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1. Introduction: unique determination of surfaces by their
relative metrics on boundaries

A classical theorem says (see [3]): If two bounded closed convex surfaces in the three-
dimensional Fuclidean space are isometric in their intrinsic metrics then they are equal, i.e.,
they can be matched by a motion.

The problems of unique determination of closed convex surfaces by their intrinsic metrics
goes back to the result of Cauchy, obtained already in 1813, that any closed convez polyhedrons
Py and Py (in the three-dimensional FEuclidean space) that are equally composed of congruent
faces are equal. Since then this problem has been studied by many people for about 140 years
(for example, by Minkowski, Hilbert, Weyl, Blaschke, Cohn-Vossen, Aleksandrov, Pogorelov and
other prominent mathematicians (see, for instance, the historical overview in [3], Chapter 3);
finally, its complete solution, which is just the theorem we have cited at the beginning, was
obtained by A.V.Pogorelov. For generalizations of Pogorelov’s result to higher dimensions,
see [4].

In [5], we proposed a new approach to the problem of unique determination of surfaces, which
enabled us to substantially enlarge the framework of the problem. The following model situation
illustrates the essence of this approach fairly well:
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Let Uy and U; be two domains (i.e., open connected sets) in the real n-dimensional Euclidean
space R™ whose closures clU;, where j = 1,2, are Lipschitz manifolds (such that d(clU;) =
0U; # @, where OF is the boundary of E in R™). Assume also that the boundaries 0U; and
OUs; of these domains, which coincide with the boundaries of the manifolds clU; and clUs, are
isometric with respect to their relative metrics poy,, v, (j = 1,2), i.e., with respect to the metrics
that are the restrictions to the boundaries OU; of the extensions pcy, (by continuity) of the
intrinsic metrics py; of the domains U; to clU;. The following natural question arises: Under
which additional conditions are the domains Uy and Us themselves isometric (in the Fuclidean
metric)? In particular, the natural character of this problem is determined by the circumstance
that the problem of unique determination of closed convex surfaces mentioned at the beginning
of the article is its most important particular case. Indeed, assume that S; and Ss are two closed
convex surfaces in R3, i.e., they are the boundaries of two bounded convex domains G; C R3
and Gy C R3. Let U; = R3\ clG; be the complement of the closure clG; of the domain Gj,
j = 1,2. Then the intrinsic metrics on the surfaces S; = 0U; and Sy = 90U, coincide with the
relative metrics par, v, and psu,,u, on the boundaries of the domains U; and Uz, and thus the
problem of unique determination of closed convex surfaces by their intrinsic metrics is indeed
a particular case of the problem of unique determination of domains by the relative metrics on
their boundaries.

The generalization of the problem of the unique determination of surfaces ensuing from a new
approach suggested in [5] manifests itself in the fact that the unique determination of domains
by the relative metrics on their boundaries holds not only when their complements are bounded
convex sets but, for example, also in the following cases.

The domain Uy is bounded and convexr and the domain Uz is arbitrary (A.P.Kopylov [5]).

The domain Uy is strictly convex and the domain U is arbitrary (A.D. Aleksandrov (see [6])).

The domains Uy, Uy are bounded and their boundaries are smooth (V.A. Aleksandrov [6]).

The domains Uy and Us have monempty bounded complements, while their boundaries are
(n — 1)-dimensional connected C*-manifolds without boundary, n > 2 (V.A. Aleksandrov [7]).

In the papers [8-10], M.V.Korobkov (in particular) obtained a complete solution to the
problem of unique determination of a plane (space) domain in the class of all plane (space)
domains by the relative metric on its boundary.

In this connection, there appears the following question: Is it possible to construct an analog
of the theory of rigidity of surfaces in Euclidean spaces in the general case of the boundaries of
submanifolds in Riemannian manifolds?

Our article is devoted to a detailed discussion of this question. In it, we in particular ob-
tain new results concerning rigidity problems for the boundaries of n-dimensional connected
submanifolds with boundary in n-dimensional smooth connected Riemannian manifolds without
boundary (n > 2).

In what follows, all paths v : [a, 8] — R"™, where o, € R, are assumed continuous and
non-constant, and () means the length of a path ~.

2. Rigidity problems and intrinsic geometry of submanifolds
in riemannian manifolds

Let (X, g) be an n-dimensional smooth connected Riemannian manifold without boundary
and let Y be an n-dimensional compact connected C°-submanifold in X with nonempty boundary
Y (n = 2).

