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Developing A.D. Aleksandrov’s ideas, the first author proposed the following approach to study of rigid-
ity problems for the boundary of a C0-submanifold in a smooth Riemannian manifold. Let Y1 be a
two-dimensional compact connected C0-submanifold with non-empty boundary in some smooth two-
dimensional Riemannian manifold (X, g) without boundary. Let us consider the intrinsic metric (the
infimum of the lengths of paths, connecting a pair of points".) of the interior IntY1 of Y1, and extend it
by continuity (operation lim ) to the boundary points of ∂Y1. In this paper the rigidity conditions are
studied, i.e., when the constructed limiting metric defines ∂Y1 up to isometry of ambient space (X, g).
We also consider the case dimYj = dimX = n, n > 2.
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1. Introduction: unique determination of surfaces by their
relative metrics on boundaries

A classical theorem says (see [3]): If two bounded closed convex surfaces in the three-
dimensional Euclidean space are isometric in their intrinsic metrics then they are equal, i.e.,
they can be matched by a motion.

The problems of unique determination of closed convex surfaces by their intrinsic metrics
goes back to the result of Cauchy, obtained already in 1813, that any closed convex polyhedrons
P1 and P2 (in the three-dimensional Euclidean space) that are equally composed of congruent
faces are equal. Since then this problem has been studied by many people for about 140 years
(for example, by Minkowski, Hilbert, Weyl, Blaschke, Cohn-Vossen, Aleksandrov, Pogorelov and
other prominent mathematicians (see, for instance, the historical overview in [3], Chapter 3);
finally, its complete solution, which is just the theorem we have cited at the beginning, was
obtained by A. V.Pogorelov. For generalizations of Pogorelov’s result to higher dimensions,
see [4].

In [5], we proposed a new approach to the problem of unique determination of surfaces, which
enabled us to substantially enlarge the framework of the problem. The following model situation
illustrates the essence of this approach fairly well:
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Let U1 and U2 be two domains (i.e., open connected sets) in the real n-dimensional Euclidean
space Rn whose closures clUj , where j = 1, 2, are Lipschitz manifolds (such that ∂(clUj) =
∂Uj ̸= ∅, where ∂E is the boundary of E in Rn). Assume also that the boundaries ∂U1 and
∂U2 of these domains, which coincide with the boundaries of the manifolds clU1 and clU2, are
isometric with respect to their relative metrics ρ∂Uj ,Uj (j = 1, 2), i.e., with respect to the metrics
that are the restrictions to the boundaries ∂Uj of the extensions ρclUj (by continuity) of the
intrinsic metrics ρUj of the domains Uj to clUj . The following natural question arises: Under
which additional conditions are the domains U1 and U2 themselves isometric (in the Euclidean
metric)? In particular, the natural character of this problem is determined by the circumstance
that the problem of unique determination of closed convex surfaces mentioned at the beginning
of the article is its most important particular case. Indeed, assume that S1 and S2 are two closed
convex surfaces in R3, i.e., they are the boundaries of two bounded convex domains G1 ⊂ R3

and G2 ⊂ R3. Let Uj = R3 \ clGj be the complement of the closure clGj of the domain Gj ,
j = 1, 2. Then the intrinsic metrics on the surfaces S1 = ∂U1 and S2 = ∂U2 coincide with the
relative metrics ρ∂U1,U1 and ρ∂U2,U2 on the boundaries of the domains U1 and U2, and thus the
problem of unique determination of closed convex surfaces by their intrinsic metrics is indeed
a particular case of the problem of unique determination of domains by the relative metrics on
their boundaries.

The generalization of the problem of the unique determination of surfaces ensuing from a new
approach suggested in [5] manifests itself in the fact that the unique determination of domains
by the relative metrics on their boundaries holds not only when their complements are bounded
convex sets but, for example, also in the following cases.

The domain U1 is bounded and convex and the domain U2 is arbitrary (A. P.Kopylov [5]).
The domain U1 is strictly convex and the domain U2 is arbitrary (A. D.Aleksandrov (see [6])).
The domains U1, U2 are bounded and their boundaries are smooth (V.A. Aleksandrov [6]).
The domains U1 and U2 have nonempty bounded complements, while their boundaries are

(n− 1)-dimensional connected C1-manifolds without boundary, n > 2 (V.A.Aleksandrov [7]).
In the papers [8–10], M. V.Korobkov (in particular) obtained a complete solution to the

problem of unique determination of a plane (space) domain in the class of all plane (space)
domains by the relative metric on its boundary.

In this connection, there appears the following question: Is it possible to construct an analog
of the theory of rigidity of surfaces in Euclidean spaces in the general case of the boundaries of
submanifolds in Riemannian manifolds?

Our article is devoted to a detailed discussion of this question. In it, we in particular ob-
tain new results concerning rigidity problems for the boundaries of n-dimensional connected
submanifolds with boundary in n-dimensional smooth connected Riemannian manifolds without
boundary (n > 2).

In what follows, all paths γ : [α, β] → Rn, where α, β ∈ R, are assumed continuous and
non-constant, and l(γ) means the length of a path γ.

2. Rigidity problems and intrinsic geometry of submanifolds
in riemannian manifolds

Let (X, g) be an n-dimensional smooth connected Riemannian manifold without boundary
and let Y be an n-dimensional compact connected C0-submanifold inX with nonempty boundary
∂Y (n > 2).

