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1. Introduction and preliminaries

Quoting from a well-known American mathematician Lipman Bers [1]: "It would be tempt-
ing to rewrite history and to claim that quasiconformal transformations have been discovered in
connection with gas-dynamical problems. As a matter of fact, however, the concept of quasi-
conformality was arrived at by Grötzsch [2] and Ahlfors [3] from the point of view of function
theory". The present work is devoted to the theory of analytic solutions of the Beltrami equation

fz̄(z) = A(z)fz(z), (1)

which directly related to the quasi-conformal mappings. The function A(z) is, in general, as-
sumed to be measurable with |A(z)| 6 C < 1 almost everywhere in the domain D ⊂ C under
consideration. Solutions of equation (1) are often referred to as A-analytic functions in the
literature.

The solutions of equation (1), as well as quasi-conformal homeomorphisms in the complex
plane C have been studied in sufficient details. Here we confine ourselves by giving the references
[1, 3–13] and formulating the following three theorems:

Theorem 1.1 (see [3]). For any measurable on the complex plane C function A(z) : ∥A∥∞ < 1
there exists unique homeomorphic solution χ(z) of the equation (1) which fixes the points 0, 1
and ∞.

Note that if the function |A(z)| 6 C < 1 is defined only in the domain D ⊂ C, then it can be
extended to the whole C by setting A ≡ 0 outside D, so the Theorem 1.1 holds for any domain
D ⊂ C.
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Theorem 1.2 (see [5,6]). The set of all generalized solutions of equation (1) is exhausted by the
formula f(z) = Φ[χ(z)], where χ(z) is a homeomorphic solution from Theorem 1.1, and Φ(ξ)
is a holomorphic function in the domain χ(D). Moreover, if the generalized solution f(z) has
isolated singular points, the holomorphic function Φ = f ◦ χ−1 also has isolated singular points
of the same types.

From Theorem 1.2 implies that the A-analytic function f carries out internal mapping, i.e.
it mapping an open set to an open set. It follows that the maximum principle holds for such
functions: for any bounded domain D ⊂ C the maximum of modulus is reaches only on the
boundary, i.e. |f(z)| < max

z∈∂D
|f(z)|, z ∈ D. If the function is not zero, then the minimum

principle also holds, i.e. |f(z)| > min
z∈∂D

|f(z)|, z ∈ D.

Theorem 1.3 (see [8]). If a function A(z) belongs to the class of m-smooth functions (A(z) ∈
Cm(D)), then every solution f of the equation (1) also belongs to, at least, the class, i.e. f ∈
Cm(D).

The purpose of this paper is to study A-analytic functions in a particular case, when the
function A(z) is anti-holomorphic in a considered domain. As we can see below, in this special
case the solution of (1) possesses many properties of analytic functions, has an excellent integral
representation, and can be expanded into Taylor, Laurent series and etc.

The considered case of A-analytic functions was initiated with a number of their applications
in mechanics, geology and medicine, particularly, in the problems of tomography: X-ray, seis-
mic, etc. They are associated with the Radon problem of recovery of functions from the given
properties on the hyperplanes. In a series of papers A. L. Buhgeym and S.G. Kazantsev [14]
Radon problem is interpreted by boundary problems for the infinite-dimensional analogue of the
equation fz̄ −Afz = 0, where f is complex argument function of z, with values in some Banach
space X and A is a linear continuous operator A : X → X, ∥A∥ < 1.

A-analytic functions can be applied to the theory of elliptic equations (see [15–17]), when A
is a continuous linear operator in finite or infinite-dimensional spaces. In papers [15–17] A is a
linear continuous operator in X. In the case, when X = C it is a constant, i.e. A = const.

2. Construction of Cauchy kernel when ∂A = 0

Let A is anti-analytic, ∂A = 0 in D ⊂ C such that |A(z)| 6 C < 1, ∀z ∈ D. We put

DA =
∂

∂z
− Ā(z)

∂

∂z̄
,

D̄A =
∂

∂z̄
−A(z)

∂

∂z
.

Then according to (1) the class of A-analytic functions f ∈ OA(D), characterized by the fact
that D̄Af = 0. Since, anti-analytic function is infinitely smooth, then from Theorem 1.3 implies
that OA(D) ⊂ C∞(D).