A classical object of investigations (see, for example, [11]) is given by the intrinsic metric
pay on the hypersurface dY defined for x,y € 0Y as the infimum of the lengths of curves v C Y
joining x and y. In the recent decades, an alternative approach arose in the rigidity theory for
submanifolds of Riemannian manifolds (see, for instance, the recent articles [1,10], and [2], which
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also contain a historical survey of works on the topic). In accordance with this approach, the
metric on JY is induced by the intrinsic metric of the interior Int Y of the submanifold Y.
Namely, suppose that Y satisfies the following condition:
(i) if z,y € Y, then

py (z,y) = lim inf {inf[{(var oy mt v)]} < 00, (2.1)
' =z, y’ —y;x’,y’ €lntY
where inf[l(7,/ , mtvy)] is the infimum of the lengths I(Vz 4 m¢y) of smooth paths vg/ /ey :
[0,1] = IntY joining 2’ and g’ in the interior Int Y of Y.
Remark 2.1. Easy examples show that if X is an n-dimensional connected smooth Riemannian
manifold without boundary then an n-dimensional compact connected C°-submanifold in X
with nonempty boundary may fail to satisfy condition (i). For n = 2, we have the following
counterexample:
Let (X, g) be the space R? equipped with the Euclidean metric and let Y be a closed Jordan
domain in R? whose boundary is the union of the singleton {0} consisting of the origin 0, the
segment {(1 —t)(e1 + 2e3) +t(ex +e2) : 0 < ¢ < 1}, and of the segments of the following four

types:
{(1—t>(61+€2) teq
+
n n—+ 1
er + (1 t)es

<t < (n=1,2,...);
1} 32 3,...);

1_
( t)(€1+2€2)+2(261+62 0<t< (n=1,2,...);
n in + 3
(L—t)(e1 + 2e5) | 2t(2e1 + e2)
. g <1 :1’2,....
{ n4+1 dn+3 0t " !

Here ey, e is the canonical basis in R2. By the construction of Y, we have py (0, E) = oo for
every E € Y\ {0} (see Fig. 1).
Remark 2.2. Note that if X = R™ and U is a domain in R™ whose closure Y = clU is a
Lipschitz manifold (such that 9(clU) = 0U # @), then psy,u(z,y) = py(z,y) (z,y € OU) and
Y satisfies (i). Hence, this example is an important particular case of submanifolds YV in a
Riemannian manifold X satisfying (i).
To prove our rigidity results for boundaries of submanifolds in a Riemannian manifold (see
Sec. 3.), we first need to study the properties of the intrinsic geometry of these submanifolds.
One of the main results of this section is as follows:

Theorem 2.1. Let n = 2. Then, under condition (i), the function py defined by (2.1) is a
metric on Y.

Proof. 1t suffices to prove that py satisfies the triangle inequality. Let A, O, and D be
three points on the boundary of Y (note that this case is basic because the other cases are
simpler). Consider e > 0 and assume that y4_01 : [0,1] — IntY and ypzp, : [2,3] — IntY
are smooth paths with the endpoints A. = 7v4.01(0), O = vya, o:1(1) and D. = v02p.(3),
02 = y02p. (2) satisfying the conditions px (A, A) < ¢, px(De, D) < e, px(01,0) <& (j =

2), |l(7A 01) = py(A,0)| < ¢, and |l(yo2p,) — py(O,D)| < e. Let (U,h) be a chart of the
manlfold X such that U is an open nelghborhood of the point O in X, h(U) is the unit disk
B(0,1) = {(z1,72) € R? : 27 + 22 < 1} in R?, and h(O) = 0 (0 = (0,0) is the origin in R?);
moreover h : U — h(U) is a diffeomorphism having the following property: there exists a chart
(Z,%) of Y with ¢(O) =0, A,D € U\ clx Z (clx Z is the closure of Z in the space (X, g))
and Z = UNY is the intersection of an open neighborhood U (CU)of Oin X and Y whose
image 1(Z) under ¢ is the half-disk B4 (0,1) = {(z1,22) € B(0,1) : 1 > 0}. Suppose that o,
is an arc of the circle dB(0,r) which is a connected component of the set V' N dB(0,r), where
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Fig. 1. An example of 2-dimensional compact connected C°-submanifold with nonempty bound-
ary which does not satisfy condition (i)

V =h(Z)and 0 < r < r* = min{|h(¢ " (z1,22))| : 2? + 22 = 1/4, z; > 0}. Among these
components, there is at least one (preserve the notation o, for it) whose ends belong to the sets
h(yp=t({—tez : 0 < t < 1})) and h(yp~!({te2 : 0 < t < 1})) respectively. Otherwise, the closure
of the connected component of the set V' N B(0,r) whose boundary contains the origin would
contain a point belonging to the arc {e? /2 : |#| < m/2} (here we make use of the complex notation
z = re' for points z € R? (= C)). But this is impossible. Therefore, the above-mentioned arc
o, exists.

It is easy to check that if € is sufficiently small then the images of the paths hoy4 o1 and
hovoz2p, also intersect the arc o,., i.e., there are t; €]0, 1[, t2 €]2, 3[ such that y4_o1(t1) = ' € Z,
Yozp. (t2) = 2?2 € Z and h(z?) € 0., j = 1,2. Let v, : [t1,t2] — 0, be a smooth parametrization
of the corresponding subarc of o, i.e., v(t;) = h(2?), j = 1,2. Now we can define a mapping
Ye : [0,3] = Int Y by setting

Ya.0:(t), t€[0,t1];
Ve(t) = ¢ h™ (e (1), t €ltr, ta;
Yozp. (1), t € [t2,3].
By counstruction, 7. is a piecewise smooth path joining the points A. = 7:(0), D = 7:(3) in
Int Y; moreover,
1(3) < l(va.01) + l(vo2p.) + L(h ™ (o).

