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1. Introduction and preliminaries

Quoting from a well-known American mathematician Lipman Bers [1]: "It would be tempt-
ing to rewrite history and to claim that quasiconformal transformations have been discovered in
connection with gas-dynamical problems. As a matter of fact, however, the concept of quasi-
conformality was arrived at by Grotzsch [2] and Ahlfors [3] from the point of view of function
theory". The present work is devoted to the theory of analytic solutions of the Beltrami equation

f=(2) = A(2) f=(2), (1)

which directly related to the quasi-conformal mappings. The function A(z) is, in general, as-
sumed to be measurable with |A(z)| < C' < 1 almost everywhere in the domain D C C under
consideration. Solutions of equation (1) are often referred to as A-analytic functions in the
literature.

The solutions of equation (1), as well as quasi-conformal homeomorphisms in the complex
plane C have been studied in sufficient details. Here we confine ourselves by giving the references
[1,3-13] and formulating the following three theorems:

Theorem 1.1 (see [3]). For any measurable on the complex plane C function A(z) : ||A| <1
there exists unique homeomorphic solution x(z) of the equation (1) which fizes the points 0, 1
and oo.

Note that if the function |A(z)| < C < 1 is defined only in the domain D C C, then it can be
extended to the whole C by setting A = 0 outside D, so the Theorem 1.1 holds for any domain
D cC.
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Theorem 1.2 (see [5,6]). The set of all generalized solutions of equation (1) is exhausted by the
formula f(z) = ®[x(2)], where x(z) is a homeomorphic solution from Theorem 1.1, and ®(§)
is a holomorphic function in the domain x (D). Moreover, if the generalized solution f(z) has
isolated singular points, the holomorphic function ® = f o x~! also has isolated singular points
of the same types.

From Theorem 1.2 implies that the A-analytic function f carries out internal mapping, i.e.
it mapping an open set to an open set. It follows that the maximum principle holds for such
functions: for any bounded domain D C C the maximum of modulus is reaches only on the
boundary, ie. |f(z)] < er€1%>5|f(z)|, z € D. If the function is not zero, then the minimum

principle also holds, i.e. |f(2)| > mé%|f(z)|, z€D.
z€

Theorem 1.3 (see [8]). If a function A(z) belongs to the class of m-smooth functions (A(z) €
C™(D)), then every solution f of the equation (1) also belongs to, at least, the class, i.e. f €
C™(D).

The purpose of this paper is to study A-analytic functions in a particular case, when the
function A(z) is anti-holomorphic in a considered domain. As we can see below, in this special
case the solution of (1) possesses many properties of analytic functions, has an excellent integral
representation, and can be expanded into Taylor, Laurent series and etc.

The considered case of A-analytic functions was initiated with a number of their applications
in mechanics, geology and medicine, particularly, in the problems of tomography: X-ray, seis-
mic, etc. They are associated with the Radon problem of recovery of functions from the given
properties on the hyperplanes. In a series of papers A.L.Buhgeym and S.G.Kazantsev [14]
Radon problem is interpreted by boundary problems for the infinite-dimensional analogue of the
equation f;: — Af, = 0, where f is complex argument function of z, with values in some Banach
space X and A is a linear continuous operator A: X — X, || 4| < 1.

A-analytic functions can be applied to the theory of elliptic equations (see [15-17]), when A
is a continuous linear operator in finite or infinite-dimensional spaces. In papers [15-17] A is a
linear continuous operator in X. In the case, when X = C it is a constant, i.e. A = const.

2. Construction of Cauchy kernel when 0A =0

Let A is anti-analytic, A = 0 in D C C such that |A(z)| < C < 1, Vz € D. We put

0 . .0
DA - & —A(Z)£7
_ 0 0

Then according to (1) the class of A-analytic functions f € O4(D), characterized by the fact

that D4 f = 0. Since, anti-analytic function is infinitely smooth, then from Theorem 1.3 implies
that O4(D) C C*°(D).

