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A two-dimensional problem of the fluid flows with a dynamic contact angle is studied in the case of an
uniformly moving contact point. Mathematical modeling of the flows is carried out with the help of the
Oberbeck-Boussinesq approximation of the Navier-Stokes equations. On the thermocapillary free boundary
the kinematic, dynamic conditions and the heat exchange condition of third order are fulfilled. The slip
conditions (conditions of proportionality of the tangential stresses to the difference of the tangential
velocities of liquid and wall) are prescribed on the solid boundaries of the channel supporting by constant
temperature. The dependence of the dynamic contact angle on the contact point velocity is investigated
numerically. The results demonstrate the contact angle behavior and the different flow characteristics
with respect to the various values of the contact point velocity, friction coefficients, gravity acceleration
and an intensity of the thermal boundary regimes.
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Introduction

The problems of flows of a viscous incompressible fluid in the domains with interfaces are very
important for investigations. The features of the fluid flows in the domains with free boundaries
and interfaces are the subject of many investigations in the last decade. Such interest is explained
by need of study some phenomena in the flow structure, which arise due to the effects related with
the gas phase and solid wall properties. One of the most important questions of mathematical
modeling of the convective fluid flows in a domain with an interface is a correct formulation of
the boundary conditions. From the mathematical point of view the non-stationary fluid flows
with free boundaries remain to be very difficult for investigations because of the dynamic contact
angle problem [1–6]. The problem of dynamic contact angle occurs due to the incompatibility of
the conditions on the free surface of the liquid and the conditions of adhesion on a solid surface
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in vicinity of the moving three-phase contact line. There are various methods of statement of
the problems with contact angles, describing a motion of a viscous incompressible liquid in the
presence of a moving contact line (or contact point in the two-dimensional case). These problem
statements assume a replacement of the no-slip conditions terms by the slip conditions on some
sections of the solid walls near the contact line, the asymptotic approach, the assumption of the
contact angle equality to π or to "zero" etc. (see, for example, [1,2,7,8]). For some mathematical
models of fluid flows with dynamic contact angle the correctness of the initial boundary-value
problems has been proved [1, 2, 7, 9–11].

The problem of the fluid flows in a two dimensional domain will be studied in the case
when the contact points are moving with a constant velocity. A behavior of the contact angle
depends on the velocity of movement of the contact point, on the nature of the boundary thermal
conditions specified on solid walls and free thermocapillary boundary, on the values of the friction
coefficients and also on intensity of the gravitation field. We consider the Oberbeck-Boussinesq
equations of convection. The Cartesian coordinate system is chosen in such a way that the
gravity acceleration vector is directed along the longitudinal axis. The problem is studied in
a quasi-stationary formulation as a result of the introduction of the coordinate system moving
with the liquid.

We investigate numerically the dependence of the contact angle on the contact point velocity
in the case of different values of the friction coefficients and effects of the thermal boundary
condition, prescribed on the free surface, on the found dependence.

1. Governing equation

We study the two-dimensional problem with dynamic contact angle and present the problem
statement written in the coordinate system moving together with the liquid. The linear size
l of the flow domains Ω in the y-direction has been chosen for the characteristic length. The
characteristic values for the problem of the fluid flow in Ω are: u∗ is the characteristic velocity,
p∗ = ρu∗ν/l is the characteristic pressure, T∗ is the characteristic temperature (characteristic
temperature drop). The values of the characteristic scales are specified below (see Section 3).

Let Ω = {(x, y) | y ∈ (0, 1), f(y) < x < x0} be the flow domain (see Fig.1). The boundary
∂Ω of the flow region contains the solid parts Γ0 = {(x, y)|y ∈ (0, 1), x = x0}, Γs = {(x, y) | y ∈
{0, 1}, x ∈ (0, x0)} and free unknown boundary Γf = {(x, y) | y ∈ (0, 1), x = f(y)}. The gravity
acceleration vector is g = (g, 0). The Oberbeck-Boussinesq approximation of the Navier-Stokes
equations [12, 13] is used to model the liquid flows and to find the unknown functions such as
stream function ψ, vorticity ω and temperature T :

∆ψ = −ω, (1)

Re
(
uωx + v ωy

)
= ∆ω +

Gr

Re
Ty, (2)

RePr
(
uTx + v Ty

)
= ∆T. (3)