A classical object of investigations (see, for example, [11]) is given by the intrinsic metric
ρ∂Y on the hypersurface ∂Y defined for x, y ∈ ∂Y as the infimum of the lengths of curves ν ⊂ ∂Y
joining x and y. In the recent decades, an alternative approach arose in the rigidity theory for
submanifolds of Riemannian manifolds (see, for instance, the recent articles [1,10], and [2], which
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also contain a historical survey of works on the topic). In accordance with this approach, the
metric on ∂Y is induced by the intrinsic metric of the interior IntY of the submanifold Y .

Namely, suppose that Y satisfies the following condition:
(i) if x, y ∈ Y , then

ρY (x, y) = lim inf
x′→x,y′→y;x′,y′∈IntY

{inf[l(γx′,y′,IntY )]} <∞, (2.1)

where inf[l(γx′,y′,IntY )] is the infimum of the lengths l(γx′,y′,IntY ) of smooth paths γx′,y′,IntY :
[0, 1] → IntY joining x′ and y′ in the interior IntY of Y.
Remark 2.1. Easy examples show that if X is an n-dimensional connected smooth Riemannian
manifold without boundary then an n-dimensional compact connected C0-submanifold in X
with nonempty boundary may fail to satisfy condition (i). For n = 2, we have the following
counterexample:

Let (X, g) be the space R2 equipped with the Euclidean metric and let Y be a closed Jordan
domain in R2 whose boundary is the union of the singleton {0} consisting of the origin 0, the
segment {(1 − t)(e1 + 2e2) + t(e1 + e2) : 0 6 t 6 1}, and of the segments of the following four
types: {

(1− t)(e1 + e2)

n
+

te1
n+ 1

: 0 6 t 6 1

}
(n = 1, 2, . . . );{

e1 + (1− t)e2
n

: 0 6 t 6 1

}
(n = 2, 3, . . . );{

(1− t)(e1 + 2e2)

n
+

2t(2e1 + e2)

4n+ 3
: 0 6 t 6 1

}
(n = 1, 2, . . . );{

(1− t)(e1 + 2e2)

n+ 1
+

2t(2e1 + e2)

4n+ 3
: 0 6 t 6 1

}
(n = 1, 2, . . . ).

Here e1, e2 is the canonical basis in R2. By the construction of Y , we have ρY (0, E) = ∞ for
every E ∈ Y \ {0} (see Fig. 1).
Remark 2.2. Note that if X = Rn and U is a domain in Rn whose closure Y = clU is a
Lipschitz manifold (such that ∂(clU) = ∂U ̸= ∅), then ρ∂U,U (x, y) = ρY (x, y) (x, y ∈ ∂U) and
Y satisfies (i). Hence, this example is an important particular case of submanifolds Y in a
Riemannian manifold X satisfying (i).

To prove our rigidity results for boundaries of submanifolds in a Riemannian manifold (see
Sec. 3.), we first need to study the properties of the intrinsic geometry of these submanifolds.

One of the main results of this section is as follows:

Theorem 2.1. Let n = 2. Then, under condition (i), the function ρY defined by (2.1) is a
metric on Y .

Proof. It suffices to prove that ρY satisfies the triangle inequality. Let A, O, and D be
three points on the boundary of Y (note that this case is basic because the other cases are
simpler). Consider ε > 0 and assume that γAεO1

ε
: [0, 1] → IntY and γO2

εDε
: [2, 3] → IntY

are smooth paths with the endpoints Aε = γAεO1
ε
(0), O1

ε = γAεO1
ε
(1) and Dε = γO2

εDε
(3),

O2
ε = γO2

εDε
(2) satisfying the conditions ρX(Aε, A) 6 ε, ρX(Dε, D) 6 ε, ρX(Ojε, O) 6 ε (j =

1; 2), |l(γAεO1
ε
) − ρY (A,O)| 6 ε, and |l(γO2

εDε
) − ρY (O,D)| 6 ε. Let (U, h) be a chart of the

manifold X such that U is an open neighborhood of the point O in X, h(U) is the unit disk
B(0, 1) = {(x1, x2) ∈ R2 : x21 + x22 < 1} in R2, and h(O) = 0 (0 = (0, 0) is the origin in R2);
moreover h : U → h(U) is a diffeomorphism having the following property: there exists a chart
(Z,ψ) of Y with ψ(O) = 0, A,D ∈ U \ clX Z (clX Z is the closure of Z in the space (X, g))
and Z = Ũ ∩ Y is the intersection of an open neighborhood Ũ (⊂ U) of O in X and Y whose
image ψ(Z) under ψ is the half-disk B+(0, 1) = {(x1, x2) ∈ B(0, 1) : x1 > 0}. Suppose that σr
is an arc of the circle ∂B(0, r) which is a connected component of the set V ∩ ∂B(0, r), where
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Fig. 1. An example of 2-dimensional compact connected C0-submanifold with nonempty bound-
ary which does not satisfy condition (i)

V = h(Z) and 0 < r < r∗ = min{|h(ψ−1(x1, x2))| : x21 + x22 = 1/4, x1 > 0}. Among these
components, there is at least one (preserve the notation σr for it) whose ends belong to the sets
h(ψ−1({−te2 : 0 < t < 1})) and h(ψ−1({te2 : 0 < t < 1})) respectively. Otherwise, the closure
of the connected component of the set V ∩ B(0, r) whose boundary contains the origin would
contain a point belonging to the arc {eiθ/2 : |θ| 6 π/2} (here we make use of the complex notation
z = reiθ for points z ∈ R2 (= C)). But this is impossible. Therefore, the above-mentioned arc
σr exists.