Theorem 2.1. (analogue of Cauchy’s theorem [16]). If f ∈ OA(D)
∩
C(D̄), where D ⊂ C is a

domain with rectifiable boundary ∂D, then∫
∂D

f(z)(dz +A(z)dz̄) = 0.
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Proof of the theorem follows directly from Stoke’s formula:∫
∂D

f(z)(dz +A(z)dz̄) =

∫
∂D

f(z)dz +

∫
∂D

f(z)A(z)dz̄ =

=

∫∫
D

df(z) ∧ dz +
∫∫
D

d[f(z)A(z)] ∧ dz =

=

∫∫
D

∂f(z)

∂z̄
dz̄ ∧ dz +

∫∫
D

(
∂f(z)

∂z
A(z) + f(z)

∂A(z)

∂z

)
dz ∧ dz̄ =

=

∫∫
D

(
−∂f(z)

∂z̄
+
∂f(z)

∂z
A(z)

)
dz ∧ dz̄ = 0.

Now we assume that the domain D ⊂ C is convex and ξ ∈ D its fixed point. We consider the
function

K(z, ξ) =
1

2πi
· 1

z − ξ +
∫
γ(ξ,z)

Ā(τ)dτ
, (2)

where γ(ξ, z) is a smooth curve which connects the points ξ, z ∈ D. Since the domain is simply
connected and the function Ā(z) is holomorphic, then the integral I(z) =

∫
γ(ξ,z)

Ā(τ)dτ does not
depend on a path of integration; it coincides with a primitive, i.e. I ′(z) = Ā(z).

Theorem 2.2. K(z, ξ) is A-analytic function outside of the point z = ξ, i.e. K ∈ OA(D \ {ξ}).
Moreover, at z = ξ the function K(z, ξ) has a simple pole.

Proof. A simple check shows that the function

ψ(z, ξ) = z − ξ + I(z) = z − ξ +

∫
γ(ξ,z)

Ā(τ)dτ

is A-analytic in D:

∂

z̄
[z − ξ + I(z)] =

∂

z̄
I(z) =

∂

∂z
I(z) = Ā(z) = Ā(z)

∂

z
[z − ξ + I(z)],

i.e. ψ(z, ξ) ∈ OA(D).
The function ψ(z, ξ) = z − ξ +

∫
γ(ξ,z)

Ā(τ)dτ has a unique simple zero at the point z = ξ. In
fact, if [ξ, z] is a segment which connects the points ξ, z ∈ D, then

z − ξ +

∫
γ(ξ,z)

Ā(τ)dτ = z − ξ +

∫
[ξ,z]

Ā(τ)dτ

and since |A(z)| 6 c < 1, we have∣∣∣∣∣z − ξ +

∫
γ(ξ,z)

Ā(τ)dτ

∣∣∣∣∣ > |z − ξ| −

∣∣∣∣∣
∫
[ξ, z]

Ā(τ)dτ

∣∣∣∣∣ > |z − ξ| −
∫
[ξ, z]

|A(τ)||dτ | >

> |z − ξ| − c ·
∫
[ξ, z]

|dτ | = (1− c)|z − ξ| > 0, z ̸= ξ.

This implies that the function ψ(z, ξ) has only one zero at the point z = ξ, and this zero is
simple. This means that K(z, ξ) is holomorphic in D \{ξ} and the point z = ξ is its simple pole.
This proves the theorem.
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Remark 2.3. If the domain D ⊂ C is not a convex, but only simply connected, then although
the function ψ(z, ξ) is uniquely defined in the D, but a priori, it might has the other isolated
zeros except ξ : ψ(z, ξ) = 0, z ∈ P = {ξ, ξ1, ξ2, . . .}. Consequently, ψ ∈ OA(D), ψ(z, ξ) ̸= 0 when
z /∈ P and K(z, ξ) is analytic function only in D \ P , it has a poles at the points of P . Due to
this fact, we consider the class of A-analytic functions only in the convex domain D ⊂ C.

