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On One Two-dimensional Binary Mixture’s Motion
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In this paper is estimated a special solution for solving thermal diffusion equations, that describe motion
of binary mizture in a flat layer. When Reynolds number (Re — 0) is small, it is possible to simplify
these equations to some easier problems. In solving process to find pressure it is necessary to solve an

inverse problem. Answers for non-stationary regime are presented in trigonometric Fourier series.
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Introduction

Exact and approximate solutions of hydrodynamics equations are widely used for mathe-
matical modeling of many processes in the chemical and petrochemical technology [1], including
convection of mass processes and heat transfer, and various natural phenomena [2].

This paper deals with the unsteady motions of a binary mixture in a flat layer with solid
fixed walls. Solution of the thermodiffusion convection equations is sought in a special form: one
velocity component is a linear function along the length of channel, and the temperature and
concentration are quadratic functions along this coordinate.

First time such solutions for the stationary Navier-Stokes equations are considered by
Hiemenz [3]. A review for similar type of exact solutions is available in [4]. The solution was
used to describe the flow of a viscous fluid on a plane taking into account the adherence on it [5].
For moving plates nonstationary solutions Himenz was considered in [6]. In the works [7] and [§]
given further development of the results [6], when distance between the plates varies according
to a power function of time.

If in Himenz solution, pressure depends only on one spatial variable, then for the correspond-
ing systems of equations it is necessary to solve direct problem [9]. In general, longitudinal
pressure gradient further velocity, temperature and concentration fields are desired functions. In
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this case, the problem is reduced to a series of one-dimensional inverse problems for parabolic
equations (thermal conductivity). For creeping motions (Reynolds number Re <« 1) is found
exact solution of non-stationary problems.

1. Problem statement

Consider a binary mixture that is located in the gravity field with acceleration vector g =
(0,—g). For such mixture concentration ( mass fraction ) C, temperature T, pressure p and
velocity components u, v are desirable. Fig. 1 shows the scheme of movement field.

-

LSS S A //‘/// [

SIS ST ST

Fig. 1. Scheme of movement field

Here mass flux is described by
J=—po(DVC + DpVT), (1)

where pg is mixture density at average temperature and concentration; D is diffusion coefficient;
D1 is thermal diffusion coefficient. These coefficients, in general, depend on temperature and con-
centration. However, under the mentioned assumptions, they are constants: D = D (T4, Cay),
DT = DT (Tava Cav)-

Here is used model Oberbeck-Boussinesq for description of density

p=po(1—ﬁT(T—Tav)—BC(C_Cav))v

where pg = const > 0, S is thermal expansion coefficient and B¢ is concentration expansion
coefficient.

For the binary mixture with these characteristics, which on it’s walls apply slip condition and
given temperatures and finally without material flow through those, next dimensionless equations

are fair
Uy + vy = 0,

up + Re (uty + viy) + Py = Uy + Uyy,
v + Re (uvg + vvy) + Py = Uz + 0y + G (T +C), (2)
T; + Re(uT, + vTy) = (Typs + Tyy) / Pr,
Ct + Re (uCy +vCy) = ((Cox + Cyy) — ¥ (Thz + Tyy)) /Sec.

here appear five dimensionless parameters:
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Reynolds number Re = Uph/u, which represents ratio of inertial force to viscous friction
force, where u is dynamic viscosity, Uy is velocity characteristic, h is height of layer; Prandtl
Pr = p/x and Schmidt Sc¢ = x/D numbers, which characterize relative intensity of momentum
transfer and molecular heat and mass transfer, respectively, y is thermal diffusivity coefficient;
split ratio v = —Bc Dy /BrD, which characterizes effect of thermal diffusion; parameter G =
Gr/Re = gBrATh? /Uy is a measure for relation of buoyancy force to inertial force acting on
flow and Gr is Grashof number and AT is temperature difference characteristic in the system.
You can see complete description about this process in [10].

Since number of equations (five) is equal to number of unknown functions (u,v,p,T,C), the
resulting system (2) will be closed.

