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The aim of the article is to find conditions on the coefficients of the Taylor expansion of a
holomorphic function in C that guarantee an absence of zeros.

Let a function f = f(z) with respect to complex variable z be holomorphic in a neighborhood
of zero in the complex plane C:

f(z) =
∞∑
k=0

bkz
k, f(0) = b0 = 1. (1)

Let γr be a circle of the form

γr = {z : |z| = r}, r > 0.

Theorem 1. For function f to be an entire function of finite order of growth which has no zeros,
it is necessary and sufficient that for sufficiently small r there exists k0 ∈ N such that∫

γr

1

zk
df

f
= 0 при всех k > k0. (2)

In this case the minimum k0 is equal to the order of function.

Recall that the entire function f(z) has a finite order (of growth) if there exists a positive
number A such that

f(z) = O(er
A

) for |z| = R → +∞.

The infimum of such numbers A is called the order of function (see, e.g., [2, 3]).
Proof. Let the function f be a function of finite order of growth, which has no zeros in C

then it is well known that it has the form: f(z) = eφ(z), where φ(z) is a polynomial of some
degree k0 (see, e.g., [2, Ch. 7, Sec. 1.5]). Then∫

γr

1

zk
df

f
=

∫
γr

1

zk
φ′(z) dz = 0 при k > k0.

Conversely, suppose that condition (2) is fulfilled. Since f(z) is holomorphic function in a
neighborhood of zero and f(0) ̸= 0 then values of f(z) lie in a neighborhood of f(0) and this
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neighborhood does not contain the point 0 for sufficiently small |z|. Therefore, the holomorphic
function φ(z) = ln f(z), ln 1 = 0 is defined in the neighborhood of zero.

Let

φ(z) =
∞∑
k=0

akz
k, a0 = ln f(0) = ln b0.

Then, for sufficiently small r we have

1

2πi

∫
γr

1

zk
df

f
=

1

2πi

∫
γr

1

zk
φ′(z) dz = kak. (3)

When condition (2) is fulfilled we see that ak = 0 under k > k0. Therefore, φ(x) is a
polynomial of degree k0. Consequently, f(z) = eφ(z) is an entire function of finite order k0. 2

There exists a recursive relationship between coefficients of f and φ(z) (see, e.g., [1, §2,
Lemma 2.3]).

Lemma 1. The following relations are true:

ak =
(−1)k−1

kbk0

∣∣∣∣∣∣∣∣
b1 b0 0 . . . 0
2b2 b1 b0 . . . 0
. . . . . . . . . . . . . . .
kbk bk−1 bk−2 . . . b1

∣∣∣∣∣∣∣∣
and

bk =
b0
k!

∣∣∣∣∣∣∣∣
a1 −1 0 . . . 0
2a2 a1 −2 . . . 0
. . . . . . . . . . . . . . .
kak (k − 1)ak−1 (k − 2)ak−2 . . . a1

∣∣∣∣∣∣∣∣ .
Therefore, we have the following statement.

Corollary 1. For function f to be an entire function of finite order k0 which has no zeros, it is
necessary and sufficient that the determinant∣∣∣∣∣∣∣∣

b1 b0 0 . . . 0
2b2 b1 b0 . . . 0
. . . . . . . . . . . . . . .
kbk bk−1 bk−2 . . . b1

∣∣∣∣∣∣∣∣ = 0 under k > k0, (4)

where k0 is the minimum number with this property.

Example 1. Let

f(z) = ez = 1 +
∞∑
k=1

zk

k!
,

i.e, b0 = 1, bk =
1

k!
, k > 1.

Let us substitute these values into (4). When k = 1 determinant is not equal to zero. For
k > 1 all determinants are equal to zero since the first two columns are the same. Then function
f(z) is of order 1 and it has no zeros in the complex plane.
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Цель статьи: найти уловия на коэффициенты Тейлора голоморфной функции C, которые гаран-
тируют отсутствие у нее нулей.
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