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In this paper is estimated a special solution for solving thermal diffusion equations, that describe motion
of binary mixture in a flat layer. When Reynolds number (Re → 0) is small, it is possible to simplify
these equations to some easier problems. In solving process to find pressure it is necessary to solve an
inverse problem. Answers for non-stationary regime are presented in trigonometric Fourier series.
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Introduction

Exact and approximate solutions of hydrodynamics equations are widely used for mathe-
matical modeling of many processes in the chemical and petrochemical technology [1], including
convection of mass processes and heat transfer, and various natural phenomena [2].

This paper deals with the unsteady motions of a binary mixture in a flat layer with solid
fixed walls. Solution of the thermodiffusion convection equations is sought in a special form: one
velocity component is a linear function along the length of channel, and the temperature and
concentration are quadratic functions along this coordinate.

First time such solutions for the stationary Navier-Stokes equations are considered by
Hiemenz [3]. A review for similar type of exact solutions is available in [4]. The solution was
used to describe the flow of a viscous fluid on a plane taking into account the adherence on it [5].
For moving plates nonstationary solutions Himenz was considered in [6]. In the works [7] and [8]
given further development of the results [6], when distance between the plates varies according
to a power function of time.

If in Himenz solution, pressure depends only on one spatial variable, then for the correspond-
ing systems of equations it is necessary to solve direct problem [9]. In general, longitudinal
pressure gradient further velocity, temperature and concentration fields are desired functions. In
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this case, the problem is reduced to a series of one-dimensional inverse problems for parabolic
equations (thermal conductivity). For creeping motions (Reynolds number Re ≪ 1) is found
exact solution of non-stationary problems.

1. Problem statement

Consider a binary mixture that is located in the gravity field with acceleration vector g⃗ =

(0,−g). For such mixture concentration ( mass fraction ) C, temperature T , pressure p and
velocity components u, v are desirable. Fig. 1 shows the scheme of movement field.

Fig. 1. Scheme of movement field

Here mass flux is described by

J = −ρ0 (D∇C +DT∇T ) , (1)

where ρ0 is mixture density at average temperature and concentration; D is diffusion coefficient;
DT is thermal diffusion coefficient. These coefficients, in general, depend on temperature and con-
centration. However, under the mentioned assumptions, they are constants: D = D (Tav, Cav),
DT = DT (Tav, Cav).

Here is used model Oberbeck-Boussinesq for description of density

ρ = ρ0 (1− βT (T − Tav)− βC (C − Cav)) ,

where ρ0 = const > 0, βT is thermal expansion coefficient and βC is concentration expansion
coefficient.

For the binary mixture with these characteristics, which on it’s walls apply slip condition and
given temperatures and finally without material flow through those, next dimensionless equations
are fair

ux + vy = 0,

ut +Re (uux + vuy) + px = uxx + uyy,

vt +Re (uvx + vvy) + py = vxx + vyy +G (T + C) ,

Tt +Re(uTx + vTy) = (Txx + Tyy) /Pr,

Ct +Re (uCx + vCy) = ((Cxx + Cyy)− ψ (Txx + Tyy)) /Sc.

(2)

here appear five dimensionless parameters:
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Reynolds number Re = U0h/µ, which represents ratio of inertial force to viscous friction
force, where µ is dynamic viscosity, U0 is velocity characteristic, h is height of layer; Prandtl
Pr = µ/χ and Schmidt Sc = χ/D numbers, which characterize relative intensity of momentum
transfer and molecular heat and mass transfer, respectively, χ is thermal diffusivity coefficient;
split ratio ψ = −βCDT /βTD, which characterizes effect of thermal diffusion; parameter G =

Gr/Re = gβT∆Th
2/U0µ is a measure for relation of buoyancy force to inertial force acting on

flow and Gr is Grashof number and ∆T is temperature difference characteristic in the system.
You can see complete description about this process in [10].

Since number of equations (five) is equal to number of unknown functions (u, v, p, T, C), the
resulting system (2) will be closed.

Boundary conditions in dimensionless form can be rewritten as

u(x, y, t) |y=0= 0, v(x, y, t) |y=0= 0,

u(x, y, t) |y=1= 0, v(x, y, t) |y=1= 0;
(3)

T (x, y, t) |y=0= (T1(x, t)− Tav) /∆T,

T (x, y, t) |y=1= (T2(x, t)− Tav) /∆T ;
(4)

Cy = ψTy, for x = 0, 1. (5)

And finally initial conditions

u(x, y, t) |t=0= u0(x, y)/U0,

v(x, y, t) |t=0= v0(x, y)/U0,

ux(x, y, t) |t=0= −vy(x, y, t) |t=0,

T (x, y, t) |t=0= (T0(x, y)− Tav)/∆T,

C(x, y, t) |t=0= βT (C0(x, y)− Cav)/βC∆T.