Boundary conditions in dimensionless form can be rewritten as

’U/((E,y,t) |y:0: 07 U(xayat) |y:0: 07

u(z,y,t) |y:1: 0, v(a:,y,t) |y:1: 0;
T(m, y,t) ‘y:0: (T (x, t) —Taw) /AT,
T(x»yvt) |y:1: (TQ(xvt) - Tav) /AT,
Cy, =yT,, forz=0,1. (5)
And finally initial conditions
U(I’7y,t) ‘t:0: Uo(‘T, y)/U07
’U(LI,‘, y7t) |t:0: Uo(l‘, y)/UOa
Uz(x;yat) |t:0: —Uy(l',y,t) |t:0, (6)

T('Ta Y, t) |t:0: (To(x, y) - Tav)/AT’
C(z,y,t) lt=0= Br(Co(x,y) — Cav)/BcAT.

In following section will discuss solution of thermal diffusion equations in a special type, which
describes two-dimensional motion in a plane layer.

2. Special solution for initial boundary problems

Solution is considered in a special kind as

u(@,y,t) =U(y,t)z, o(z,y,t) =V(y,1). (7)

Applying this representation to motion’s equations (2) as it is explained in [10] will arise the
following initial-boundary problems when 0 < y < 1 and ¢t > 0:

Ay + Re(2AU +V A,) = Ay, /Pr,
Ay 1) [e=o= Ao(y),
Ay, t) [y=0= A1(t),
A(y,t) ly=1= A2(t);
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B; + ReV By = (B, + 2A)/Pr,
B(y,t) |t=0= Bo(y),

9
B(y7t) ‘y:0: Bl(t)v ( )
B(y,t) [y=1= Ba(t);
M, + Re 2MU +VM,) = (M,, —pAy,) /Sc,
M(y,t) |t=o= Mo(y), (10)
My(y7t) |y:0: wAy<yat) |y:0,
My(y,t) |y=1: 1/)Ay(y,t) |y=1§
Ni+ ReV Ny = (Nyy, + 2M — 29pA — ¢B,,)/Sc,
N(y,t) [t=0= No(y), ()
Ny(Q,t) |7J:O: wBy(%t) |y:0a

Ny(y, t) |y=1: ¢By(y7 t) |y=1 :
In above problems values for A;(¢) and B;(t) when i = 1,2 can obtained using boundary condi-
tions for temperature T;(x,t) and next expression

Ai(t)2® + By(t) = (Ti(z,t) — Tay) /AT,

similarly Ao(y), Bo(y), Mo(y) and Ny(y) are defined with initial conditions for temperature
To(x,y), concentration Cp(z,y) and next equations

Ao(y)z* + Bo(y) = (To(x,y) — Taw) /AT,
Mo(y)z® + No(y) = Br (Co(x,y) — Cav) /Bc AT

For solving (8)—(11) are used next connector equations, that make relation between
Ay, t), By, t), M(y,t), N(y,t) and U, V,T,C,p. The equations for detection temperature and
concentration are

T(x,y,t) = Ay, t)z° + B(y, ), (12)
C(w,y,t) = M(y,t)z” + N(y, ), (13)
also, such those equations for velocities components are
y
Uy = Us = Re(VU, +U%) =26 [ (A(z0) + M(2.)) s + () (14)
0
and

in (14), w(t) is also unknown and it should be find in process of solving the problem. Finally
connector equation for pressure is

p(z,y,t) = Uy, — U — Re(VU, + U*)2*/2 + a(y, t), (16)

where
a(y,t) =V, — gt/oy V(z,t)dz + G/Oy (B(z,t) + N(z,t)) dz — Re /Oy V(z,t)V.(z,t) dz + ao(t).

it should be note, that in this problem, without loss of generality, ag(t) = 0 is fair.
In following sections will discuss non-stationary solution of systems (8)—(11) under certain
conditions and will find all desire functions.
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3. Results

In this section, solutions for non-stationary regime are presented. In systems (8)—(11), it is
assumed that Re — 0 (creeping motion) and G = Gr/Re = O(1). The last condition is necessary
to account effect of buoyancy force on the motion of mixture. Applying these assumption, will

have
Ay = Ay, /Pr,
Ay, 0) = Ao(y),
A(0,t) = A1 (),
A(1,t) = As(t);

Solution using separation of variables’ is:
oo
H) = gh@®)sinkmy + (As(t) — A1 ())y + A (8),

here

2_2 2 t 2,2 ’ ’
gh(t) = 7" t/"f"(,m | e (-0 da(r) - Au(r) )dr+
’ (17)

+2/0 Ao (y) sinkmy dy + % ((—1)’“142(0) - Al(O))>.