It is easy to check that if ε is sufficiently small then the images of the paths h ◦ γAεO1
ε

and
h◦γO2

εDε
also intersect the arc σr, i.e., there are t1 ∈]0, 1[, t2 ∈]2, 3[ such that γAεO1

ε
(t1) = x1 ∈ Z,

γO2
εDε

(t2) = x2 ∈ Z and h(xj) ∈ σr, j = 1, 2. Let γr : [t1, t2] → σr be a smooth parametrization
of the corresponding subarc of σr, i.e., γr(tj) = h(xj), j = 1, 2. Now we can define a mapping
γ̃ε : [0, 3] → IntY by setting

γ̃ε(t) =


γAεO1

ε
(t), t ∈ [0, t1];

h−1(γr(t)), t ∈]t1, t2[;
γO2

εDε
(t), t ∈ [t2, 3].

By construction, γ̃ε is a piecewise smooth path joining the points Aε = γ̃ε(0), Dε = γ̃ε(3) in
IntY ; moreover,

l(γ̃ε) 6 l(γAεO1
ε
) + l(γO2

εDε
) + l(h−1(σr)).

By an appropriate choice of ε > 0, we can make r > 0 arbitrarily small, and since a piecewise
smooth path can be approximated by smooth paths, we have ρY (A,D) 6 ρY (A,O) + ρY (O,D).

2
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In connection with Theorem 2.1, there appears a natural question: Are there analogs of this
theorem for n > 3? The following Theorem 2.2 answers this question in the negative:

Theorem 2.2. If n > 3 then there exists an n-dimensional compact connected C0-manifold
Y ⊂ Rn with nonempty boundary ∂Y such that condition (i) (where now X = Rn) is fulfilled for
Y but the function ρY in this condition is not a metric on Y .

Proof. It suffices to consider the case of n = 3. Suppose that A, O, D are points in R3, O is
the origin in R3, |A| = |D| = 1, and the angle between the segments OA and OD is equal to

π

6
.

The manifold Y will be constructed so that O ∈ ∂Y , and ]O,A] ⊂ IntY , ]O,D] ⊂ IntY .
Under these conditions, ρY (O,A) = ρY (O,D) = 1. However, the boundary of Y will create
“obstacles” between A and D such that the length of any curve joining A and D in IntY will be

greater than
12

5
(this means the violation of the triangle inequality for ρY ).

Consider a countable collection of mutually disjoint segments {Ikj }j∈N, k=1,...,kj lying in the
interior of the triangle 6∆AOD (which is obtained from the original triangle ∆AOD by dilation
with coefficient 6) with the following properties:

(∗) every segment Ikj = [xkj , y
k
j ] lies on a ray starting at the origin, ykj = 11xkj , and |xkj | = 2−j ;

(∗∗) any curve γ with ends A, D whose interior points lie in the interior of the triangle
4∆AOD and belong to no segment Ikj , satisfies the estimate l(γ) > 6.

The existence of such a family of segments is certain: the segments of the family must be
situated chequerwise so that any curve disjoint from them be sawtooth, with the total length of
its “teeth” greater than 6 (it can clearly be made greater than any prescribed positive number).
However, below we exactly describe the construction.

It is easy to include the above-indicated family of segments in the boundary ∂Y of Y . Thus, it
creates a desired “obstacle” to joining A and D in the plane of ∆AOD. But it makes no obstacle
to joining A and D in the space. The simplest way to create such a space obstacle is as follows:
Rotate each segment Ikj along a spiral around the axis OA. Make the number of coils so large
that the length of this spiral be large and its pitch (i.e., the distance between the origin and the
end of a coil) be sufficiently small. Then the set Skj obtained as the result of the rotation of the
segment Ikj is diffeomorphic to a plane rectangle, and it lies in a small neighborhood of the cone
of revolution with axis AO containing the segment Ikj . The last circumstance guarantees that
the sets Skj are disjoint as before, and so (as above) it is easy to include them in the boundary
∂Y but, due to the properties of the Ikj ’s and a large number of coils of the spirals Skj , any curve

joining A,D and disjoint from each Skj has length > 12

5
.

We turn to an exact description of the constructions used. First describe the construction of
the family of segments Ikj . They are chosen on the basis of the following observation:

Let γ : [0, 1]→ 4∆AOD be any curve with ends γ(0)=A, γ(1)=D whose interior points lie in
the interior of the triangle 4∆AOD. For j ∈ N, put Rj =

{
x∈4∆AOD : |x| ∈ [8 · 2−j , 4 · 2−j ]

}
.

It is clear that
4∆AOD \ {O} = ∪j∈NRj .

Introduce the polar system of coordinates on the plane of the triangle ∆AOD with center O such
that the coordinates of the points A,D are r = 1, φ = 0 and r = 1, φ =

π

6
, respectively. Given a

point x ∈ 6∆AOD, let φx be the angular coordinate of x in
[
0, π6

]
. Let Φj = {φγ(t) : γ(t) ∈ Rj}.