By an appropriate choice of € > 0, we can make r > 0 arbitrarily small, and since a piecewise
smooth path can be approximated by smooth paths, we have py (4, D) < py (4, O) + py (O, D).
O
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In connection with Theorem 2.1, there appears a natural question: Are there analogs of this
theorem for n > 37 The following Theorem 2.2 answers this question in the negative:

Theorem 2.2. If n > 3 then there erists an n-dimensional compact connected C°-manifold
Y C R™ with nonempty boundary Y such that condition (i) (where now X = R™) is fulfilled for
Y but the function py in this condition is not a metric on'Y .

Proof. It suffices to consider the case of n = 3. Suppose that A, O, D are points in R?, O is
the origin in R®, |A| = |D| = 1, and the angle between the segments OA and OD is equal to T

The manifold ¥ will be constructed so that O € 9Y, and |0, A] C IntY, ]O,D] C IntY.
Under these conditions, py (O, A) = py(O,D) = 1. However, the boundary of Y will create
“obstacles” between A and D such that the length of any curve joining A and D in Int Y will be

12
greater than 5 (this means the violation of the triangle inequality for py).

Consider a countable collection of mutually disjoint segments {I j]'C}JEN7 k=1,...k; lying in the
interior of the triangle 6AAOD (which is obtained from the original triangle AAOD by dilation
with coefficient 6) with the following properties:

(*) every segment IJ’»C = [;vf, yf] lies on a ray starting at the origin, yf = 11%?7 and |xf| =27,

(x+) any curve v with ends A, D whose interior points lie in the interior of the triangle
4AAOD and belong to no segment I]’?, satisfies the estimate I(7y) > 6.

The existence of such a family of segments is certain: the segments of the family must be
situated chequerwise so that any curve disjoint from them be sawtooth, with the total length of
its “teeth” greater than 6 (it can clearly be made greater than any prescribed positive number).
However, below we exactly describe the construction.

It is easy to include the above-indicated family of segments in the boundary 0Y of Y. Thus, it
creates a desired “obstacle” to joining A and D in the plane of AAOD. But it makes no obstacle
to joining A and D in the space. The simplest way to create such a space obstacle is as follows:
Rotate each segment I j’“ along a spiral around the axis OA. Make the number of coils so large
that the length of this spiral be large and its pitch (i.e., the distance between the origin and the
end of a coil) be sufficiently small. Then the set S Jk obtained as the result of the rotation of the
segment, [ ]k is diffeomorphic to a plane rectangle, and it lies in a small neighborhood of the cone
of revolution with axis AO containing the segment [ jk The last circumstance guarantees that
the sets S;€ are disjoint as before, and so (as above) it is easy to include them in the boundary

dY but, due to the properties of the I J’?’s and a large number of coils of the spirals S j’?, any curve

12
joining A, D and disjoint from each S;-“ has length > —.

We turn to an exact description of the constructions used. First describe the construction of
the family of segments I ]’f They are chosen on the basis of the following observation:

Let 7 : [0,1] = 4AAOD be any curve with ends v(0)=A, (1) =D whose interior points lie in
the interior of the triangle 4AAAOD. For j € N, put R; = {:c64AAOD x| € [8-279,4- 2_j]}.
It is clear that

4AAOD \ {O} = UjenR;.
Introduce the polar system of coordinates on the plane of the triangle AAOD with center O such
that the coordinates of the points A, D arer =1, o =0andr =1, p = %, respectively. Given a
point & € 6AAOD, let ¢, be the angular coordinate of z in [0, §]. Let ®; = {¢,«) : () € R;}.
Obviously, there is jo € N such that

H (D) > 2“70%7 (2.2)

where H! is the Hausdorff 1-measure. This means that, while in the layer R, , the curve vy covers

the angular distance > Q’jog. The segments IJ’»C must be chosen such that (2.2) together with
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the condition
YN =0 Vte[0,1], VjeEN, Vke{l,... k;}

give the desired estimate [(y) > 6. To this end, it suffices to take k; = [(27)’] (the integral part
of (27)7) and

I = {:c € 6AAOD : ¢, = k(%)ﬂ%, 2| € [11 - 2*]‘,2*?]} :

k=1,...,k;. Indeed, under this choice of the I]’-“’s7 estimate (2.2) implies that v must intersect
at least (2m)7027J0 = rjo > 3o of the figures

Uy, = {x ERj, g € (k(27r)_j°%, (k + 1)(27T)_j0%)} .