Here
u = ψy, v = −ψx, ω = vx − uy, (4)

v = (u, v) is the velocity vector.
Formulation of the conditions on the free boundary in terms of the stream function and

vorticity has been also made in [1, 14–16]. We generalize the results from [8] for the case of the
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Fig. 1. Geometry of flow region; topology of flow

convective fluid flows in the domain Ω with the thermocapillary boundary Γf . Direct calculations
lead to the following results:

ψ = 0 on ∂Ω, (5)

ψnn −Hψn = −MaTτ , on Γf , (6)

1√
1 + f ′2

(
− σ σH ′ +MaTτ H + g f ′

)
= Q(ψ) on Γf , (7)

Q(ψ) = Re
(
ψy (ψx)n − ψx (ψy)n

)
− (∆ψ)n − 2(ψn)ττ . (8)

αψnn + ψn = −S on Γs (y = 0), (9)

αψnn + ψn = S on Γs (y = 1), (10)

αψnn + γ ψn = 0 on Γ0 (x = x0), (11)

Tn = −Nu(T − Tex), on Γf , (12)

T = Ts, on Γs (y = 0) and (y = 1), (13)

T = Tb, on Γ0 (x = x0). (14)

At the contact points we have the conditions

f(0) = f(1) = 0. (15)

The contact angle Φ at y = 0 is computed as Φ = arccos
(
f ′(0)/

√
1 + f ′2(0)

)
.

The derivatives (∂/∂n) and (∂/∂τ) with respect to the normal and tangential directions are
calculated according to the rules ∂/∂n = n · ∇, ∂/∂τ = τ · ∇. Here n is the external normal
vector with respect to Ω, τ is the tangential vector to the boundary ∂Ω (transition from τ to
the vector n is in anticlockwise direction). The boundary conditions (5)–(11) are a sequence of
the nonpermeability condition including the kinematic condition at free boundary (see (5)), the
slip conditions which follow from the assumption of the impulse conservation (see (9)–(11)), the
dynamic conditions on free surface (projections of the stress vector on the tangential (6) and
normal (7) vectors to Γf ). The third order condition for temperature (12) due to the Newton
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law of heat transfer is assumed to be fulfilled on the free boundary. The temperature on the
lateral solid walls is kept constant equal to Ts and Tb (see (13), (14)). The boundary conditions
for temperature (12)–(14) allow to stick the consideration of the symmetric flow picture.

The following nondimensional parameters appear: Re = v∗l/ν is the Reynolds number,
Pr = ν/χ is the Prandtl number, Ma = σTT∗/(ρνv∗) is the Marangoni number, Ca = ρνv∗/(σ0)

is the capillary number, Gr = βT∗gl
3/ν2 is the Grashof number, Nu = δl/κ is the Nusselt

number, α = ρν/(γl), γ = γ0/γ, σ = σ0/(ρνv∗) = 1/Ca, g = gl2/(νv∗) = Gr/(ReβT∗). Here
σ is the nondimensional surface tension (σ = 1 −MaCa(T − T0)), ν and χ are the coefficients
of kinematic viscosity and thermal diffusivity, respectively, κ is the thermal conductivity, ρ is
the density of the liquid, β is the thermal expansion coefficient, γ, γ0 are the friction coefficients
of the liquid on the solid walls, σ0 is the surface tension value (dimensional) at some reference
temperature, σT is the temperature coefficient of surface tension, δ is the inter-phase heat transfer

coefficient, H =
(
f ′/

√
1 + f ′2

)′
is the curvature of the boundary Γf (here "prime" denotes

derivative with respect to y), Tex is the external temperature (non-dimensional).
To solve the problem (1)-(15) in the fixed domain Ω = {[0, 1]× [0, 1]} we introduce the new

spatial variables

z =
x− f(y)

x0 − f(y)
, y = y. (16)

Introduction of the variables (16) demand to recalculate the derivatives in the equations (1)-(4)
and in the conditions (6)–(12).