According to Theorem 1.2, the function ψ(z, ξ) ∈ OA(D) carries out an internal mapping. In
particular, the set

L(ξ, r) =

{
z ∈ D : |ψ(z, ξ)| =

∣∣∣∣∣z − ξ +

∫
γ(ξ,z)

Ā(τ)dτ

∣∣∣∣∣ < r

}

is open in D. For sufficiently small r > 0 it compactly belongs to D and contains the point ξ.
This set is called A-lemniscate with center ξ and denoted by L(ξ, r). According to the maximum
principle the lemniscate L(ξ, r) is simply connected and to the minimum principle it is connected.

It is clear that K(z, ξ) ∈ L1
loc(D), ∀ξ ∈ D and a differential form of first degree ω =

K(z, ξ)(dz +A(z)dz̄) is determines a current by the formula

ω ◦ α =

∫
ω ∧ α, α ∈ F 1(D),

where F 1(D) is class of finite, infinitely smooth differential forms of first degree.

Theorem 2.4. A differential of the current is coincide with the Dirac measure δξ, i.e. for any
finite infinitely smooth in D function φ ∈ F 0(D) we have

dω ◦ φ =

∫
ω ∧ dφ = φ(ξ), α ∈ F 0(D).

Proof. We have
dω = dK ∧ (dz +Adz̄) =

= dK ∧ dz + d(K ·A) ∧ dz̄ = ∂K

∂z̄
dz̄ ∧ dz +A · ∂K

∂z
dz ∧ dz̄ = 0, z ∈ D \ {ξ}.

Hence,∫
ω ∧ dφ = lim

ε→0

∫
D\L(ξ,ε)

ω ∧ dφ =lim
ε→0

∫
D\L(ξ,ε)

d(ωφ) =lim
ε→0

∫
∂L(ξ,ε)

ωφ , α ∈ F 0(D).

On the other hand, since dψ(z, ξ) = dz + dĪ(z) = dz +A(z)d z̄, then∫
∂L(ξ,ε)

ω =

∫
∂L(ξ,ε)

K(z)(dz +A(z)d z̄) =
1

2πi

∫
|ψ(z,ξ)|=ε

dψ(z, ξ)

z − ξ +
∫
γ(ξ,z)

Ā(τ)dτ
=

1

2πi

∫
|ψ|=ε

dψ

ψ
=1

and ∫
ω ∧ dφ = lim

ε→0

∫
∂L(ξ,r)

ωφ =φ(ξ), α ∈ F 0(D).

Theorem 2.5 (Cauchy formula [18]). Let D ⊂ C is an arbitrary convex domain and G ⊂ D is
a subdomain, with piecewise smooth boundary ∂G. Then for any function f(z) ∈ OA(G)

∩
C(Ḡ)

we have a formula

f(z) =

∫
∂G

K(ξ, z)f(ξ)(dξ +A(ξ)dξ̄), z ∈ G. (3)
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Proof. Fix a point z ∈ G and a small circle U(z, ε) ⊂⊂ G, ε > 0. Then by Theorem 2.1∫
∂G

K(ξ, z)f(ξ)(dξ +A(ξ)dξ̄) =

∫
|ξ−z|=ε

K(ξ, z)f(ξ)(dξ +A(ξ)dξ̄).

But according to the Stoke’s formula and Theorem 2.4 we have:∫
|ξ−z|=ε

K(ξ, z)f(ξ)(dξ +A(ξ)dξ̄) =

∫
|ξ−z|=ε

f(ξ)ω(ξ, z) =

∫
|ξ−z|6ε

d[f(ξ)ω(ξ, z)] =

=

∫
|ξ−z|6ε

df(ξ)ω(ξ, z) +

∫
|ξ−z|6ε

f(ξ)dω(ξ, z) → 0 + f(z) = f(z), for ε→ 0.

3. The expansion of A-analytic functions to Taylor and
Laurent series

First we note that the analog power series for A-analytic functions will be

∞∑
j=0

cjψ
j(z, a), a ∈ D, cj is constant. (4)

The domain of convergence of the series (4) is a lemniscate

L(a, r) = {|ψ(z, a)| < r},

where the radius of convergence is given by the Cauchy-Hadamard formula:

1

r
= lim
j→∞

j

√
|cj |.