(6)

In following section will discuss solution of thermal diffusion equations in a special type, which
describes two-dimensional motion in a plane layer.

2. Special solution for initial boundary problems

Solution is considered in a special kind as

u(x, y, t) = U(y, t)x, v(x, y, t) = V (y, t). (7)

Applying this representation to motion’s equations (2) as it is explained in [10] will arise the
following initial-boundary problems when 0 < y < 1 and t > 0:

At +Re(2AU + V Ay) = Ayy/Pr,

A(y, t) |t=0= A0(y),

A(y, t) |y=0= A1(t),

A(y, t) |y=1= A2(t);

(8)
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Bt +ReV By = (Byy + 2A)/Pr,

B(y, t) |t=0= B0(y),

B(y, t) |y=0= B1(t),

B(y, t) |y=1= B2(t);

(9)

Mt +Re (2MU + VMy) = (Myy − ψAyy) /Sc,

M(y, t) |t=0=M0(y),

My(y, t) |y=0= ψAy(y, t) |y=0,

My(y, t) |y=1= ψAy(y, t) |y=1;

(10)

Nt +ReV Ny = (Nyy + 2M − 2ψA− ψByy)/Sc,

N(y, t) |t=0= N0(y),

Ny(y, t) |y=0= ψBy(y, t) |y=0,

Ny(y, t) |y=1= ψBy(y, t) |y=1 .

(11)

In above problems values for Ai(t) and Bi(t) when i = 1, 2 can obtained using boundary condi-
tions for temperature Ti(x, t) and next expression

Ai(t)x
2 +Bi(t) = (Ti(x, t)− Tav)/∆T,

similarly A0(y), B0(y), M0(y) and N0(y) are defined with initial conditions for temperature
T0(x, y), concentration C0(x, y) and next equations

A0(y)x
2 +B0(y) = (T0(x, y)− Tav)/∆T,

M0(y)x
2 +N0(y) = βT (C0(x, y)− Cav) /βC∆T ;

For solving (8)–(11) are used next connector equations, that make relation between
A(y, t), B(y, t),M(y, t), N(y, t) and U, V, T, C, p. The equations for detection temperature and
concentration are

T (x, y, t) = A(y, t)x2 +B(y, t), (12)

C(x, y, t) =M(y, t)x2 +N(y, t), (13)

also, such those equations for velocities components are

Uyy − Ut −Re(V Uy + U2) = 2G

∫ y

0

(
A(z, t) +M(z, t)

)
dz + w(t), (14)

and
Vy(y, t) = −U(y, t), (15)

in (14), w(t) is also unknown and it should be find in process of solving the problem. Finally
connector equation for pressure is

p(x, y, t) = Uyy − Ut −Re(V Uy + U2)x2/2 + a(y, t), (16)

where

a(y, t) = Vy −
∂

∂t

∫ y

0

V (z, t) dz +G

∫ y

0

(
B(z, t) +N(z, t)

)
dz −Re

∫ y

0

V (z, t)Vz(z, t) dz + a0(t).

it should be note, that in this problem, without loss of generality, a0(t) ≡ 0 is fair.
In following sections will discuss non-stationary solution of systems (8)–(11) under certain

conditions and will find all desire functions.
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3. Results

In this section, solutions for non-stationary regime are presented. In systems (8)–(11), it is
assumed that Re→ 0 (creeping motion) and G = Gr/Re = O(1). The last condition is necessary
to account effect of buoyancy force on the motion of mixture. Applying these assumption, will
have

At = Ayy/Pr,

A(y, 0) = A0(y),

A(0, t) = A1(t),

A(1, t) = A2(t);

Solution using separation of variables’ is:

A(y, t) =

∞∑
k=1

g1k(t) sin kπy +
(
A2(t)−A1(t)

)
y +A1(t),

here

g1k(t) = e−k2π2t/Pr

(
2

kπ

∫ t

0

ek
2π2τ/Pr

(
(−1)kÁ2(τ)− Á1(τ)

)
dτ+

+2

∫ 1

0

A0(y) sin kπy dy +
2

kπ

(
(−1)kA2(0)−A1(0)

))
.