Theorem 2.1. (analogue of Cauchy’s theorem [16]). If f € Oa(D)(C(D), where D C C is a
domain with rectifiable boundary 0D, then

f(z)(dz + A(z)dz) = 0.
oD
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Proof of the theorem follows directly from Stoke’s formula:

(2)(dz + A(z)dz) = (2)dz + f(2)A(z)dz =
oD aD oD

://df(z)/\dz+//d[f(z)A(z)] Adz =
:é/ 82(52)d2/\dz+/3/ <8J(;(ZZ)

_ // (_81(;(;) 4+ %i”A@))dzAdz: 0.
D

A(2) + f(2) 8A(Z))dz A ds =

O
Now we assume that the domain D C C is convex and £ € D its fixed point. We consider the
function
1 1
K(z,8) = 5—- —_— (2)

2 26 [ AT

where (¢, z) is a smooth curve which connects the points &,z € D. Since the domain is simply
connected and the function A(z) is holomorphic, then the integral I(z) = fv(

A(7)dr does not

depend on a path of integration; it coincides with a primitive, i.e. I'(z) = A(2).

Theorem 2.2. K(z,§) is A-analytic function outside of the point z =€, i.e. K € Oa(D\ {&}).
Moreover, at z = £ the function K(z,£) has a simple pole.

£,2)

Proof. A simple check shows that the function

w<z7£>=z—£+l(z>=z—£+/(5 )A(T)df
v(§,2

is A-analytic in D:

et 1) = 21T = 21() = A(2) = AC2)

ie. ¥(z,€) € Oa(D). _
The function (z,&) =z — £+ f,y(é 2 A(7)dr has a unique simple zero at the point z = ¢. In
fact, if [, 2] is a segment which connects the points £, z € D, then

z—E&+ / A(T)dr =2 — €+ A(r)dr
v(&,2) €,2]

and since |A(z)| < ¢ < 1, we have

— A
z §+/y(£,z) (r)dr

>Iz—£—‘ | Aar >|z—f—/[E A lir| >

>|z—5|—c~/[5 drl = (-0l >0, 2 ¢

This implies that the function 1 (z, &) has only one zero at the point z = &, and this zero is
simple. This means that K(z,¢) is holomorphic in D\ {¢} and the point z = £ is its simple pole.
This proves the theorem. O
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Remark 2.3. If the domain D C C is not a convez, but only simply connected, then although
the function ¥(z,€) is uniquely defined in the D, but a priori, it might has the other isolated
zeros except £ 1 p(2,) =0, z € P ={£,£1,&,...}. Consequently, 1 € Oa(D), ¥(z,£) # 0 when
z ¢ P and K(z,£) is analytic function only in D\ P, it has a poles at the points of P. Due to
this fact, we consider the class of A-analytic functions only in the convexr domain D C C.

According to Theorem 1.2, the function ¥(z,£) € O4(D) carries out an internal mapping. In

<7~}

is open in D. For sufficiently small r > 0 it compactly belongs to D and contains the point &.
This set is called A-lemniscate with center £ and denoted by L(&, 7). According to the maximum
principle the lemniscate L(,r) is simply connected and to the minimum principle it is connected.

It is clear that K(z,£) € L} (D), V¢ € D and a differential form of first degree w =

K(z,8)(dz + A(z)dz) is determines a current by the formula

particular, the set

L(§,r) = {Z €D :[y(z8)| =

z—&+ / A(r)dr
v(&:2)

woa=/w/\a, a € FY(D),

where F'1(D) is class of finite, infinitely smooth differential forms of first degree.

Theorem 2.4. A differential of the current is coincide with the Dirac measure d¢, i.e. for any
finite infinitely smooth in D function ¢ € FO(D) we have

dwowz/w/\d@:go(f), a € FO(D).

