·+ λna

n,
λ1 > 0, . . . , λn > 0. We can write it in a matrix form y = Aλ, where y and λ are column vectors,
A is a matrix with the determinant ∆ ̸= 0, and the columns are the coordinates of vectors aj

A =

 a11 . . . an1
.. .. ..

a1n . . . ann

 .

For j = 1, . . . , n consider the hyperplanes

Lj,k =
{
ξ :

⟨
aj , ξ

⟩
= 2kπi

}
,

where i =
√
−1, j = 1, . . . , n, k = 0,±1,±2 . . . , and for a meromorphic function

T (ξ) =
n∏

j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

,

where
⟨
aj , ξ

⟩
=

n∑
k=1

ajkξk, ξ = (ξ1, . . . , ξn), the hyperplanes Lj,0, j = 1, . . . , n are ‘removable’

singular set, so the function T (ξ) is holomorphic in a neighborhood of the origin, more exactly
for R = 2π/maxj

∥∥aj∥∥ it is holomorphic in a polycylinder UR = {ξ : |ξj | < R, j = 1, . . . , n} , and
for k = 0,±1,±2 . . . the hyperplanes Lj,k do not cross with the polycylinder UR. Therefore, in
this polycylinder the function T (ξ) expands into a series

T (ξ) =
∑
µ>0

bAµ
µ!

ξµ, (6)

where µ = (µ1, . . . , µn), µ! = µ1! . . . µn!, ξµ = ξ1
µ1 . . . ξn

µn , and µ > 0 means µj > 0, j =

1, . . . , n.
The cofficients bAµ of the series (6) we call the Bernoulli number associated with the rational

cone .
For µ = (µ1, ..., µn) the Bernoulli polynomials in several variables are the polynomials

BA
µ (x) =

∑
06k6µ

µ!

(µ− k)!k!
bAµ−kx

k,

where bAk are the Bernoulli numbers, k = (k1, . . . , kn), x = (x1, . . . , xn),
µ− k = (µ1 − k1, . . . , µn − kn).
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For n = 1 and a = 1 thus defined Bernoulli numbers and polynomials coincide with the
classical ones.
Example 1. For the cone K generated by vectors a1 = (1, 0) and a2 = (1, 1) the first Bernoulli

numbers are b00 = 1, b10 = −1, b01 = −1

2
, b11 =

5

12
, and for µ = (1, 1) the Bernoulli polynomials

are BA
11 (x1, x2) = x1x2 −

1

2
x1 − x2 +

5

12
.

A Todd mapping is the meromorphic function TdA : Cn → C defined by TdA (ξ) =
n∏

j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

. It expands into a series TdA (ξ) =
∑
µ>0

bAµ
µ!

ξµ, and the Todd operator is the

result of substitution of the differential operator ∂ = (∂1, . . . , ∂n) in place of ξ:

TdA (∂) =
∑
µ>0

bAµ
µ!

∂µ,

where µ > 0 means µj > 0, j = 1, . . . , n.

Remark 1. In general, to define the Bernoulli numbers and polynomials and the Todd operator
we do not need the condition of rationality of the cone, i.e., any real numbers can be the coor-
dinates of the vectors aj . However, in the problem of summation of functions the rationality of
the cone is a natural condition.

The Todd operator can act on a function h if the series Td (∂)h converges absolutely in the
domain of the function h uniformly on compact subsets. It is obvious that polynomials can be
acted on by the Todd operator and for the monomial xµ = xµ1

1 . . . xµn
n we have the following

analog of formula (1).

Theorem 1.1. If TdA (∂) is the Todd operator and BA
µ (x) are Bernoulli polynomials associated

with a rational cone then we have the equality

TdA (∂)xµ = BA
µ (x) .

Proof. First note that the equality
∂αxµ

α!
=

µ!

α! (µ− α)!
xµ−α holds true. Indeed,

∂αxµ

α!
=

µ1 (µ1 − 1) . . . (µ1 − α1 + 1)

α1!
. . .

µn (µn − 1) . . . (µn − αn + 1)

αn!
xµ1−α1 . . . xµn−αn =

=
µ!

α! (µ− α)!
xµ−α.

Next, using the definition of the Todd operator and the previous equality we obtain

Td (∂)xµ =
n∏

j=1

⟨
aj , ∂

⟩
e⟨aj ,∂⟩ − 1

xµ =
∑
α>0

bAα
α!

∂αxµ =

=
∑

06α6µ

bAα
µ!

α! (µ− α)!
xµ−α =

∑
06k6µ

bAµ−k

µ!

k! (µ− k)!
xk = BA

µ (x) .

2
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2. Complement, differentiation, addition, and
multiplication formulas

To formulate an analog of the property of differentiation of Bernoulli polynomials BA
µ (x) we

need a differential operator in the direction of the vectors aj generating the cone K:

Dj =
⟨
aj , ∂

⟩
=

n∑
k=1

ajk∂k,

where ∂j are operators of differentiating with respect to variables, ∂ = (∂1, ..., ∂n), ∂µ =

∂µ1

1 . . . ∂µn
n , j = 1, . . . , n. Denote D = D1 . . . Dn.