Since these figures are separated by the segments I ]’?0 in the layer R, the curve v must be disjoint
from them each time in passing from one figure to another. The number of these passages must
be at least 370 — 1, and a fragment of v of length at least 2-3-277° is required for each passage
(because the ends of the segments I J’“O go beyond the boundary of the layer R;, containing the
figures U}, at distance 3 -2770). Thus, for all these passages, a section of v is spent of length at
least

6-2790(3% —1) > 6.

Hence, the construction of the segments I Jk satisfying (#)—(xx) is finished.

Let us now describe the construction of the above-mentioned space spirals.

For 2 € R?, denote by II,, the plane that passes through x and is perpendicular to the segment
OA. On Hwé?, consider the polar coordinates (p, 1)) with origin at the point of intersection of HI;V
and [O, A] (in this system, the point sr:;f has coordinates p = ,0;?, 1 = 0). Suppose that a point
z(Y) € Hx?- moves along an Archimedean spiral, namely, the polar coordinates of the point x (1)

are p(¢) = p;? —€;%, ¥ € [0,2mM;], where €, is a small parameter to be specified below, and
M; € N is chosen so large that the length of any curve passing between all coils of the spiral is
at least 10.

Describe the choice of M; more exactly. To this end, consider the points z(27), (27 (M; —1)),
x(2mM;), which are the ends of the first, penultimate, and last coils of the spiral respectively
(with 2(0) = xf taken as the starting point of the spiral). Then M is chosen so large that the
following condition hold:

(x1) The length of any curve on the plane HJC?, joining the segments [x?,ax(%r)] and
[z(27(M; — 1)), x(2nM;)] and disjoint from the spiral {z(y) : ¢ € [0,2wM;]}, is at least 10.

Figuratively speaking, the constructed spiral bounds a “labyrinth”, the mentioned segments
are the entrance to and the exit from this labyrinth, and thus any path through the labyrinth
has length > 10.

Now, start rotating the entire segment [ Jk in space along the above-mentioned spiral, i.e.,
assume that Ij’?(w) ={y = x(¢) : A € [1,11]}. Thus, the segment Ij’?(z/)) lies on the ray joining
O with z(¢) and has the same length as the original segment [ ]’“ =1 ]]‘3(0) Define the surface
S’;C = Uwe[O,QﬂMj]I]k (). This surface is diffeomorphic to a plane rectangle (strip). Taking ; > 0
sufficiently small, we may assume without loss of generality that 2w Mje; is substantially less
than p?; moreover, that the surfaces S Jk are mutually disjoint (obviously, the smallness of ; does
not affect property (+;) which in fact depends on M;).

Denote by y(9) = 11z(¢)) the second end of the segment IJ’“(U)) Consider the trapezium Pf
with vertices y;?, :z:é‘?, x(2mM;), y(2mrM;) and sides Ij’?, Ij’-‘“‘(27er), [zf, x(2wM;)], and [yf, y(2mM;)]
(the last two sides are parallel since they are perpendicular to the segment AO). By construction,
Pf lies on the plane AOD; moreover, taking ¢; sufficiently small, we can obtain the situation

where the trapeziums Pf are mutually disjoint (since Pf — 1 Jk under fixed M; and ¢; — 0).
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Take an arbitrary triangle whose vertices lie on Pf and such that one of these vertices is also a

i i
vertex at an acute angle in Pf. By construction, this acute angle is at least 5~ ZAOD = 3"

Therefore, the ratio of the side of the triangle lying inside the trapezium ij to the sum of the

1 2
other two sides (lying on the corresponding sides of Pf) is at least 3 sing > 5 If we consider

the same ratio for the case of a triangle with a vertex at an obtuse angle of Pf then it is greater

1
than 3 Thus, we have the following property:

(x2) For arbitrary triangle whose vertices lie on the trapezium P]k and one of these vertices
is also a vertex in ij, the sum of lengths of the sides situated on the corresponding sides of Pf

is less than g of the length of the third side (lying inside Pf).

Let a point x lie inside the cone K formed by the rotation of the angle ZAOD around the ray
OA. Denote by Proj,.x the point of the angle ZAOD which is the image of = under this rotation.
Finally, let K4a a0p stand for the corresponding truncated cone obtained by the rotation of the
triangle 4AAOD, i.e., Kyana0op = {x € K : Proj,otx € 4AAOD}.

The key ingredient in the proof of our theorem is the following assertion:

(x3) For arbitrary space curve v of length less than 10 joining the points A and D, contained
in the truncated cone Kynaop \ {0}, and disjoint from each strip S]]?, there exists a plane curve
¥ contained in the triangle 4AAOD \ {O}, that joins A and D, is disjoint from all segments IJ’?

and such that the length of 7 is less than g of the length of Proj;ot7y-

Prove (k3). Suppose that its hypotheses are fulfilled. In particular, assume that the inclusion
Projroty C 4AAOD\ {O} holds. We need to modify Proj,oty so that the new curve be contained
in the same set but be disjoint from each of the I Jk ’s. The construction splits into several steps.