There is true an inverse

Theorem 3.1. If f(z) ∈ OA(L(a, r))
∩
C(L̄(a, r)), where L(a, r) = {ξ ∈ D : |ψ(ξ, a)| <

r} ⊂⊂ D is a lemniscate, then the function f(z) can be expanded to the Taylor series in L(a, r):

f(z) =
∞∑
k=0

cjψ
k(z, a), (5)

where
ck =

1

2πi

∫
∂L(a, ρ)

f(ξ)

[ψ(ξ, a)]
k+1

(dξ +A(ξ)d ξ̄), 0 < ρ < r, k = 0, 1, . . . .

Proof. We fix 0 < r′ < r and we write Cauchy formula for L(a, r′):

f(z) =
1

2πi

∫
|ψ(ξ,a)|=r′

f(ξ)

ψ(ξ, z)
(dξ +A(ξ)d ξ̄), z ∈ L(a, r′).

Since

ψ(ξ, z) = (ξ − a)− (z − a) +

∫
γ(a,ξ)

Ā(τ)dτ −
∫
γ(a,z)

Ā(τ)dτ = ψ(ξ, a)− ψ(z, a),
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then
f(z) =

1

2πi

∫
|ψ(ξ,a)|=r′

f(ξ)

ψ(ξ, z)
(dξ +A(ξ)dξ̄) =

=
1

2πi

∫
∂L(a, r′)

f(ξ)

ψ(ξ, a)− ψ(z, a)
(dξ +A(ξ)dξ̄) =

=
1

2πi

∫
∂L(a, r′)

f(ξ)

ψ(ξ, a)
[
1− ψ(z,a)

ψ(ξ,a)

] (dξ +A(ξ)d ξ̄).

For z ∈ L(a, r′), ξ ∈ ∂L(a, r′) we have
∣∣∣∣ψ(z, a)ψ(ξ, a)

∣∣∣∣ < 1. Consequently,

1

1− ψ(z,a)
ψ(ξ,a)

=

∞∑
k=0

[
ψ(z, a)

ψ(ξ, a)

]k
.

Hence,

f(z) =
1

2πi

∫
∂L(a,r′)

f(ξ)

ψ(ξ, a)
[
1− ψ(z,a)

ψ(ξ,a)

] (dξ +A(ξ)dξ̄) =

=
1

2πi

∫
∂L(a,r′)

f(ξ)

ψ(ξ, a)

∞∑
k=0

[
ψ(z, a)

ψ(ξ, a)

]k
(dξ +A(ξ)dξ̄) =

=
∞∑
k=0

{
1

2πi

∫
∂L(a,r′)

f(ξ)

[ψ(ξ, a)]
k+1

(dξ +A(ξ)dξ̄)

}
[ψ(z, a)]

k
=

∞∑
k=0

ck[ψ(z, a)]
k
,

where ck =
1

2πi

∫
∂L(a,r′)

f(ξ)

[ψ(ξ, a)]
k+1

(
dξ +A(ξ)dξ̄

)
. Since the function

f(ξ)

[ψ(ξ, a)]
k+1

is A-analytic

in the lemniscate L(a, r), then by the Cauchy’s theorem the path of integration ∂L(a, r′) can be
changed to the arbitrary line ∂L(a, ρ), 0 < ρ < r. This proves theorem.

Similarly, we prove

Theorem 3.2 (Laurent expansion). Let f(z) be A-analytic in a ring of lemniscates: f ∈
OA(L(a,R) \ L(a, r)), r < R. Then f(z) will be expanded to the Loran series in this ring:

f(z) =
∞∑

k=−∞

cjψ
k(z, a), (6)

where a coefficients of Taylor-Laurent series which determines by the formula

ck =
1

2πi

∫
∂L(a, ρ)

f(ξ)

[ψ(ξ, a)]
k+1

(dξ +A(ξ)d ξ̄), r < ρ < R, k = 0,±1,±2, . . . .

The series (6) converges uniformly inside of the ring

L(a,R) \ L(a, r) = {z ∈ D : r < |ψ(z, a)| < R}.

Cauchy inequality. For the coefficients of the Taylor-Laurent series holds the following
inequalities

|ck| 6
max{|f(z)| : z ∈ ∂L(a, ρ)}

ρk
, r < ρ < R, k = 0,±1,±2, . . .
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these inequalities easily follow from∫
∂L(a, ρ)

|dξ +A(ξ)dξ̄| = 2πρ.