Obviously, there is j0 ∈ N such that

H1(Φj0) > 2−j0
π

6
, (2.2)

where H1 is the Hausdorff 1-measure. This means that, while in the layer Rj0 , the curve γ covers
the angular distance > 2−j0

π

6
. The segments Ikj must be chosen such that (2.2) together with
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the condition
γ(t) ∩ Ikj = ∅ ∀t ∈ [0, 1], ∀j ∈ N, ∀k ∈ {1, . . . , kj}

give the desired estimate l(γ) > 6. To this end, it suffices to take kj = [(2π)j ] (the integral part
of (2π)j) and

Ikj =
{
x ∈ 6∆AOD : φx = k(2π)−j

π

6
, |x| ∈ [11 · 2−j , 2−j ]

}
,

k = 1, . . . , kj . Indeed, under this choice of the Ikj ’s, estimate (2.2) implies that γ must intersect
at least (2π)j02−j0 = πj0 > 3j0 of the figures

Uk =
{
x ∈ Rj0 : φx ∈

(
k(2π)−j0

π

6
, (k + 1)(2π)−j0

π

6

)}
.

Since these figures are separated by the segments Ikj0 in the layer Rj0 , the curve γ must be disjoint
from them each time in passing from one figure to another. The number of these passages must
be at least 3j0 − 1, and a fragment of γ of length at least 2 · 3 · 2−j0 is required for each passage
(because the ends of the segments Ikj0 go beyond the boundary of the layer Rj0 containing the
figures Uk at distance 3 · 2−j0). Thus, for all these passages, a section of γ is spent of length at
least

6 · 2−j0(3j0 − 1) > 6.

Hence, the construction of the segments Ikj satisfying (∗)–(∗∗) is finished.
Let us now describe the construction of the above-mentioned space spirals.
For x ∈ R3, denote by Πx the plane that passes through x and is perpendicular to the segment

OA. On Πxk
j
, consider the polar coordinates (ρ, ψ) with origin at the point of intersection of Πxk

j

and [O,A] (in this system, the point xkj has coordinates ρ = ρkj , ψ = 0). Suppose that a point
x(ψ) ∈ Πxk

j
moves along an Archimedean spiral, namely, the polar coordinates of the point x(ψ)

are ρ(ψ) = ρkj − εjψ, ψ ∈ [0, 2πMj ], where εj is a small parameter to be specified below, and
Mj ∈ N is chosen so large that the length of any curve passing between all coils of the spiral is
at least 10.

Describe the choice of Mj more exactly. To this end, consider the points x(2π), x(2π(Mj−1)),
x(2πMj), which are the ends of the first, penultimate, and last coils of the spiral respectively
(with x(0) = xkj taken as the starting point of the spiral). Then Mj is chosen so large that the
following condition hold:

(∗1) The length of any curve on the plane Πxk
j
, joining the segments [xkj , x(2π)] and

[x(2π(Mj − 1)), x(2πMj)] and disjoint from the spiral {x(ψ) : ψ ∈ [0, 2πMj ]}, is at least 10.
Figuratively speaking, the constructed spiral bounds a “labyrinth”, the mentioned segments

are the entrance to and the exit from this labyrinth, and thus any path through the labyrinth
has length > 10.

Now, start rotating the entire segment Ikj in space along the above-mentioned spiral, i.e.,
assume that Ikj (ψ) = {y = λx(ψ) : λ ∈ [1, 11]}. Thus, the segment Ikj (ψ) lies on the ray joining
O with x(ψ) and has the same length as the original segment Ikj = Ikj (0). Define the surface
Skj = ∪ψ∈[0,2πMj ]I

k
j (ψ). This surface is diffeomorphic to a plane rectangle (strip). Taking εj > 0

sufficiently small, we may assume without loss of generality that 2πMjεj is substantially less
than ρkj ; moreover, that the surfaces Skj are mutually disjoint (obviously, the smallness of εj does
not affect property (∗1) which in fact depends on Mj).

Denote by y(ψ) = 11x(ψ) the second end of the segment Ikj (ψ). Consider the trapezium P kj
with vertices ykj , xkj , x(2πMj), y(2πMj) and sides Ikj , Ikj (2πMj), [xkj , x(2πMj)], and [ykj , y(2πMj)]
(the last two sides are parallel since they are perpendicular to the segment AO). By construction,
P kj lies on the plane AOD; moreover, taking εj sufficiently small, we can obtain the situation
where the trapeziums P kj are mutually disjoint (since P kj → Ikj under fixed Mj and εj → 0).
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Take an arbitrary triangle whose vertices lie on P kj and such that one of these vertices is also a

vertex at an acute angle in P kj . By construction, this acute angle is at least
π

2
− ∠AOD =

π

3
.

Therefore, the ratio of the side of the triangle lying inside the trapezium P kj to the sum of the

other two sides (lying on the corresponding sides of P kj ) is at least
1

2
sin

π

3
>

2

5
. If we consider

the same ratio for the case of a triangle with a vertex at an obtuse angle of P kj then it is greater

than
1

2
. Thus, we have the following property:

(∗2) For arbitrary triangle whose vertices lie on the trapezium P kj and one of these vertices
is also a vertex in P kj , the sum of lengths of the sides situated on the corresponding sides of P kj
is less than

5

2
of the length of the third side (lying inside P kj ).

Let a point x lie inside the cone K formed by the rotation of the angle ∠AOD around the ray
OA. Denote by Projrotx the point of the angle ∠AOD which is the image of x under this rotation.
Finally, let K4∆AOD stand for the corresponding truncated cone obtained by the rotation of the
triangle 4∆AOD, i.e., K4∆AOD = {x ∈ K : Projrotx ∈ 4∆AOD}.