Step 1. If Proj,ot7y intersects a segment [ Jk then it necessarily intersects also at least one of
the shorter sides of P}

Recall that, by construction, Pf = ProjrotS}‘;
Proj.o7y intersected Pf without intersecting its shorter sides then v would pass through all coils
of the corresponding spiral. Then, by (*1), the length of the corresponding fragment of « would
be > 10 in contradiction to our assumptions. Thus, the assertion of step 1 is proved.

Step 2. Denote by TPk the fragment of the plane curve Proj,o¢y beginning at the first point

moreover, 7y intersects no spiral strip S]’?. If

of its entrance into the trapezium Pf to the point of its exit from Pf (i.e., to its last intersection

point with P]IC ). Then this fragment 7 pr can be deformed without changing the first and the last
J

points so that the corresponding fragment of the new curve lie entirely on the union of the sides

5
of Pf ; moreover, its length is less than 3 of the length of vp«.
J

The assertion of step 2 immediately follows from the assertions of step 1 and (*2).

The assertion of step 2 in turn directly implies the desired assertion (#3). The proof of (x3)
is finished.

Now, we are ready to pass to the final part of the proof of Theorem 2.2.

(x4) The length of any space curve v C R®\ {O} joining A and D and disjoint from each
strip S;-“ is at least —.

Prove the last assertion. Without loss of generality, we may also assume that all interior points
of v are inside the cone K (otherwise the initial curve can be modified without any increase of

its length so that assumptions of (x4) are still fulfilled and the modified curve lies in K). If ~ is
not included in the truncated cone Kyaaop \ {O} then Proj,oty intersects the segment [4A, 4D];

consequently, the length of v is at least 2(4sin ZOAD — 1) = 2(4 sing — 1) = 2(2\/§ — 1) >4,
and the desired estimate is fulfilled. Similarly, if the length of « is at least 10 then the desired
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estimate is fulfilled automatically, and there is nothing to prove. Hence, we may further assume
without loss of generality that + is included in the truncated cone Kyas0p \ {O} and its length
is less than 10. Then, by (x3), there is a plane curve 4 contained in the triangle 4AAAOD \ {O},
joining the points A and D, disjoint from each segment [ Jk , and such that the length of ¥ is at

5
most 3 of the length of Proj..ty. By property () of the family of segments I]’?, the length of

12
7 is at least 6. Consequently, the length of Proj,oy is at least = which implies the desired

estimate. Assertion (x4) is proved.

The just-proven property (*4) of the constructed objects implies Theorem 2.2. Indeed, since
the strips SjlC are mutually disjoint and, outside every neighborhood of the origin O, there are only
finitely many of these strips, it is easy to construct a C%-manifold Y C R? that is homeomorphic
to a closed ball (i.e., Y is homeomorphic to a two-dimensional sphere) and has the following
properties:

(I) O € dY, [A,O[U[D,0[C IntY;

(IT) for every point y € (9Y) \ {O}, there exists a neighborhood U(y) such that U(y) N 9Y is
C!-diffeomorphic to the plane square [0, 1]?;

(I11) SJ’»“ coY foralljeN, k=1,...,k;.

The construction of Y with properties (I)~(III) can be carried out, for example, as follows:
As the surface of the zeroth step, take a sphere containing O and such that A and D are inside
the sphere. At the jth step, a small neighborhood of the point O of our surface is smoothly
deformed so that the modified surface is still smooth, homeomorphic to a sphere, and contains
all strips Sf, k=1,...,k;. Besides, we make sure that, at the each step, the so-obtained surface
be disjoint from the half-intervals [4, O[ and [D, O[, and, as above, contain all strips S¥, i < 7,
already included therein. Since the neighborhood we are deforming contracts to the point O as
j — 00, the so-constructed sequence of surfaces converges (for example, in the Hausdorff metric)
to a limit surface which is the boundary of a C°-manifold Y with properties (I)—(III).

Property (I) guarantees that py (A4,0) = py(A4,D) =1 and py (0, z) < 1+ py (A4, z) for all
x €Y. Property (II) implies the estimate py (z,y) < oo for all z,y € Y \ {O}, which, granted
the previous estimate, yields py (z,y) < oo for all z,y € Y. However, property (III) and the

12
assertion (x4) imply that py (A, D) > = > 2 =py(A,O)+py (A, D). Theorem 2.2 is proved. O

If py is a metric (the dimension n (> 2) is arbitrary) then the question of the existence of
geodesics is solved in the following assertion, which implies that py is the intrinsic metric (see,
for example, §6 in [11]).