Laurent series (6) is a convenient tool to study isolated singularities of A-analytic function.
If a point a is an isolated singular point of the function f , i.e. f ∈ OA(0 < |ψ(z, a)| < R),
R > 0, and if f is bounded in some punctured neighborhood of a, then there is a finite number

of in (6) f(z) =
∞∑
k=0

cjψ
k(z, a) and the point a is a removable singular point of f , f(a) = c0; if

lim
z→a

f(z) = ∞, then there are only finite number of terms of the series with negative indices k in
(6):

f(z) =

∞∑
k=−m

cjψ
k(z, a),m > 0, c−m ̸= 0.

In this case, the point a is called a pole of order m. In case, when lim
z→a

f(z) does not exists, a
called essential singular point.

4. The big Picard’s theorem and Montel’s theorem

In case, when a essential singular point, there is a theorem of Sohodskiy: for any complex
number w there exists a sequence zk → a : f(zk) → w.

We note that according to Liouville’s theorem anti-holomorphic function A(z) which satisfies
the condition |A(z)| 6 c < 1 is constant in whole complex plane C. Therefore, if we want to
define an entire A-analytic function f(z) ∈ OA(C), we must request that A(z) ≡ c, |c| < 1. For
a such kind of entire A-analytic functions f(z), the Picard’s theorem holds: A-analytic functions
f ̸≡ const does not accept more than two points.

The next big Picard’s theorem holds for an arbitrary anti-holomorphic in D ⊂ C function
|A(z)| 6 c < 1.

Theorem 4.1. If a is an essential singular point of the A-analytic function f(z), then f does
not accept more than two (exceptional) points of extended complex plane C.

In the proof of the theorem, by analogy of analytic functions, essentially used Montel’s
theorem on compact (normal) family of A-analytic functions and modular analytic function in
the unit disk U = U(0, 1). Recall that the family of functions {fα(z)}α∈Λ ⊂ OA(G), is called
normal if every its subfamily {fα(z)}α∈Λ0

, Λ0 ⊂ Λ contains a subsequence

{fj(z)} ⊂ {fα(z)}α∈Λ0
: fj(z) ⇒ f(z), j → ∞,

which uniformly converges inside of G.

Theorem 4.2 (Montel). A locally uniformly bounded family of A-analytic functions
{fα(z)}α∈Λ ⊂ OA(G) forms a normal family.

To proof this theorem using Arzela’s theorem it is enough to show equicontinuity of the family
{fα(z)}α∈Λ on any compact K ⊂⊂ G, that is ∀ε > 0 ∃δ > 0 : ∀z′′, z′ ∈ K, |z′′ − z′| < δ,∀f ∈
{fα} ⇒ |f(z′′)− f(z′)| < ε.
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Let ρ = max{σ : L(w, σ) ⊂ G∀w ∈ K} > 0 and Kρ/2 =
∪
w∈K

L(w, ρ/2) – the blow-up of

K, Kρ/2 ⊂⊂ G, where L(w, σ) – is lemniscate. Then M = sup{∥fα∥Kρ/2 : α ∈ Λ} < ∞ and
according to expansion (5), for a δ < ρ the function

φα(z) =
fα(z)− fα(z

′)

ψ(z, z′)
,

where ψ(z, z′) = z− z′+
∫
γ(z′,z)

Ā(τ)dτ is A-analytic function in the lemniscate L(z′, ρ) ⊂⊂ Kρ.
Moreover,

|φα(z)| 6
2M

ρ/2
= 4

M

ρ
, z ∈ ∂L(z′, ρ/2).

We note, that z′′ ∈ L(z′, ρ). By the maximum principle |fα(z′′)− fα(z
′)| 6 4Mρ |ψ(z

′′, z′)| 6
const|z′′ − z′|, that means equicontinuity of the family {fα(z)}α∈Λ on K.

Corollary 4.3. If each function of family of A-analytic functions {fα(z)}α∈Λ do not accept two
values a ∈ C, b ∈ C, a ̸= b, then this family is normal.