Initial boundary value problem for B(y,t) after omitting Reynolds number takes the next
form

B, = (B,, +24)/Pr,

B(y,0) = Bo(y),
B(0,t) = By(t),
B(1,t) = By(t);

Solution for B(y,t) is equal to
= gi(t)sinkmy + (Ba(t) — Bi(t))y + Ba(t),

where

1) = e<’”>2t/”< [P (2 (0 Batr) - Bar) = o (1)) 0 0)

(18)

o0

+% ;g;(T))dT + 2/0 By (y) sin kmy dy + % ((—1)’“32(0) - 31(0))> :

Boundary-initial problem for M (y,t)

= (Myy, — ¥ Ay,)/Se,
M(y,0) = MO( )s
My(0,t) = ¥A,(0,1),
My(1,t) = ¢Ay(1 t).
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The answer is equal to
M(y,t) = 3 gh(t) coskmy + vy (A,(1,1) = 4,0,8)) /2 + A, (0, 1)y,
k=1

and corresponding g3 (t) is

2 ¢ 2 p . —1)k —
gi(t) = e~ (hm)t/Se (Zﬁ/ p(km)T/Se (AQ(T) B Al(r)) (1)71(17—+
0

2
1 ; (19)
21) (-1)F —1
+2 [ My(y)coskmydy — =) (A3(0) — A1(0)) 2 )
0
Solving the problem for N(y,t) completely is similar to one for M (y,t), so
Ny = (Nyy +2M — 20 A — ¢ By,)/Sc,
N(y,O) = NO(y)7
Ny(1,t) = ¥By(1,1t).
As solution for M (y,t) here
N(y,t) =Y git)coskmy + ¢y’ (By(1,t) — By(0,1))/2 + By (0, 1)y
k=1
and
s —emtsse | [Ckmyzessel 20 (4 . (—DF -1, 2 &
ghlr) = e ‘ 2 (Bor) - Bur)) T 23 b))+
0 k=1 (20)
! 2 (-1)F -1
+2 | No(y)coskmydy — — (BQ(O) - B1(0)> — |
0 ™ k

As it mentioned before from equation (12) and (13), knowing A(y,t), B(y,t), M(y,t) and
N(y,t), temperature and concentration in the mixture easily are determined.

To find Ul(y,t) are used connector equation (14) and next condition, that is resulted from
slip condition V' (1,t) =0

/1 Ul(z,t)dz = 0. (21)
0

Let us introduce new function as Z(y,t) = Uy(y,t) then with differentiation verse y from
equation (14) when Re — 0, also using boundary conditions and combining them with integral
properties, the following problem will be appeared

Zyy —Zy= f(yat)v
1
0
1
/ yZ(y,t)dy =0,
0

Z(4.0) = Zoly) = a%Uo(y) — Uy (W),
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where
F(y,t) = 2G(A(y, 1) + M(y,1)):
here purpose is to find solution of this problem, so

Z(y,t) =Y (y)T(t)

problem (22) reduce to

+>\Y*O
/Y (23)
/OyY()d =0.

here A is constant and does not depend on y and ¢.
General form of solution for this system is

Y(y) = C1 cos(VAy) + Cosin(vAy), A #0. (24)
To find C; and Cs use boundary conditions from (23). So, after solving characteristic equation,

tan@z@, A — 2+ D, k — oo.

suppose \g = 437, so tan ug = i, and after substitution that in boundary conditions
Yi(y) = Clsin g (2y — 1)
it is very easy to show )
/O Yin(y)Ya(y) dy =0, m #n,
for this term it is fair the next expression