Theorem 2.3. Assume that py is a finite function and is a metric on'Y . Then any two points

xz,y €Y can be joined in'Y by a shortest curve v : [0, L] = Y in the metric py; i.e., v(0) = z,
V(L) =y, and

py (v(s),y(t)) =t —s, Vs, t€l0,L], s<t. (2.3)

Proof. Fix a pair of distinct points z,y € Y and put L = py(z,y). Now, take a sequence of

paths v; : [0, L] — IntY such that v;(0) = z;, v,;(L) = y;, x; = x, y; =y, and I(y;) = L as

j — oo. Without loss of generality, we may also assume that the parametrizations of the curves

«y; are their natural parametrizations up to a factor (tending to 1) and the mappings 7, converge
uniformly to a mapping ~ : [0, L] — Y with v(0) = 2, v(L) = y. By these assumptions,

lim I(y]s,g) =t —s Vs, t€[0,L], s<t. (2.4)
J—0o0

Take an arbitrary pair of numbers s,t € [0, L], s < t. By construction, we have the conver-
gence v;(s) € IntY — 7(s), v;(t) € IntY — ~(t) as j — oo. From here and the definition of the
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metric py (-, -) it follows that py (v(s),v(t)) < limj_ o0 1(75][s,q)- By (2.4),
(V) () <t—s Vst [0L], s <t (2.5)

Prove that (2.5) is indeed an equality. Assume that py (v(s’),y(t')) < t'—s’ for some ', ¢’ € [0, L],
s’ < t'. Then, applying the triangle inequality and then (2.5), we infer

py (2,9) < py (2,7(5") + py (v(s"), v (') + py (v(t'),y) < &' + (' =) + (L =) = L,

which contradicts the initial equality py (z,y) = L. The so-obtained contradiction completes the
proof of identity (2.3). a

Remark 2.3. Identity (2.3) means that the curve of Theorem 2.3 is a geodesic in the metric
py , l.e., the length of its fragment between points (s), v(t) calculated in py is equal to
py (7(s),7(t)) =t — s. Nevertheless, if we compute the length of the above-mentioned fragment
of the curve in the initial Riemannian metric then this length need not coincide with ¢ — s;
only the easily verifiable estimate I(7|(s4) < t — s holds (see (2.4)). In the general case, the
equality [(7|s,q) = t — s can only be guaranteed if n = 2 (if n > 3 then the corresponding
counterexample is constructed by analogy with the counterexample in the proof of Theorem 2.2,
see above). In particular, though, by Theorem 2.3, the metric py is always intrinsic in the sense
of the definitions in [11, §6], the space (Y, py) may fail to be a space with intrinsic metric in the
sense of [ibid].

3. Rigidity theorems for the boundaries of submanifolds in
Riemannian manifolds

As in Sec. 2., let (X, g) be an n-dimensional smooth connected Riemannian manifold without
boundary and let px be its intrinsic metric (i.e., let px(x,y) be the infimum of the lengths
1(¥z,y,x) of smooth paths 7, , x : [0,1] = X joining points « and y in a manifold X).

Assume that Y is an n-dimensional compact connected C°-submanifold ¥ C X with
nonempty boundary 0Y satisfying condition (i) in Sec. 2., moreover, py is a metric on Y.
Then Y is called strictly convex in the metric py if, for any a,8 € Y, any shortest path
Y =%,y :[0,1] = Y between o and 8 (in the metric py) satisfies ¥(]0,1[) C IntY".

Theorem 3.1. Let n = 2. Assume that condition (i) holds for a 2-dimensional compact con-
nected C°-submanifold Y1 with nonempty boundary Yy of a 2-dimensional smooth connected
Riemannian manifold X without boundary which is strictly convex in the metric py,. Suppose
that Yo C X is also a 2-dimensional compact connected C°-submanifold of X with 0Ys # &
satisfying (i); moreover, Y1 and 0Ys are isometric in the metrics py,, for j = 1,2. Then, Y5 is
strictly convex with respect to py,.

Proof. Suppose that, for points x,y € Y>, there exists a shortest path v, , v, : [0,1] = Y5 in
the metric py, joining  and y and such that {y; v, (]0,1[)} N OY> # @, ie., &' = Yo v, (t) €
{72,y,v, (0, 1[)NOY>} for a point ¢’ €]0,1[. By Theorem 2.3 and the fact that Y5 is a 2-dimensional
compact connected C°-submanifold in X, for a sufficiently small neighborhood of z’ in Y5, we
can find points xg, yo € JY> and a shortest path 7z, 4.5 : [0,1] — Y2 between zg and yo in the
same metric satisfying the condition 2’ € {7z, .4,.v5 (|0, 1[) N 0Y2}. Further, we will suppose that
x =x9 and y = yo.