Proof. We have
dw =dK A (dz + Adz) =

K K
=dK Ndz+d(K -A)ANdz = %dZ/\dz+A~%—dz/\dZ:0, z € D\ {¢}.
z z
Hence,
/w/\d(p: lim wAdp =lim d(wp) =lim we, ac FY(D).
20JD\L(ge) =20 JD\L(g.e) =20 JoL(ge)

On the other hand, since di(z,¢) = dz + dI(z) = dz + A(z)d 2, then

/ w :/ K(2)(dz + A(2)d z) :i/ d¢(z,§)_ :i’ @y -1
oree)  Jorge 2 Sl g)l=e 2 =€+ [ Alm)dr 2T Sy ¥

and

w Adp = lim wp =p(§), aEFO(D).
e—0 8L(5,r)

O

Theorem 2.5 (Cauchy formula [18]). Let D C C is an arbitrary conver domain and G C D is
a subdomain, with piecewise smooth boundary OG. Then for any function f(z) € O4(G) () C(G)
we have a formula

fz) = | K(&2)f(&)(dE + A(§)dE), z€G. 3)

oG
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Proof. Fix a point z € G and a small circle U(z,e) CC G, € > 0. Then by Theorem 2.1

K(EAfOUE+ 4@ = [ K€1) + A©)a)

oG

But according to the Stoke’s formula and Theorem 2.4 we have:

/ K(€,2) f(€)(de + A(€)dE) = / F(E)wle,z) = / dlf (E)w(€, 2)] =
[E—z|=¢ [§—z|=€ [—z|<e

/;(iﬁwm&@+/ FO)dw(€,2) = 0+ f(2) = f(z), for e — 0.

|§—z|<e
O
3. The expansion of A-analytic functions to Taylor and
Laurent series
First we note that the analog power series for A-analytic functions will be

o0

chz/ﬂ(z, a), a € D, ¢; is constant. (4)

3=0

The domain of convergence of the series (4) is a lemniscate

L(a,r) ={l(z,a)] <r},

where the radius of convergence is given by the Cauchy-Hadamard formula:
1 —
T .
7= iyl

There is true an inverse

Theorem 3.1. If f(z) € Oa(L(a, 7)) C(L(a, r)), where L(a,r) = {£ € D : |¢(&, a) )<

r} CC D is a lemniscate, then the function f(z) can be expanded to the Taylor series in L(a, r

f(Z) = chwk(za CL), (5)
k=0

where

L £(©)
211 Jor(a, ) [(€, @)

Proof. We fix 0 < v’ < r and we write Cauchy formula for L(a,r’):

1 1) e L
O =50 ) o T T AQI, =€ L)

i (dé + A(6)dE), 0<p<r, k=0,1,....

Since

¢<§,z>=<s—a>—<z—a>+/

A(r)dr — / A(r)dr = (€, a) — (= a),
v(a,§) v(a,z)
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then
1 f(€)

- 271, [ (€,a)|=r" P(&,2)

B L/ M9
2mi Jor(a, ) Y(€,0) = P(,0)
27t Jor(a, ) (€, a) [1 ~ e

(2, a)

P(€ a)

f(2) (d€ + A(€)d€) =

(d€ + A(€)d€) =

} (dg + A(§)d ).

For z € L(a,r"), { € OL(a,r’) we have

‘ < 1. Consequently,

Hence,

2 Jorter (g.a) [1 - 5

f(z) = } (d€ + A(€)de) =

1 18 =[v(za)] -~
3 /m,,«/) w(&a);[?ﬁ ) e+ A -

— ] 1 / f©) = E e k
= Py — 5 (A€ + A(§)dE) o [Y(z,a)]" = ) c[v(z,a)],
k=0 { 2mi OL(a,r’) ["/’(57 a)]k-H Z
1 / G G
2mi Jorarm (& a)) " (€, )"
in the lemniscate L(a,r), then by the Cauchy’s theorem the path of integration dL(a,r’) can be
changed to the arbitrary line dL(a, p), 0 < p < r. This proves theorem.