Theorem 2.1. The following multidimensional analogs of the properties (2)–(5) of Bernoulli
polynomials hold true:
1) the argument addition formula

BA
µ (x+ y) =

∑
06k6µ

µ!

k! (µ− k)!
BA

k (x) yµ−k;

2) the differentiation formula

DBA
µ (x) =

∑
06k6µ,∥k∥=n

µ!

k! (µ− k)!
BA

µ−k (x)
Mk

k!
,

where Mk are the coefficients of the polynomial

n∏
j=1

⟨
aj , ξ

⟩
=

∑
∥k∥=n

Mk
ξk

k!
;

3) the complement formula
BA

µ (x) = (−1)
∥µ∥

BA
µ (a− x) ,

where a = a1 + · · ·+ an, ∥µ∥ = µ1 + · · ·+ µn;
4) the multiplication formula

BA
µ (mx) = mµ−I

∑
06k6µ−I

BA
µ

(
x+

1

m
Ak

)
,

where I = (1, . . . , 1),
1

m
=

(
1

m1
, . . . ,

1

mn

)
is a row vector, k =

 k1
..
kn

 is a column vector.

Proof. To prove this theorem it is convenient to use the definition of Bernoulli polynomials
via generating function

n∏
j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨x,ξ⟩ =
∑
µ>0

BA
µ (x)

ξµ

µ!
, (7)

where ⟨x, ξ⟩ = x1ξ1 + · · ·+ xnξn.
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1. The proof of the argument addition formula. Using the definition of Bernoulli polynomials
via generating function we obtain∑
µ>0

BA
µ (x+ y)

ξµ

µ!
=

n∏
j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨x+y,ξ⟩ =

n∏
j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨x,ξ⟩e⟨y,ξ⟩ =
∑
k>0

BA
k (x)

ξk

k!

∑
α>0

yα
ξα

α!
.

Multiplying power series and collecting similar terms, we get

∑
µ>0

BA
µ (x+ y)

ξµ

µ!
=

∑
µ>0

 ∑
k+α=µ

µ!

k!α!
BA

k (x) yα

 ξµ

µ!
=

∑
µ>0

 ∑
06k6µ

µ!

k! (µ− k)!
BA

k (x) yµ−k

 ξµ

µ!
.

The formula follows from equality of coefficients at identical powers of ξ.
2. The proof of the differentiation formula. Act by the operator D on both parts of the equality∑

µ>0

BA
µ (x)

ξµ

µ!
=

n∏
j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨x,ξ⟩,

to obtain, keeping in mind that De⟨x,ξ⟩ = e⟨x,ξ⟩
n∏

j=1

⟨
aj , ξ

⟩
,

∑
µ>0

DBA
µ (x)

ξµ

µ!
=

n∏
j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨x,ξ⟩
n∏

j=1

⟨
aj , ξ

⟩
.

Let Mk be the coefficients of the polynomial
n∏

j=1

⟨
aj , ξ

⟩
at

ξk

k!
:

n∏
j=1

⟨
aj , ξ

⟩
=

∑
∥k∥=n

Mk
ξk

k!
,

then ∑
µ>0

DBA
µ (x)

ξµ

µ!
=

∑
α>0

BA
α (x)

ξα

α!

∑
∥k∥=n

Mk
ξk

k!
.

Multiplying power series, we have

∑
µ>0

DBA
µ (x)

ξµ

µ!
=

∑
µ>0

 ∑
α+k=µ,∥k∥=n

µ!

k!α!
BA

α (x)Mk

 ξµ

µ!
.

After changing indices we equal the coefficients of powers of ξ and obtain the necessary property.
3. The proof of the complement formula.

∑
µ>0

(−1)
∥µ∥

BA
µ (a− x)

ξµ

µ!
=

∑
µ>0

BA
µ (a− x)

(−ξ)
µ

µ!
=

n∏
j=1

⟨
aj ,−ξ

⟩
e⟨aj ,−ξ⟩ − 1

e⟨a−x,−ξ⟩ =

=
n∏

j=1

−
⟨
aj , ξ

⟩
1

e⟨aj,ξ⟩ − 1
e⟨a−x,−ξ⟩ =

n∏
j=1

⟨
aj , ξ

⟩
1− 1

e⟨aj,ξ⟩
e⟨a−x,−ξ⟩ =

=
n∏

j=1

⟨
aj , ξ

⟩
e⟨aj,ξ⟩

e⟨aj,ξ⟩ − 1

e⟨aj,ξ⟩

e⟨a−x,−ξ⟩ =
n∏

j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨a
j ,ξ⟩e−⟨a,ξ⟩e⟨x,ξ⟩.
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Since e−⟨a,ξ⟩ =
n∏

j=1

e⟨a
j ,ξ⟩,

∑
µ>0

(−1)
∥µ∥

BA
µ (a− x)

ξµ

µ!
=

n∏
j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨a
j ,ξ⟩e−⟨a

j ,ξ⟩e⟨x,ξ⟩ =
∑
µ>0

BA
µ (x)

ξµ

µ!
.