Then the equations (1), (2) and (3) can be rewritten in new variables (16) in the following
general form:

1

B11

(
Uy + Vz

)
+G = 0. (17)

Here
U = B11Ψy +B12Ψz +BΨψz, V = B12Ψy +B22Ψz −BΨψy, (18)

the coefficients B11, B12, B22 and B and the functions Ψ, G are specified as follows:

B11 = x0 − f(y), B12 = (z − 1)f ′(y), B22 =
1 + (z − 1)2f ′2(y)

x0 − f(y)
, (19)

G = ω, B = 1 if Ψ = ψ; G = −(Gr/Re)
((
f ′(z− 1)/(x0 − f)

)
Tz +Ty

)
, B = Re if Ψ = ω; G = 0,

B = RePr if Ψ = T .
The conditions (5)–(11) for ψ and ω on the boundaries of Ω and the boundary conditions for

temperature T defined by the conditions (12)–(14) can be written as follows:

ψ = 0, ψy + αω = −S on y = 0, (20)

ψ = 0, ψy − αω = −S on y = 1, (21)

ψ = 0,
2f ′′

(x0 − f)(1 + f ′2)
ψz +

Ma

(x0 − f)2(1 + f ′2)5/2
Ty − ω = 0 on z = 0, (22)

ψ = 0,
γ

x0 − f
ψz − αω = 0 on z = 1, (23)

T = Ts on y = 0, (24)

T = Ts on y = 1, (25)
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−
√
1 + f ′2

x0 − f
Tz +

f ′√
1 + f ′2

Ty = −Nu(T − Tex) on z = 0, (26)

T = T0 on z = 1. (27)

The equation (7), written in the variables z, y, (16) will be used to compute the free boundary
position.

2. Computational algorithm

To reach the stationary solution of the problem we organize an iteration process for solving
of the general equation (17):

Ψt =
λ

B11

(
Uy + Vz

)
+ λG. (28)

Here λ is an iteration parameter. To discretize in time we choose a time stepsize ∆t, define
tk = k∆t (k = 0, 1, 2, ...), Ψk = Ψ(tk, ·). After discretization of (28) in time we introduce the
spatial grids (zn, ym); zn = (n−1)hz (n = 1, 2, ..., N1), hz = 1/N (N1 = N +1); ym = (m−1)hy
(m = 1, 2, ...,M1), hy = 1/M (M1 = M + 1) and approximate Ψk(xn, ym) by Ψk

n,m. The
finite-difference scheme of the form

Ψk+ 1
2 −Ψk

0.5∆t
=

λ

B11
{Uk

y + V
k+1/2
z }+ λGk,

Ψk+1 −Ψ
k+

1

2

0.5∆t
=

λ

B11
{Uk+1

y + V
k+1/2
z }+ λGk

(29)

is used to solve (28). The derivatives in (29) will be approximated by the finite-difference
analogs of second orders. We present an example for the approximation for Uk+1

y (xn, ym)(
Uk+1
y (xn, ym) =

(
∂U/∂y

)k+1
(xn, ym)

)
(see (18)):

Uk+1
y (xn, ym) =

∂

∂y

(
B11Ψ

k+1
y

)
(xn, ym) +

∂

∂y

(
B12Ψ

k+1/2
z

)
(xn, ym) +B

∂

∂y

(
Ψk+1ψz

)
(xn, ym) ≈

≈ 1

h2y

(
(B11)n,m+1/2

(
Ψk+1

n,m+1 −Ψk+1
n,m

)
− (B11)n,m−1/2

(
Ψk+1

n,m −Ψk+1
n,m−1

))
+

+
1

4hzhy

(
(B12)n,m+1

(
Ψ

k+1/2
n+1,m+1 −Ψ

k+1/2
n−1,m+1

)
− (B12)n,m−1

(
Ψ

k+1/2
n+1,m−1 −Ψ

k+1/2
n−1,m−1

))
+

+
B

4hzhy

(
Ψk+1

n,m+1

(
ψn+1,m+1 − ψn−1,m+1

)
−Ψk+1

n,m−1

(
ψn+1,m−1 − ψn+1,m−1

))
.