Similarly, we prove

where ¢, = (d§ + A(¢ )dﬁ_) Since the function is A-analytic

Theorem 3.2 (Laurent expansion). Let f(z) be A-analytic in a ring of lemniscates: f €
Oa(L(a,R)\ L(a,r)), r < R. Then f(z) will be expanded to the Loran series in this ring:

[ee]

f&)= Y etz a), (6)

k=—o0

where a coefficients of Taylor-Laurent series which determines by the formula

L 1© ;

= — — = (dE+ A(&)dE), r<p< R, k=0,£1,+2,....
2mi Jor(a,p) [ )"

The series (6) converges uniformly inside of the ring

L(a,R)\ L(a,r) ={z € D: r <|¥(z,a)| < R}.

Cauchy inequality. For the coefficients of the Taylor-Laurent series holds the following
inequalities
< max{|f(z)|: z € OL(a,p)}

x| < - , T<p<R, k=0,%1,42,...
P
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these inequalities easily follow from
[ e+ e =2
OL(a, p)

Laurent series (6) is a convenient tool to study isolated singularities of A-analytic function.

If a point a is an isolated singular point of the function f, i.e. f € O4(0 < |¢(z,a)| < R),

R > 0, and if f is bounded in some punctured neighborhood of a, then there is a finite number
o0

of in (6) f(2) = > ¢;9*(2,a) and the point a is a removable singular point of f, f(a) = co; if

lim f(z) = oo, then there are only finite number of terms of the series with negative indices k in
z—a

(6):

o0

f2)= Y ctF(z, a),m>0,cpm #0.

k=—m

In this case, the point a is called a pole of order m. In case, when lim f(z) does not exists, a
zZ—ra

called essential singular point.

4. The big Picard’s theorem and Montel’s theorem

In case, when a essential singular point, there is a theorem of Sohodskiy: for any complex
number w there exists a sequence z; — a : f(z;) — w.

We note that according to Liouville’s theorem anti-holomorphic function A(z) which satisfies
the condition |A(z)] < ¢ < 1 is constant in whole complex plane C. Therefore, if we want to
define an entire A-analytic function f(z) € O4(C), we must request that A(z) = ¢, |¢| < 1. For
a such kind of entire A-analytic functions f(z), the Picard’s theorem holds: A-analytic functions
f # const does not accept more than two points.

The next big Picard’s theorem holds for an arbitrary anti-holomorphic in D C C function
[A(z)] < e < 1.

Theorem 4.1. If a is an essential singular point of the A-analytic function f(z), then f does
not accept more than two (exceptional) points of extended complex plane C.

In the proof of the theorem, by analogy of analytic functions, essentially used Montel’s
theorem on compact (normal) family of A-analytic functions and modular analytic function in
the unit disk U = U(0,1). Recall that the family of functions {fa(2)},cp C Oa(G), is called
normal if every its subfamily {fa(2)},c4,, Ao C A contains a subsequence

{fi(2)} € {fa(2)}aen, : fi(2) B f(2), J— o0,
which uniformly converges inside of G.

Theorem 4.2 (Montel). A locally uniformly bounded family of A-analytic functions
{fa(2)}aea C Oa(G) forms a normal family.

To proof this theorem using Arzela’s theorem it is enough to show equicontinuity of the family
{fa(2)}4ea on any compact K CC G, that is Ve > 0 36 > 0: V2", 2/ € K,[2" — 2| < 0,Vf €
{fo} = 1F(z") = f()] <e.
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Let p = max{c : L(w,0) C GYw € K} > 0 and K*/? = |J L(w,p/2) — the blow-up of
weK
K, K°/? cC G, where L(w,0) — is lemniscate. Then M = sup{||fa| x> : @ € A} < oo and

according to expansion (5), for a § < p the function

where ¥(z,2') =z — 2"+ fv(Z’ 9 A()dr is A-analytic function in the lemniscate L(2/, p) CC K*.
Moreover,

2M M
W(2)] < = =4, OL(Z', p/2).
[pa(a) <~ =475 2 € AL p/2)

We note, that z” € L(2/, p). By the maximum principle |fo(2") — fo(2)] < 4%|1/}(z”, 2| <
const|z” — 2’|, that means equicontinuity of the family {f,(2)},c, on K. O

Corollary 4.3. If each function of family of A-analytic functions {f.(2)}
values a € C, b € C, a # b, then this family is normal.