The key ingredient in the proof of our theorem is the following assertion:
(∗3) For arbitrary space curve γ of length less than 10 joining the points A and D, contained

in the truncated cone K4∆AOD \ {O}, and disjoint from each strip Skj , there exists a plane curve
γ̃ contained in the triangle 4∆AOD \ {O}, that joins A and D, is disjoint from all segments Ikj
and such that the length of γ̃ is less than

5

2
of the length of Projrotγ.

Prove (∗3). Suppose that its hypotheses are fulfilled. In particular, assume that the inclusion
Projrotγ ⊂ 4∆AOD\{O} holds. We need to modify Projrotγ so that the new curve be contained
in the same set but be disjoint from each of the Ikj ’s. The construction splits into several steps.

Step 1. If Projrotγ intersects a segment Ikj then it necessarily intersects also at least one of
the shorter sides of P kj .

Recall that, by construction, P kj = ProjrotS
k
j ; moreover, γ intersects no spiral strip Skj . If

Projrotγ intersected P kj without intersecting its shorter sides then γ would pass through all coils
of the corresponding spiral. Then, by (∗1), the length of the corresponding fragment of γ would
be > 10 in contradiction to our assumptions. Thus, the assertion of step 1 is proved.

Step 2. Denote by γPk
j

the fragment of the plane curve Projrotγ beginning at the first point
of its entrance into the trapezium P kj to the point of its exit from P kj (i.e., to its last intersection
point with P kj ). Then this fragment γPk

j
can be deformed without changing the first and the last

points so that the corresponding fragment of the new curve lie entirely on the union of the sides

of P kj ; moreover, its length is less than
5

2
of the length of γPk

j
.

The assertion of step 2 immediately follows from the assertions of step 1 and (∗2).
The assertion of step 2 in turn directly implies the desired assertion (∗3). The proof of (∗3)

is finished.
Now, we are ready to pass to the final part of the proof of Theorem 2.2.
(∗4) The length of any space curve γ ⊂ R3 \ {O} joining A and D and disjoint from each

strip Skj is at least
12

5
.

Prove the last assertion. Without loss of generality, we may also assume that all interior points
of γ are inside the cone K (otherwise the initial curve can be modified without any increase of
its length so that assumptions of (∗4) are still fulfilled and the modified curve lies in K). If γ is
not included in the truncated cone K4∆AOD \{O} then Projrotγ intersects the segment [4A, 4D];
consequently, the length of γ is at least 2(4 sin∠OAD − 1) = 2

(
4 sin

π

3
− 1

)
= 2

(
2
√
3− 1

)
> 4,

and the desired estimate is fulfilled. Similarly, if the length of γ is at least 10 then the desired
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estimate is fulfilled automatically, and there is nothing to prove. Hence, we may further assume
without loss of generality that γ is included in the truncated cone K4∆AOD \ {O} and its length
is less than 10. Then, by (∗3), there is a plane curve γ̃ contained in the triangle 4∆AOD \ {O},
joining the points A and D, disjoint from each segment Ikj , and such that the length of γ̃ is at

most
5

2
of the length of Projrotγ. By property (∗∗) of the family of segments Ikj , the length of

γ̃ is at least 6. Consequently, the length of Projrotγ is at least
12

5
, which implies the desired

estimate. Assertion (∗4) is proved.
The just-proven property (∗4) of the constructed objects implies Theorem 2.2. Indeed, since

the strips Skj are mutually disjoint and, outside every neighborhood of the origin O, there are only
finitely many of these strips, it is easy to construct a C0-manifold Y ⊂ R3 that is homeomorphic
to a closed ball (i.e., ∂Y is homeomorphic to a two-dimensional sphere) and has the following
properties:

(I) O ∈ ∂Y , [A,O[∪[D,O[⊂ IntY ;
(II) for every point y ∈ (∂Y ) \ {O}, there exists a neighborhood U(y) such that U(y)∩ ∂Y is

C1-diffeomorphic to the plane square [0, 1]2;
(III) Skj ⊂ ∂Y for all j ∈ N, k = 1, . . . , kj .
The construction of Y with properties (I)–(III) can be carried out, for example, as follows:

As the surface of the zeroth step, take a sphere containing O and such that A and D are inside
the sphere. At the jth step, a small neighborhood of the point O of our surface is smoothly
deformed so that the modified surface is still smooth, homeomorphic to a sphere, and contains
all strips Skj , k = 1, . . . , kj . Besides, we make sure that, at the each step, the so-obtained surface
be disjoint from the half-intervals [A,O[ and [D,O[, and, as above, contain all strips Ski , i 6 j,
already included therein. Since the neighborhood we are deforming contracts to the point O as
j → ∞, the so-constructed sequence of surfaces converges (for example, in the Hausdorff metric)
to a limit surface which is the boundary of a C0-manifold Y with properties (I)–(III).

Property (I) guarantees that ρY (A,O) = ρY (A,D) = 1 and ρY (O, x) 6 1 + ρY (A, x) for all
x ∈ Y . Property (II) implies the estimate ρY (x, y) < ∞ for all x, y ∈ Y \ {O}, which, granted
the previous estimate, yields ρY (x, y) < ∞ for all x, y ∈ Y . However, property (III) and the

assertion (∗4) imply that ρY (A,D) > 12

5
> 2 = ρY (A,O)+ ρY (A,D). Theorem 2.2 is proved. 2

If ρY is a metric (the dimension n (> 2) is arbitrary) then the question of the existence of
geodesics is solved in the following assertion, which implies that ρY is the intrinsic metric (see,
for example, §6 in [11]).