The following relation (B11)n,m+1/2 = 0.5
(
B11(zn, ym) + B11(zn, ym+1)

)
is used for the ap-

proximation of B11 depending on z, y. The finite-difference approximations of the boundary
conditions (20)–(27) will be added to (29) in order to obtain the equations for n = 1 and n = N1

(m = 2, ...,M) and also for m = 1 and m = M1 (n = 2, ..., N). The finite-difference analogs for
the derivatives of first order at the boundary are used. The presented longitudinal transverse
finite difference scheme (29), known as the method of alternating directions [17–19], is the scheme
formally of second order of approximation and unconditionally stable [17,18,20]. As a result two
systems of the linear algebraic equations will be obtained. It will allow us to find Ψn,m as the
solution of these systems of linear algebraic equations, which can be stably solved by the variants
of the Gaussian elimination [8, 13,21] or the Thomas algorithms in the y- and z-directions.
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The numerical algorithm for the problem (17)–(27) contains the important part of computa-
tion of the free boundary position. The computational algorithm for f(y) (and also for f0(y))
has been described in details in [8]. We limit ourselves to the following comments.

We proceed from an initial situation when for given prescribed x0 the liquid is at some
constant temperature Tin (for instance, Tin = T0) and at rest. The initial position of the free
boundary will be defined as a solution of the problem: σH ′

0 − gf ′0 = 0 in (0, 1), µ0f
′
0(y) =

cos(Φ0) for y = 0 and µ0f
′
0(y) = − cos(Φ0) for y = 1, f0(0) = f0(1) = 0,∫ 1

0

(
x0 − f0(y)

)
dy = V. (30)

Here we denoted µ0 = 1/
√
1 + f20 . Note, in the case of prescribed liquid volume V we determine

x0 according to (30). In the further considerations we will compute the solutions (i.e. the free
boundary position f and all the unknown functions) for the found pair (V, x0).

We seek the new dependent function w (w = f − f0) as a solution of the problem

(µ0w
′)′′ − gw′ = Q in (0, 1), (31)

w(0) = w(1) = 0, (32)∫ 1

0

w(y)dy = 0 (33)

for given S, ψ, ω, T and f0. Here g = g/σ, Q = −(1/σ)(Q/µf ) −
(
f ′(µf − µ0)

)′′
+

(Ma/σ)(1/µf )
(
(H T )τ

)
|Γf

, see (7) and (8) for determination of Q. Similarly to µ0 we denote
µf = 1/

√
1 + f2. The term (H T )τ |Γf

is recalculated with respect to new spatial variables (z, y)
(see (16)) and used at z = 0.

The approximate solution for w can be constructed with the help of an uniform grid
(y1, y2, . . . , yM1), ym = (m − 1)hy, hy = 1/M , M1 = M + 1. The problem has been simpli-
fied under assumption of the symmetry of the problem relative to the line y = 0.5 [8]. The grid
is introduced so that ym = 0.5 for m = (M/2)+1. As a result, after introduction of an auxiliary
function q = µ0w

′ the problem (31)–(33) has been solved on the interval (0, 1) with use of the
constructed variant of the Gaussian elimination procedure [8]. The assumptions of symmetry of
the w- function and anti-symmetry of q- function (qm) have been used.

The computational algorithm for f0 has been constructed in [8] with use of the procedure for
w by Q = 0. Starting with f00 = 0 a sequence of iterates {f10 , f20 , ...} has been generated with
the help of an iteration algorithm.

3. Numerical results

The liquid of the volume V (with the free boundary) is moving with the constant velocity
in the x- direction. The contact angle (the angle between the solid wall and free boundary)
is calculated in the position being inside the liquid. It should be noted that the contact angle
dependence on the contact point velocity is characterized by increasing of the contact angle value
with an increase of the velocity. The effects of the friction coefficients (γ, γ0) and of the gravity
acceleration (g) on the dependence of the contact angle Φ on the contact point velocity S are
investigated.

The numerical experiments are performed for the liquid being water. The physical parameters
of the problem are presented in Tab. 1 ( [22, 23]). For the characteristic velocity we choose

– 301 –



Olga N.Goncharova, Alla V. Zakurdaeva Numerical Investigation of a Dependence of the Dynamic . . .

Table 1. Physical parameters of the problem.