Now, assume that f : JY; — 0Y3 is an isometry of 0Y; and 0Y5 in the metrics py, and py, of
the boundaries 9Y; and 0Y5 of the submanifolds Y7 and Y5 of X. From Theorem 2.3, we have

pY2<x,$/) + LY, ($/5y> = l]. + l2 =l= PY2<33ay)-
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Since f is an isometry,

Pyy (f_l(x)v f_l(x/)) + Py (f_l(‘r/)ﬂ f_l(y)) = PY: (:L‘71'/) + Py, ({E/, y)'

Next, consider shortest paths v¢-1(2) -1(2),v; 1 [0,1/2] = Y1 and vy-1(0) f-1(y),v7 : [1/2,1] =
Y; in py, between (respectively) f~!(z) and f~!(2’) and f~!(z') and f~'(y), and then con-
struct a path v : [0,1] — Yj by setting () = Vi-1(a),f1(2)vs () if 0 < ¢ < 1/2 and
= Vf-Ya'),f~1(y),Y1 (t) for 1/2 <t <1 Let lyl (5) be the length of a path 0 : [O, 1] — Y7 in
the metric py,. Since py, is a metric on Y7, it is not difficult to show that

by, (V) vy (V1) 11y va) + Ivi (V120,51 (), v2) = 1+ Lo

Hence + is a shortest path in py, joining f~!(z) and f~!(y) in Y;. This contradicts the strict
convexity of Y7. The theorem is proved. O

Corollary 3.1. Suppose that the conditions of Theorem 3.1 hold and the manifold X has the
following property: px(z,y) = py(x,y) for any two points x and y from every 2-dimensional
compact connected CV-submanifold Y C X with Y # @ satisfying condition (i) and strictly
convex with respect to the metric py. Then, 0Y1 and 0Ys are isometric in the metric px on the
ambient manifold X .

Remark 3.1. The condition imposed on the manifold X in Corollary 3.1 can be reformulated
as follows: in this manifold, every 2-dimensional compact connected C°-submanifold Y with
boundary satisfying condition (i) and strictly convex with respect to its intrinsic metric py is a
convex set in the ambient space X with respect to the metric px (for the notion of a convex set
in a metric space the reader is referred, for example, to [11]).

We have the following analog of Theorem 3.1 and Corollary 3.1 (combined together) for n > 3:

Theorem 3.2. Let n > 3. Suppose that (X,g) is an n-dimensional smooth connected Rie-
mannian manifold without boundary and Y, and Yo are n-dimensional compact connected C°-
submanifolds with nonempty boundaries 9Y; and 8Ys in X satisfying conditions (i),

(ii) py; is a metric on Y; (j =1,2),
and

(ili) for any two points a,b € Y;, there exist points c,d € 9Y; which can be joined in Y; by
a shortest path v : [0,1] = Y} in the metric py, so that a,b € ([0, 1]).

Furthermore, assume that Yy is strictly convex in the metric py,, X has the additional prop-
erty that px(z,y) = py(z,y) for any two points x and y in every n-dimensional compact con-
nected C°-submanifold Y C X with 0Y # @ satisfying conditions (i)—(iii) and strictly convex
with respect to py and the boundaries Y1 and 0Ys of the submanifolds Y1 and Yy are isometric
with respect to the metrics py,, where j = 1,2. Then, 0Y1 and 0Ya are isometric with respect
to px.

Remark 3.2. For a submanifold Y in X, (i) and (ii) can be considered as conditions of gener-
alized regularity near its boundary.

Remark 3.3. Theorem 3.1, Corollary 3.1, and Theorem 3.2 are closely related to a theorem
of A.D. Aleksandrov about the rigidity of the boundary QU of a strictly convex domain U in
Euclidean n-space R™ by the relative metric pgy,y on the boundary. The following is an important
particular case of this theorem:

Theorem 3.3 (A.D. Aleksandrov ( [6])). Let Uy be a strictly convex domain in R™ (i.e., for
any o, € clUy every shortest path v = o 8,av; : [0,1] — clUy between o and B (in the metric
pau,) satisfies v(]0,1[) C Uy). Assume that Uz C R™ is any domain whose closure is a Lipschitz
manifold (such that d(clUs) = U, # &); moreover, Uy and OUs are isometric in their relative
metrics pau,,u, and pau,,u,- LThen OUy and OUsy are isometric in the Euclidean metric.
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We say that an n-dimensional compact (closed) connected C°-submanifold Y with boundary
dY # @ of an n-dimensional smooth connected (respectively, n-dimensional smooth complete
connected) Riemannian manifold X without boundary has property (o) if v, v (]0,1]) C IntY
for any two points z,y € 0Y and for every shortest path v, , vy : [0,1] — Y in the metric py
joining these points.

Theorem 3.4. Let n = 2. Suppose that (i) holds for a 2-dimensional compact connected C°-
submanifold Y1 with boundary 0Y, # @ in a 2-dimensional smooth connected Riemannian mani-
fold X without boundary; moreover, Y1 has property (o). Assume that Yo C X is a 2-dimensional
compact connected CO-submanifold with 0Ys # @ in X and 8Y1 and 0Ys are isometric in the
metrics py, (j =1,2). Then 0Ys also has property (o).

This theorem has the following generalization.

Theorem 3.5. Let n = 2. Suppose that (i) holds for a 2-dimensional closed connected C°-
submanifold Y1 with boundary 0Y1 (# @) in a 2-dimensional smooth complete connected Rie-
mannian manifold X without boundary satisfying (o). Assume that Yo C X is a 2-dimensional
closed connected C°-submanifold with 0Ys # @ in X; moreover, 0Y1 and 0Ys are isometric in
the metrics py, (j = 1,2). Then Ys has the property (o) as well.