Theorem 2.3. Assume that ρY is a finite function and is a metric on Y . Then any two points
x, y ∈ Y can be joined in Y by a shortest curve γ : [0, L] → Y in the metric ρY ; i.e., γ(0) = x,
γ(L) = y, and

ρY (γ(s), γ(t)) = t− s, ∀s, t ∈ [0, L], s < t. (2.3)

Proof. Fix a pair of distinct points x, y ∈ Y and put L = ρY (x, y). Now, take a sequence of
paths γj : [0, L] → IntY such that γj(0) = xj , γj(L) = yj , xj → x, yj → y, and l(γj) → L as
j → ∞. Without loss of generality, we may also assume that the parametrizations of the curves
γj are their natural parametrizations up to a factor (tending to 1) and the mappings γj converge
uniformly to a mapping γ : [0, L] → Y with γ(0) = x, γ(L) = y. By these assumptions,

lim
j→∞

l(γj |[s,t]) = t− s ∀s, t ∈ [0, L], s < t. (2.4)

Take an arbitrary pair of numbers s, t ∈ [0, L], s < t. By construction, we have the conver-
gence γj(s) ∈ IntY → γ(s), γj(t) ∈ IntY → γ(t) as j → ∞. From here and the definition of the
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metric ρY (·, ·) it follows that ρY (γ(s), γ(t)) 6 limj→∞ l(γj |[s,t]). By (2.4),

ρY (γ(s), γ(t)) 6 t− s ∀s, t ∈ [0, L], s < t. (2.5)

Prove that (2.5) is indeed an equality. Assume that ρY (γ(s′), γ(t′)) < t′−s′ for some s′, t′ ∈ [0, L],
s′ < t′. Then, applying the triangle inequality and then (2.5), we infer

ρY (x, y) 6 ρY (x, γ(s
′)) + ρY (γ(s

′), γ(t′)) + ρY (γ(t
′), y) < s′ + (t′ − s′) + (L− t′) = L,

which contradicts the initial equality ρY (x, y) = L. The so-obtained contradiction completes the
proof of identity (2.3). 2

Remark 2.3. Identity (2.3) means that the curve of Theorem 2.3 is a geodesic in the metric
ρY , i.e., the length of its fragment between points γ(s), γ(t) calculated in ρY is equal to
ρY (γ(s), γ(t)) = t− s. Nevertheless, if we compute the length of the above-mentioned fragment
of the curve in the initial Riemannian metric then this length need not coincide with t − s;
only the easily verifiable estimate l(γ|[s,t]) 6 t − s holds (see (2.4) ). In the general case, the
equality l(γ|[s,t]) = t − s can only be guaranteed if n = 2 (if n > 3 then the corresponding
counterexample is constructed by analogy with the counterexample in the proof of Theorem 2.2,
see above). In particular, though, by Theorem 2.3, the metric ρY is always intrinsic in the sense
of the definitions in [11, §6], the space (Y, ρY ) may fail to be a space with intrinsic metric in the
sense of [ibid].

3. Rigidity theorems for the boundaries of submanifolds in
Riemannian manifolds

As in Sec. 2., let (X, g) be an n-dimensional smooth connected Riemannian manifold without
boundary and let ρX be its intrinsic metric (i.e., let ρX(x, y) be the infimum of the lengths
l(γx,y,X) of smooth paths γx,y,X : [0, 1] → X joining points x and y in a manifold X).

Assume that Y is an n-dimensional compact connected C0-submanifold Y ⊂ X with
nonempty boundary ∂Y satisfying condition (i) in Sec. 2., moreover, ρY is a metric on Y .
Then Y is called strictly convex in the metric ρY if, for any α, β ∈ Y , any shortest path
γ = γα,β,Y : [0, 1] → Y between α and β (in the metric ρY ) satisfies γ(]0, 1[) ⊂ IntY .

Theorem 3.1. Let n = 2. Assume that condition (i) holds for a 2-dimensional compact con-
nected C0-submanifold Y1 with nonempty boundary ∂Y1 of a 2-dimensional smooth connected
Riemannian manifold X without boundary which is strictly convex in the metric ρY1 . Suppose
that Y2 ⊂ X is also a 2-dimensional compact connected C0-submanifold of X with ∂Y2 ̸= ∅
satisfying (i); moreover, ∂Y1 and ∂Y2 are isometric in the metrics ρYj , for j = 1, 2. Then, Y2 is
strictly convex with respect to ρY2 .

Proof. Suppose that, for points x, y ∈ Y2, there exists a shortest path γx,y,Y2 : [0, 1] → Y2 in
the metric ρY2 joining x and y and such that {γx,y,Y2(]0, 1[)} ∩ ∂Y2 ̸= ∅, i.e., x′ = γx,y,Y2(t

′) ∈
{γx,y,Y2(]0, 1[)∩∂Y2} for a point t′ ∈]0, 1[. By Theorem 2.3 and the fact that Y2 is a 2-dimensional
compact connected C0-submanifold in X, for a sufficiently small neighborhood of x′ in Y2, we
can find points x0, y0 ∈ ∂Y2 and a shortest path γx0,y0,Y2 : [0, 1] → Y2 between x0 and y0 in the
same metric satisfying the condition x′ ∈ {γx0,y0,Y2 (]0, 1[)∩ ∂Y2}. Further, we will suppose that
x = x0 and y = y0.