Parameter ρ ν β σT σ0 γ = γ0 κ χ
g

cm3
cm2

s
1
K

dyne
cmK

dyne
cm

g
cm2s

kal
cmsK

cm2

s

Water 1 0.008 0.15 · 10−3 0.1514 72 1; 100 0.144 · 10−2 0.14 · 10−2

v∗ =
(
σ0g/γ

)1/3 in the case when g = 981 (cm/s2), γ = 100 (g/(cm2 s)), σ0 = 72 (dyne/cm),
the characteristic length is l = 1 (cm). The characteristic temperature drop is chosen equal to
T∗ = 100C. We perform the calculations with different values of the coefficients γ, γ0 of friction
type "liquid - solid wall" [8,24] and for two different values of static contact angle Φ0 (Φ0 = 63 and
Φ0 = 87 degrees). The calculations are carried out in the case of equal values of the coefficients
γ and γ0 (γ = γ0 = 100 and γ = γ0 = 1) under conditions of normal (g = 981 cm/s2) and low
gravity (g = 9.81 cm/s2). The thermal boundary regimes have been determined according to
some conditions of the physical experiments in [25]. The following values of the Nusselt number
have been used Nu = {17; 34}; Tex = T0 (see (26)). The lateral boundary regime for temperature
designated symbolically as Ts × T0 is considered (here Ts, T0 are constant; Ts > T0, see (13),
(14)). The following (non-dimensional) variants are used in the calculations: Ts = 8, T0 = 1

(”8 × 1”); Ts = 4, T0 = 1 (”4 × 1”). The non-dimensional parameters of the problem have the
following values: Re ≈ 1112, Pr ≈ 7, Gr ≈ {23000; 230}, Ma ≈ 21, Ca ≈ 1 ·10−5, α ≈ 0.8 ·10−4,
γ = 1, Nu ≈ {17, 34}. The values of the Nusselt number exceed these values which correspond
to the heat transfer coefficient values δ in [25] (δ ∈ [0, 100] W/m2 K). Figures 1-4 present the
results of the model calculations in order to study the influence of the Nusselt number, defining
the interface thermal regime, at external temperature Tex (see (12) or (26)) that coincides with
lower boundary temperature T0 on Γ0.

The character of the contact angle dynamics relative to the different values of the gravity
acceleration is illustrated with the help of Figures 2. We observe the increasing character of the
contact angle dependence on the contact point velocity. The influence of the normal (for g = 981

cm/s2) and low (for g = 9.81 cm/s2) gravity can be confirmed in the case of isothermal flow (Fig.
2(a), black lines; here the static contact angle and the friction coefficients have the values Φ0 = 63;
γ = γ0 = 100). In comparison with isothermal flow (Fig. 2(b), black solid line if g = 9.81 cm/s2

and black dashed line if g = 981 cm/s2) the thermal boundary regimes on the solid walls and
free boundary have an impact on the contact angle behavior. The pictures demonstrate the
similar behavior of the dynamic contact angle as in the isothermal case: increasing of the angle,
when the contact point velocity increases both for the normal and low gravity. This tendency is
more intensive in the case of larger values of the contact point velocity (here for S larger than
2 (cm/s2)).

The numerical investigation of the contact angle dependence on the contact point velocity
under conditions of normal and low gravity are carried out for the friction coefficients equal to
γ = γ0 = 1 (see Fig. 2(b)). The lines of the contact angle dependence are located higher in the
case when g = 9.81 cm/s2 than for g = 981 cm/s2, see solid lines in the figures Fig. 2(b) for
all the investigated regimes: for the isothermal flow (black lines), the case of "8× 1" — thermal
boundary regime on solid walls (blue lines) and the case of "4× 1" — thermal boundary regime
on solid walls (red lines). We find the especially bright differences from the isothermal regime
in the case, when the "8 × 1" — regime is prescribed on the lateral walls. We can also speak
about more intensive behavior of the dynamic contact angle in the case of larger values of the
friction coefficient (here for γ = 100 in comparison with γ = 1). It is observed both for normal
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b) Φ0 = 63 a)Φ0 = 63

Fig. 2. Dynamic contact angle. (a) Comparison of the effects of gravity acceleration. Here
Φ0 = 63; γ = γ0 = 100. Isothermal flow — black lines: g = 9.81 (solid line); g = 981 (dashed
line). The regime with Nu = 17 and "8 × 1" — thermal boundary regime on solid walls — red
lines: g = 9.81 (solid line); g = 981 (dashed line). (b) Comparison of the effects of gravity
acceleration and the thermal boundary regimes. Here Φ0 = 63; γ = γ0 = 1. Isothermal flow —
black lines: g = 9.81 (solid line); g = 981 (dashed line). The regime with Nu = 17 and "4× 1"
and "8×1" — thermal boundary regime on solid walls. The regime "4×1" — red lines: g = 9.81
(solid line); g = 981 (dashed line). The regime "8×1" — blue lines: g = 9.81 (solid line); g = 981
(dashed line)

and low gravity (compare the black lines in Fig. 2(a) and (b) and the quantitative characteristics
of the angle values; compare also the results shown with red lines in Fig. 2(a) and blue lines in
Fig. 2(b)).