In fact, considering the family {fab(z)—a} , we can assume that a =0, b = 1. We use

—a a€A

the modular function u (z) : U — C\ {0,1}. Note that the modular function p(z) conform maps
the circular triangle Ay = ABC C U, A,B,C € 90U, with sides AB19U, BC LoU, CALdU
on the upper half of the plane so that u(A) = 0, u(B) = 1, u(C) = co. Then, it extends to
the unit circle on the principle of symmetry: for example, a triangle Aj, that is symmetrical
triangle to A with respect the side AB is translated to the lower plane. The inverse function
p~! determines the multi-valued function with critical points {0, 1, co}.

aca do not accept two

Now we fix a function f,(z) # const and a point z° € G so that the image f, (zo) lies either
in the upper half-plane or in the lower half-plane. We select in some small neighborhood W of the
point f,(2°) single-valued branch of the function =1 : W — AgJA;. Then the composition
pu~to fu(z) is A-analytic function in a neighborhood V' C G. But, since the function ! has the
critical point only in {0, 1,00}, and f,(z) does not accept these terms, then by the monodromy
theorem, ! o f,(2) extends to G : p~to fo(2) <1,z €G.

From theorem 4.2 implies that the family {u~' o fo(2)},ca and, therefore {fo(2)},c, is a
normal family. O

Proof of theorem 4.1. Without loss of generality we may assume that a = 0, i.e. 0 is essential
singular point, f(z): f € Os({|z| < €}), llir(l)f(z) does not exist. Assume the contrary: function

f accept two points {a,b} in the disk |z| < e. Take a sequence e =¢1 >3 > ... > ¢; \, 0 and
1 1

the ring Y <|z| < —, 7 =1,2,.... The family {f(f)} of A-analytic functions is normal
€4 €j J j

1
in the ring 1 < |z| < 1, because it accepts two values, a # b. According to Corollary 4.3, it is
1
normal, i.e., there is a sequence ¢y (z) = f (i), which uniformly converges inside 1< lz| <1

Jk
to the function F'(z).

If F(z) = oo, then the sequence { of A-analytic functions converges to zero on

}
@k(z)_a k

the circle |z| = 3 It means that the function dﬁ converges to zero on the circles |z| = R
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1
k — oco. By the maximum principle for A-analytic function ———— it follows

f(z) —a

| N
:5”“<|z|<“2“}—>0.

{7 3

Hence,
1

w7

which means that liH(l) f(2) = a which is impossible.
z—

2

.
:]’“<|z|<0}—>0,

1
Now, if F(z) # oo, then F(z) is A-analytic in the ring 1< |z| < 1. If we denote M =

1 .
maX{F(z)| Hz| = 2}, then |f(2)| < 2M, |z| = % for sufficiently large k. By the maximum

€kt
L . . . 2
essential singularity of the point 0. This proves the theorem.

principle this inequality is true on the ring % < z] < , that is not possible, due to the
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O6 ognom KJjilacce A-aHaauTmdeckKmX (pyHKITU

Aszumbaii CaaysiiiaeB
Hacpuana M. 2Kab66opos

Harmonasbaeiit yausepcurer Y30eKUCTaHA
Bysroponoxk, 100174

Vabekncran

Muv pacemampusaem A-anasumuveckue GYHKUUY 6 caydae, Ko02da A ABAAEMCA AHMU20AOMOPHHO
Ppyrryuet. s A-anasumuveckuxr Gynrkyul 6 cmamove 0oKas3ueaomes uwmezpasonas meopema Ko-
wu, unmezpasvran gopmyaa Kowu, pasaoostcumocms 6 pad Tetaopa u pad Jlopana, a maxoice 6oavuuasn
meopema Iuxapa u meopema Monmens.

Karouesvie caosa: A-anasumuneckas Gyrrkyus, unmezpaisvhas meopema Kowu, unmeepasvias gopmyia
Kowwu, psad Tetinopa, psad Jlopara, 6osvuwasn meopema Iuxapa, meopema Mormens.
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