Now, assume that f : ∂Y1 → ∂Y2 is an isometry of ∂Y1 and ∂Y2 in the metrics ρY1 and ρY2 of
the boundaries ∂Y1 and ∂Y2 of the submanifolds Y1 and Y2 of X. From Theorem 2.3, we have

ρY2(x, x
′) + ρY2(x

′, y) = l1 + l2 = l = ρY2(x, y).

– 328 –



Anatoly P.Kopylov, Mikhail V. Korobkov Rigidity Conditions for the Boundaries of Submanifolds ...

Since f is an isometry,

ρY1(f
−1(x), f−1(x′)) + ρY1(f

−1(x′), f−1(y)) = ρY2(x, x
′) + ρY2(x

′, y).

Next, consider shortest paths γf−1(x),f−1(x′),Y1
: [0, 1/2] → Y1 and γf−1(x′),f−1(y),Y1

: [1/2, 1] →
Y1 in ρY1

between (respectively) f−1(x) and f−1(x′) and f−1(x′) and f−1(y), and then con-
struct a path γ : [0, 1] → Y1 by setting γ(t) = γf−1(x),f−1(x′),Y1

(t) if 0 6 t < 1/2 and
= γf−1(x′),f−1(y),Y1

(t) for 1/2 6 t 6 1. Let lY1(δ) be the length of a path δ : [0, 1] → Y1 in
the metric ρY1 . Since ρY1 is a metric on Y1, it is not difficult to show that

lY1(γ) 6 lY1(γf−1(x),f−1(x′),Y1
) + lY1(γf−1(x′),f−1(y),Y1

) = l1 + l2.

Hence γ is a shortest path in ρY1 joining f−1(x) and f−1(y) in Y1. This contradicts the strict
convexity of Y1. The theorem is proved. 2

Corollary 3.1. Suppose that the conditions of Theorem 3.1 hold and the manifold X has the
following property: ρX(x, y) = ρY (x, y) for any two points x and y from every 2-dimensional
compact connected C0-submanifold Y ⊂ X with ∂Y ̸= ∅ satisfying condition (i) and strictly
convex with respect to the metric ρY . Then, ∂Y1 and ∂Y2 are isometric in the metric ρX on the
ambient manifold X.

Remark 3.1. The condition imposed on the manifold X in Corollary 3.1 can be reformulated
as follows: in this manifold, every 2-dimensional compact connected C0-submanifold Y with
boundary satisfying condition (i) and strictly convex with respect to its intrinsic metric ρY is a
convex set in the ambient space X with respect to the metric ρX (for the notion of a convex set
in a metric space the reader is referred, for example, to [11]).

We have the following analog of Theorem 3.1 and Corollary 3.1 (combined together) for n > 3:

Theorem 3.2. Let n > 3. Suppose that (X, g) is an n-dimensional smooth connected Rie-
mannian manifold without boundary and Y1 and Y2 are n-dimensional compact connected C0-
submanifolds with nonempty boundaries ∂Y1 and ∂Y2 in X satisfying conditions (i),

(ii) ρYj is a metric on Yj (j = 1, 2),
and

(iii) for any two points a, b ∈ Yj, there exist points c, d ∈ ∂Yj which can be joined in Yj by
a shortest path γ : [0, 1] → Yj in the metric ρYj so that a, b ∈ γ([0, 1]).

Furthermore, assume that Y1 is strictly convex in the metric ρY1 , X has the additional prop-
erty that ρX(x, y) = ρY (x, y) for any two points x and y in every n-dimensional compact con-
nected C0-submanifold Y ⊂ X with ∂Y ̸= ∅ satisfying conditions (i)–(iii) and strictly convex
with respect to ρY and the boundaries ∂Y1 and ∂Y2 of the submanifolds Y1 and Y2 are isometric
with respect to the metrics ρYj , where j = 1, 2. Then, ∂Y1 and ∂Y2 are isometric with respect
to ρX .

Remark 3.2. For a submanifold Y in X, (i) and (ii) can be considered as conditions of gener-
alized regularity near its boundary.
Remark 3.3. Theorem 3.1, Corollary 3.1, and Theorem 3.2 are closely related to a theorem
of A.D. Aleksandrov about the rigidity of the boundary ∂U of a strictly convex domain U in
Euclidean n-space Rn by the relative metric ρ∂U,U on the boundary. The following is an important
particular case of this theorem:

Theorem 3.3 (A.D.Aleksandrov ( [6])). Let U1 be a strictly convex domain in Rn (i.e., for
any α, β ∈ clU1 every shortest path γ = γα,β,clU1 : [0, 1] → clU1 between α and β (in the metric
ρclU1) satisfies γ(]0, 1[) ⊂ U1). Assume that U2 ⊂ Rn is any domain whose closure is a Lipschitz
manifold (such that ∂(clU2) = ∂U2 ̸= ∅); moreover, ∂U1 and ∂U2 are isometric in their relative
metrics ρ∂U1,U1 and ρ∂U2,U2 . Then ∂U1 and ∂U2 are isometric in the Euclidean metric.
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We say that an n-dimensional compact (closed) connected C0-submanifold Y with boundary
∂Y ̸= ∅ of an n-dimensional smooth connected (respectively, n-dimensional smooth complete
connected) Riemannian manifold X without boundary has property (◦) if γx,y,Y (]0, 1[) ⊂ IntY
for any two points x, y ∈ ∂Y and for every shortest path γx,y,Y : [0, 1] → Y in the metric ρY
joining these points.