The topology of flow is characterized by the two-vortex flow structure that is symmetric
relative to the line y = 1/2 (see Fig. 3(a)). The rotor of velocity is especially intensive along the
lateral walls y = 0, y = 1. In the case of higher value of the contact point velocity (S = 3 cm/s,
see Fig. 3(b)) the two-vortex flow picture is characterized by a displacement of the vortex centers
to the free boundary (see Fig. 1. The flow domain is characterized by the velocity field presented
for the same numerical experiments data as in the Fig. 3(b)). The additional calculations on
the refined grids justified the presented two-vortex flow structure with localization of the vortex
centers near the free boundary.

The shapes of the free thermocapillary boundary confirm the various flow picture for the
different values of the contact point velocity. The static position as well as perturbation position
of the free boundary are presented in Fig. 4 in the case of two values of the static contact angle
(Φ0 = 63 and Φ0 = 87). The examples of the free boundary shape are presented for the values
of the contact point velocity equal to S = 0 and S = 3 (cm/s)). The free boundary is symmetric
relative to the line y = 1/2. Especially demonstrable the free boundary behavior is presented in
the case of the more high value of the contact point velocity (here equal to 3 (cm/s)) if the static
contact angle is Φ0 = 87. The convexity character of the free boundary shape has been changed.
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b) S = 3 a) S = 1

Fig. 3. Stream lines. Here Φ0 = 63; Nu = 34; g = 981; γ = γ0 = 100; "8 × 1"- regime at solid
walls

Fig. 4. Free boundary. Here g = 981; γ = γ0 = 100; Nu = 34; "8 × 1"- regime at solid walls.
S = 0 — solid lines: black line if Φ0 = 63; red line if Φ0 = 87. S = 3 — dashed lines: black line
if Φ0 = 63; red line if Φ0 = 87

4. Conclusions

The mathematical model and the numerical algorithm are presented to study the convective
fluid flows with dynamic contact angle in the case, when the contact point is moving uniformly.
The increasing character of this dependence on the contact point velocity has been established.
The different peculiarities of dependence of the dynamic contact angle on the contact point
velocity have been investigated numerically under conditions of action of the thermal boundary
regimes.

Authors gratefully acknowledge support of this work by the Russian Science Foundation
(project RSF 15-19-20049).

– 304 –



Olga N.Goncharova, Alla V. Zakurdaeva Numerical Investigation of a Dependence of the Dynamic . . .

References
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Численное исследование зависимости динамического
контактного угла от скорости движения точки контакта
в задаче о конвективном движении жидкости

Ольга Н. Гончарова
Алтайский государственный университет

Ленина, 61, Барнаул, 656049
Россия

Алла В. Закурдаева
Институт теплофизики СО РАН

Ак. Лаврентьева, 1, Новосибирск, 630090
Россия

Изучается задача движения жидкости с динамическим контактным углом в случае равномерно
движущейся точки контакта. Математическое моделирование проводится на основе аппрок-
симации Обербека-Буссинеска уравнений Навье-Стокса. На термокапиллярной свободной грани-
це выполняются кинематическое, динамическое условия и условие теплового обмена с внешней
средой третьего рода. Условия прилипания выполняются на твердых границах, которые поддер-
живаются при постоянной температуре. Данные условия представляют собой условия пропор-
циональности касательных напряжений разнице касательных скоростей жидкости и твердой
стенки. Численно исследуется зависимость динамического контактного угла от скорости дви-
жения точки контакта. Результаты демонстрируют поведение динамического контактного
угла и различия в характеристиках течения в зависимости от различных значений скорости
движения точки контакта, коэффициентов трения, ускорения силы тяжести и интенсивно-
сти граничного теплового режима.

Ключевые слова: конвективное течение, свободная граница, динамический контактный угол, дви-
жущаяся точка контакта, математическая модель, вычислительный алгоритм.
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