1
0

Using this condition, last form for Yy (y) is equal to

Yi(y) = sin ur(2y — 1),

sin pg

and subsequently
=3 Zi(y,t) = > Yal(y)Ti( \TZ blnuk (2y —1). (25)
k=1 k=1

Also it is possible to write known function f(y,t) as below

o0

Z )sin pg(2y — 1),

so, with series for Z(y,t) and f(y,t) and using (22)
1 t .
pe(t) = (2 / Uoy (y) sin pui(2y — 1)dy — / fi(r)etvirar) 2oLk i,
0 0 V2
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If take integrate from all sides of equation (14) along y from 0 to 1, then knowing Z(y, t) from (25),

—2fzpk —2G// A(r, 1) +M(rt))drdy, (26)

therefore
> > DF = Dkry  kny 1
t)2\/§Zpk(t)2G<ZQ k:27r2 +ng ( 4) + 5 +E) -
k=1 1

2G<é ) (Aa(t) - Al(t))—i—;Al(t)).

So, knowing w(t) original function U(y,t) determine from

y
Ult) = [ 200
0
here U(y,t) = Z Pt (cos w2y —1) —cos Mk)- Hence U(y, t) is completely detected

g SIn
and then using equatlon (15) will be find V (y, 1)

1
Z Pe(t <2M (s1nuk(2y -1+ sm,uk) — ycos uk>.

< i Sin

Last step is finding pressure from (16)

p(z,y,t) = [26’ /y (A(z, t) + M(z,t)) dz + w(t)] 2%/2 + a(y,t),

0

where
! _ - ki 3 kmy 1 — cos kmy
/0 (A(z,t) JrM(z,t)) dz = ;gé(t)<6((1)k — 1)+ . 2+ = )+
o 3
#3020 Gy 1 (4a(0) ~ 4 0) 2+ Ao,
k=1
A% ~ 5, [ 1—coskmy kﬂwy?’((_l)k—l) kmpy?
a(y,t) = G; o sin kmy + G};%@)( = + G + —

_ﬁ i Dr(t) (cosu;C —cosug(2y — 1) N Y sin ug 3 y? cosuk)+
2 £ psin g 4, 2 2

Zuf:mu (COS“’“(Z?/_U_COSM)+G(B2(t)—31(t))( +1/)) +GBl()

In above expressions all values for g} (t), g2(t), g;(t) and g;(t) are known from (17), (18), (19)
and (20) respectively. Thus all dimensionless unknown functions U, V,p, T and C are detected.
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O6 ogHOM AByMEPHOM JIBU>KEHNN OMHAPHOII CMeCH B IIJIOCKOM
cjoe

Hemar /Tapabu

WNucruryT MareMaTuku U pyHIAMEHTAJILHON MHMOPMATUKHI
Cubupckuii dheepasbHbIil YHUBEPCUTET

Csobozunrit, 79, Kpacuosipck, 660041

Poccus

Xamua Majax

MucTuTyT npukia Hoil MaTeMaTHKI U MEXaHUKH
Cankt-IlerepOyprckuit mommrexamdeckuiit yausepcurer [lerpa Bemukoro
TTonurexauueckas, 29, Cankr-Ilerepbypr, 195251

Poccus

B dannoti pabome oueHUBAEMCA CNEUUAADHOE PEWEHUE ONA YPABHEHUT MePMOOUPPHY3UL, KOMOPbLE ONU-
cusarom deudicerue bunaproll cmecu 6 naockom caoe. Kozda wucao Petinoavdca mano (Re — 0), mo
MOACHO YNPOCTNUMD IMU YPasHeHUuA. dmobv, Hatimu dasaeHue, 6 xode peueHus NPobAEMBL HEOOTOOUMO
pewums obpamuyro 3adawy. Omeemov, Ha HECTNAUUOHAPHOM PENCUME NPEICTNABAEHDL 8 MPULOHOMEMPU-
yeckux padax Dypve.

Karoueswie caosa: wucao Petinoavdea, ypasnenus mepmoduddysuu, 6Gunaphas cmecsb, HeCMaUUoOHapHvil
DedACUM.
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