In fact, considering the family
{
fα (z)− a

b− a

}
α∈Λ

, we can assume that a = 0, b = 1. We use

the modular function µ (z) : U → C \ {0, 1}. Note that the modular function µ(z) conform maps
the circular triangle ∆0 = ABC ⊂ Ū , A,B,C ∈ ∂U , with sides AB⊥∂U , BC⊥∂U , CA⊥∂U
on the upper half of the plane so that µ(A) = 0, µ(B) = 1, µ(C) = ∞. Then, it extends to
the unit circle on the principle of symmetry: for example, a triangle ∆1, that is symmetrical
triangle to ∆0 with respect the side AB is translated to the lower plane. The inverse function
µ−1 determines the multi-valued function with critical points {0, 1,∞}.

Now we fix a function fα(z) ̸≡ const and a point z0 ∈ G so that the image fα
(
z0
)

lies either
in the upper half-plane or in the lower half-plane. We select in some small neighborhood W of the
point fα(z0) single-valued branch of the function µ−1 : W → ∆0

∪
∆1. Then the composition

µ−1 ◦fα(z) is A-analytic function in a neighborhood V ⊂ G. But, since the function µ−1 has the
critical point only in {0, 1,∞}, and fα(z) does not accept these terms, then by the monodromy
theorem, µ−1 ◦ fα(z) extends to G : µ−1 ◦ fα(z) 6 1, z ∈ G.

From theorem 4.2 implies that the family {µ−1 ◦ fα(z)}α∈Λ and, therefore {fα(z)}α∈Λ is a
normal family.

Proof of theorem 4.1. Without loss of generality we may assume that a = 0, i.e. 0 is essential
singular point, f(z) : f ∈ OA({|z| < ε}), lim

z→0
f(z) does not exist. Assume the contrary: function

f accept two points {a, b} in the disk |z| < ε. Take a sequence ε = ε1 > ε2 > . . . > εj ↘ 0 and

the ring
1

4εj
< |z| < 1

εj
, j = 1, 2, . . .. The family

{
f
(
z
εj

)}
j

of A-analytic functions is normal

in the ring
1

4
< |z| < 1, because it accepts two values, a ̸= b. According to Corollary 4.3, it is

normal, i.e., there is a sequence φk(z) = f
( z

εjk

)
, which uniformly converges inside

1

4
< |z| < 1

to the function F (z).

If F (z) ≡ ∞, then the sequence
{

1

φk(z)− a

}
k

of A-analytic functions converges to zero on

the circle |z| = 1

2
. It means that the function d 1

f(z)−a converges to zero on the circles |z| = εjk
2

,
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k → ∞. By the maximum principle for A-analytic function
1

f(z)− a
it follows

max

{∣∣∣∣ 1

f(z)− a

∣∣∣∣ : εjk2 6 |z| ≤
εjk+1

2

}
→ 0.

Hence,

max

{∣∣∣∣ 1

f(z)− a

∣∣∣∣ : εjk2 6 |z| < 0

}
→ 0,

which means that lim
z→0

f(z) = a which is impossible.

Now, if F (z) ̸≡ ∞, then F (z) is A-analytic in the ring
1

4
< |z| < 1. If we denote M =

max

{
|F (z)| : |z| = 1

2

}
, then |f(z)| 6 2M , |z| = εjk

2
for sufficiently large k. By the maximum

principle this inequality is true on the ring
εjk
2

6 |z| 6 εjk+1

2
, that is not possible, due to the

essential singularity of the point 0. This proves the theorem.
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Об одном классе A-аналитических функций
Азимбай Садуллаев

Насридин М. Жабборов
Национальный университет Узбекистана

Вузгородок, 100174
Узбекистан

Мы рассматриваем A-аналитические функции в случае, когда A является антиголоморфной
функцией. Для A-аналитических функций в статье доказываются интегральная теорема Ко-
ши, интегральная формула Коши, разложимость в ряд Тейлора и ряд Лорана, а также большая
теорема Пикара и теорема Монтеля.

Ключевые слова: A-аналитическая функция, интегральная теорема Коши, интегральная формула
Коши, ряд Тейлора, ряд Лорана, большая теорема Пикара, теорема Монтеля.
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