Theorem 3.4. Let n = 2. Suppose that (i) holds for a 2-dimensional compact connected C0-
submanifold Y1 with boundary ∂Y1 ̸= ∅ in a 2-dimensional smooth connected Riemannian mani-
fold X without boundary; moreover, Y1 has property (◦). Assume that Y2 ⊂ X is a 2-dimensional
compact connected C0-submanifold with ∂Y2 ̸= ∅ in X and ∂Y1 and ∂Y2 are isometric in the
metrics ρYj (j = 1, 2). Then ∂Y2 also has property (◦).

This theorem has the following generalization.

Theorem 3.5. Let n = 2. Suppose that (i) holds for a 2-dimensional closed connected C0-
submanifold Y1 with boundary ∂Y1 (̸= ∅) in a 2-dimensional smooth complete connected Rie-
mannian manifold X without boundary satisfying (◦). Assume that Y2 ⊂ X is a 2-dimensional
closed connected C0-submanifold with ∂Y2 ̸= ∅ in X; moreover, ∂Y1 and ∂Y2 are isometric in
the metrics ρYj (j = 1, 2). Then Y2 has the property (◦) as well.

Corollary 3.2 (of Theorem 3.4). Assume that the hypothesis of Theorem 3.4 hold and that
the manifold X has the following property: ρX(x, y) = ρY (x, y) for any two points x and y
on the boundary ∂Y of every 2-dimensional compact connected C0-submanifold Y ⊂ X with
∂Y ̸= ∅ satisfying (i) and (◦). Then ∂Y1 and ∂Y2 are isometric in the metric ρX of the ambient
manifold X.

Corollary 3.3 (of Theorem 3.5). Assume that the hypothesis of Theorem 3.5 hold and that the
manifold X has the following property: ρX(x, y) = ρY (x, y) for any two points x and y on the
boundary ∂Y of every 2-dimensional closed connected C0-submanifold Y ⊂ X with ∂Y ̸= ∅
satisfying (i) and (◦). Then ∂Y1 and ∂Y2 are isometric with respect to ρX .

Theorem 3.6. Let n > 3. Suppose that (X, g) is an n-dimensional smooth connected Rie-
mannian manifold whithout boundary and Y1 and Y2 are n-dimensional compact connected C0-
submanifolds with nonempty boundaries ∂Y1 and ∂Y2 in X satisfying conditions (i) and (ii)
(in Theorem 3.2). Assume that Y1 has property (◦) and X satisfies the following condition:
ρX(x, y) = ρY (x, y) for any two points x and y on the boundary ∂Y of every n-dimensional
compact connected C0-submanifold Y ⊂ X with ∂Y ̸= ∅ satisfying (i), (ii), and (◦). Suppose
also that ∂Y1 and ∂Y2 are isometric in the metrics ρYj , where j = 1, 2. Then ∂Y1 and ∂Y2 are
isometric in ρX .

Theorem 3.7. Let n > 3. Suppose that (X, g) is an n-dimensional smooth complete connected
Riemannian manifold without boundary and Y1 and Y2 are n-dimensional closed connected C0-
submanifolds with nonempty boundaries ∂Y1 and ∂Y2 in X satisfying (i) and (ii). Assume that
∂Y1 has property (◦) and X satisfies the following condition: ρX(x, y) = ρY (x, y) for any two
points x and y on the boundary ∂Y of every n-dimensional closed connected C0-submanifold Y
with ∂Y ̸= ∅ in X satisfying (i), (ii), and (◦). Suppose also that ∂Y1 and ∂Y2 are isometric in
the metrics ρYj (j = 1, 2). Then ∂Y1 and ∂Y2 are isometric in ρX .

Proofs of Theorems 3.2 and 3.4–3.7 are similar to the proof of Theorem 3.1 (Theorems 3.2
and 3.4–3.7 can be proved using the corresponding analogs of Theorems 2.1 and 2.3).

In conclusion, note that main results of our article were earlier announced in [1] and [2].

The authors were partially supported by the RFBR for, grants 14-01-00768-a and 15-01-
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Об условия жесткости границ подмногообразий
риманового многообразия

Анатолий П. Копылов
Михаил В. Коробков

Институт математики им. С.Л.Соболева СО РАН
пр. ак. Коптюга, 4, Новосибирск, 630090

Пирогова, 2, Новосибирск, 630090
Россия

В процессе развития идей академика А.Д.Александрова первым автором был предложен следу-
ющий подход к изучению проблем жесткости для краёв C0-подмногообразий в некотором глад-
ком римановом многообразии. Пусть Y1 представляет собой двумерное компактное связное C0-
подмногообразие с непустым краем в некотором гладком двумерном римановом многообразии
(X, g) без края. Рассмотрим внутреннюю метрику (инфимум длин путей, соединяющих данную
пару точек) внутренности IntY1 многообразия Y1 и продолжим ее по непрерывности (операцией
lim ) на краевые точки ∂Y1. В настоящей статье рассматривается вопрос о жесткости, т.е.
когда указанная метрика определяет ∂Y1 с точностью до изометрии в объемлющем простран-
стве (X, g). Рассматривается также случай dimYj = dimX = n, n > 2.

Ключевые слова: риманово многообразие, внутренняя метрика, индуцированная метрика на крае,
строгая выпуклость многообразия, геодезические, условия жесткости.
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