Corollary 3.2 (of Theorem 3.4). Assume that the hypothesis of Theorem 3.4 hold and that
the manifold X has the following property: px(xz,y) = py(x,y) for any two points x and y
on the boundary OY of every 2-dimensional compact connected C°-submanifold Y C X with
Y # & satisfying (1) and (o). Then 91 and 0Ys are isometric in the metric px of the ambient
manifold X .

Corollary 3.3 (of Theorem 3.5). Assume that the hypothesis of Theorem 3.5 hold and that the
manifold X has the following property: px(x,y) = py(x,y) for any two points x and y on the
boundary Y of every 2-dimensional closed connected C°-submanifold Y C X with 0Y # @
satisfying (1) and (o). Then 0Y1 and 0Y3 are isometric with respect to px.

Theorem 3.6. Let n > 3. Suppose that (X,g) is an n-dimensional smooth connected Rie-
mannian manifold whithout boundary and Yy and Yy are n-dimensional compact connected C°-
submanifolds with nonempty boundaries 0Y1 and 0Y2 in X satisfying conditions (i) and (ii)
(in Theorem 3.2). Assume that Y7 has property (o) and X satisfies the following condition:
px(z,y) = py(z,y) for any two points © and y on the boundary OY of every n-dimensional
compact connected C°-submanifold Y C X with Y # @ satisfying (i), (ii), and (o). Suppose
also that Y1 and 9Yy are isometric in the metrics py;, where j = 1,2. Then Y1 and 9Y> are
1sometric in px.

Theorem 3.7. Let n > 3. Suppose that (X, g) is an n-dimensional smooth complete connected
Riemannian manifold without boundary and Y, and Ys are n-dimensional closed connected C°-
submanifolds with nonempty boundaries 0Y1 and 0Ys in X satisfying (i) and (ii). Assume that
Y1 has property (o) and X satisfies the following condition: px(x,y) = py(x,y) for any two
points x and y on the boundary OY of every n-dimensional closed connected C-submanifold Y
with 0Y # @ in X satisfying (1), (ii), and (o). Suppose also that 0Y, and OYs are isometric in
the metrics py, (j =1,2). Then 0Y1 and 0Y> are isometric in px .

Proofs of Theorems 3.2 and 3.4-3.7 are similar to the proof of Theorem 3.1 (Theorems 3.2
and 3.4-3.7 can be proved using the corresponding analogs of Theorems 2.1 and 2.3).

In conclusion, note that main results of our article were earlier announced in [1] and [2].

The authors were partially supported by the RFBR for, grants 14-01-00768-a and 15-01-
08275-a.
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OO0 ycJy10BUS YKECTKOCTU T'PAaHUIL IIOJIMHOTroo0pa3mii
PUMaHOBOTO MHOTO0OOpa3us

Amnarosuii I1. Konbuios
Muxana B. KopobkoB

Wucruryr maremarukn uMm. C.JI. Cobomesa CO PAH
np. ak. Kontiora, 4, Hosocubupck, 630090
ITuporosa, 2, HoBocubupck, 630090

Poccus

B npouecce pazsumusa udeti axademura A.[/[. Arexcandposa nepsvim asmopom 6via npedsostcer caedy-
1wt nodxrod K udyueruro npobaem srcecmrocmu 0aa xkpaée C°-nodmrozoobpasuti 8 HEKOMOPOM 2400-
KoM PUMAHOB0M MH02000pasuu. ITycms Y1 npedcmasasem coboti dsymeproe komnarmuoe ceasnoe C°-
N0OMH02000pa3UE C HENYCMBIM KDAEM 6 HEKOMOPOM 2400KOM O08YMEPHOM PUMAHOBOM MHO2000PA3UU
(X, g) 6es xpaa. Paccmompum 6HYymMpenHiot mMempury (undumym osur nymed, coeOuRAOUUT OGHHYIO
napy movex) enymperrnocmu Int Y1 mnozoobpasua Y1 u npodoascum ee no nenpepuerocmu (onepayuet
lim ) na xpaeswie mouxu OY1. B nacmoawel cmamve paccmampueaemcs 60npoc 0 HCECTVKOCTIU, M.e.
Koeda ykasannas mempuka onpedeasem OY1 ¢ MOYHOCMBIO 00 USOMEMPUL 6 00BEMAIOUWEM TPOCTIPAH-
cmee (X, g). Paccmampusaemes maxorce caywati dimY; =dim X =n, n > 2.

Karouesvie cao6a: pumaroso mnozo000pasue, HYMPEHHAL MEMPUKA, UHOYUUPOBAHHAA MEMPUKE HA KPae,
CMPO2AA BHINYKAOCTND MHO2000pA3UA, 2600€3UMECKUE, YCAOBUSA IHCECTVKOCTIU.
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