Equal the coefficients at powers of ξ to obtain the complement formula.
4. The proof of the multiplication formula. From the definition of Bernoulli polynomials we have∑

µ>0

BA
µ (mx)

ξµ

µ!
=

n∏
j=1

⟨
aj , ξ

⟩
e⟨aj ,ξ⟩ − 1

e⟨mx,ξ⟩. (8)

Using the formula of geometric progression with denominator e⟨a
j ,ξ⟩, we obtain

1

e⟨aj ,ξ⟩ − 1
=

1 + e⟨a
j ,ξ⟩ + ...+ e⟨(mj−1)aj ,ξ⟩

e⟨mjaj ,ξ⟩ − 1
,

After substituting this equality into the right hand side of (8) and after some transformations
we obtain∑

µ>0

BA
µ (mx)

ξµ

µ!
=

n∏
j=1

1 + e⟨a
j ,ξ⟩ + ...+ e⟨(mj−1)aj ,ξ⟩

e⟨mjaj ,ξ⟩ − 1

⟨
mja

j , ξ
⟩
mj

−1e⟨mx,ξ⟩ =

= m−I
n∏

j=1

⟨
aj ,mjξ

⟩
e⟨a

j ,mjξ⟩ − 1
e⟨x,mξ⟩

n∏
j=1

(
1 + e⟨a

j ,ξ⟩ + ...+ e⟨(mj−1)aj ,ξ⟩
)
.

Since
n∏

j=1

(
1 + e⟨a

j ,ξ⟩ + ...+ e⟨(mj−1)aj ,ξ⟩
)
=

∑
06k6m−I

e⟨k1a
1+...+kna

n,ξ⟩,

we get ∑
µ>0

BA
µ (mx)

ξµ

µ!
= m−I

n∏
j=1

⟨
aj ,mjξ

⟩
e⟨a

j ,mjξ⟩ − 1
e⟨x,mξ⟩

∑
06k6m−I

e⟨k1a
1+...+kna

n,ξ⟩ =

=
∑

06k6m−I

m−I
n∏

j=1

⟨
aj ,mjξ

⟩
e⟨a

j ,mjξ⟩ − 1
e⟨mx+k1a

1+...+kna
n,ξ⟩.

Since k1a
1 + · · · + kna

n = Ak, where A =

 a11 . . . an1
.. .. ..

a1n . . . ann

 and k =

 k1
..

kn

,
1

m
=

(
1

m1
, . . . ,

1

mn

)
, we obtain

∑
µ>0

BA
µ (mx)

ξµ

µ!
=

∑
06k6m−I

m−I
n∏

j=1

⟨
aj ,mjξ

⟩
e⟨a

j ,mjξ⟩ − 1
e⟨x+

1
mAk,mξ⟩ =

= m−I
∑

06k6m−I

∑
µ>0

BA
µ

(
x+

1

m
Ak

)
mµ ξ

µ

µ!
=

∑
µ>0

mµ−I
∑

06k6m−I

BA
µ

(
x+

1

m
Ak

) ξµ

µ!
.

Equal the coefficients at powers of ξ to obtain the formula. 2
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Sér, 2(1880), no. 9, 119–144.

[18] M.Lenz, Lattice points in polytopes, box splines, and Todd operators, International Math-
ematics Research Notices, (2015), no. 14, 5289–5310.

[19] A.V.Pukhlikov, A.G.Khovanskii, The Riemann–Roch theorem for integrals and sums of
quasipolynomials on virtual polytopes, St. Petersburg Mathematical Journal, 4 (1993), no.
4, 789–812.

– 391 –



Olga A. Shishkina Multidimensional Analog of the Bernoulli Polynomials and its Properties

[20] M.Brion, M.Vergne, Lattice points in simple polytopes, Journal of the American Mathemat-
ical Society, 10(1997), no. 2, 371–392.

[21] M.Brion, M.Vergne, Residue formulae, vector partition functions and lattice points in ra-
tional polytopes, Journal of the American Mathematical Society, 10(1997), no. 4, 797–833.

[22] M.Vergne, Residue formulae for Verlinde sums, and for number of integral points in convex
rational polytopes, European women in mathematics (Malta, 2001), World Sci. Publ., River
Edge, NJ, 2003, 225–285.

[23] M.Brion, N.Berline, Local Euler-Maclaurin formula for polytopes, Moscow Mathematical
Society Journal, 7(2007), 355–383.

Многомерный аналог многочленов Бернулли и его
свойства

Ольга А. Шишкина
Институт математики и фундаментальной информатики

Сибирский федеральный университет
Свободный, 79, Красноярск, 660041

Россия

В работе рассматривается некоторое обобщение чисел и многочленов Бернулли на случай
нескольких переменных, а именно определяются числа Бернулли, ассоциированные с рациональ-
ным конусом, и соответствующие им многочлены Бернулли. Доказаны некоторые свойства мно-
гочленов Бернулли.

Ключевые слова: числа и многочлены Бернулли, производящие функции, оператор Тодда, рацио-
нальный конус.
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