(17)

Initial boundary value problem for B(y, t) after omitting Reynolds number takes the next
form

Bt = (Byy + 2A)/Pr,

B(y, 0) = B0(y),

B(0, t) = B1(t),

B(1, t) = B2(t);

Solution for B(y, t) is equal to

B(y, t) =

∞∑
k=1

g2k(t) sin kπy + (B2(t)−B1(t))y +B1(t),

where

g2k(t) = e−(kπ)2t/Pr

(∫ t

0

e(kπ)
2τ/Pr

( 2

kπ

(
(−1)kB́2(τ)−B́1(τ)

)
− 4

kπPr

(
(−1)kA2(τ)−A1(τ)

)
+

2

Pr

∞∑
k=1

g1k(τ)
)
dτ + 2

∫ 1

0

B0(y) sin kπy dy +
2

kπ

(
(−1)kB2(0)−B1(0)

))
.

(18)

Boundary-initial problem for M(y, t)

Mt = (Myy − ψAyy)/Sc,

M(y, 0) =M0(y),

My(0, t) = ψAy(0, t),

My(1, t) = ψAy(1, t).
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The answer is equal to

M(y, t) =
∞∑
k=1

g3k(t) cos kπy + ψy2
(
Ay(1, t)−Ay(0, t)

)
/2 + ψAy(0, t)y,

and corresponding g3k(t) is

g3k(t) = e−(kπ)2t/Sc

(
−2ψ

π2

∫ t

0

e(kπ)
2τ/Sc

(
Á2(τ)− Á1(τ)

) (−1)k − 1

k2
dτ+

+2

∫ 1

0

M0(y) cos kπy dy −
2ψ

π2
(A2(0)−A1(0))

(−1)k − 1

k2

)
.

(19)

Solving the problem for N(y, t) completely is similar to one for M(y, t), so

Nt = (Nyy + 2M − 2ψA− ψByy)/Sc,

N(y, 0) = N0(y),

Ny(0, t) = ψBy(0, t),

Ny(1, t) = ψBy(1, t).

As solution for M(y, t) here

N(y, t) =
∞∑
k=1

g4k(t) cos kπy + ψy2(By(1, t)−By(0, t))/2 + ψBy(0, t)y

and

g4k(t) = e−(kπ)2t/Sc

(∫ t

0

e(kπ)
2τ/Sc

(
−2ψ

π2

(
B́2(τ)−B́1(τ)

) (−1)k − 1

k2
+

2

Sc

∞∑
k=1

g3k(τ)
)
dτ+

+2

∫ 1

0

N0(y) cos kπy dy −
2ψ

π2

(
B2(0)−B1(0)

) (−1)k − 1

k2

)
.

(20)

As it mentioned before from equation (12) and (13), knowing A(y, t), B(y, t), M(y, t) and
N(y, t), temperature and concentration in the mixture easily are determined.

To find U(y, t) are used connector equation (14) and next condition, that is resulted from
slip condition V (1, t) = 0 ∫ 1

0

U(z, t) dz = 0. (21)

Let us introduce new function as Z(y, t) = Uy(y, t) then with differentiation verse y from
equation (14) when Re → 0, also using boundary conditions and combining them with integral
properties, the following problem will be appeared

Zyy − Zt = f(y, t),∫ 1

0

Z(y, t) dy = 0,∫ 1

0

yZ(y, t) dy = 0,

Z(y, 0) ≡ Z0(y) =
∂

∂y
U0(y) = U0y(y),

(22)
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where
f(y, t) = 2G

(
A(y, t) +M(y, t)

)
;

here purpose is to find solution of this problem, so

Z(y, t) = Y (y)T (t)

problem (22) reduce to
Y ” + λY = 0,∫ 1

0

Y (y) dy = 0,∫ 1

0

yY (y) dy = 0.

(23)

here λ is constant and does not depend on y and t.
General form of solution for this system is

Y (y) = C1 cos(
√
λ y) + C2 sin(

√
λ y), λ ̸= 0. (24)

To find C1 and C2 use boundary conditions from (23). So, after solving characteristic equation,

tan

√
λk
2

=

√
λk
2

, λk → (2k + 1)π, k → ∞.

suppose λk = 4µ2
k, so tanµk = µk and after substitution that in boundary conditions

Yk(y) = Ck sinµk(2y − 1)

it is very easy to show ∫ 1

0

Ym(y)Yn(y) dy = 0, m ̸= n,

for this term it is fair the next expression∫ 1

0

Y 2
k (y) dy = 1, m = n,

Using this condition, last form for Yk(y) is equal to

Yk(y) =

√
2

sinµk
sinµk(2y − 1),

and subsequently

Z(y, t) =
∞∑
k=1

Zk(y, t) =
∞∑
k=1

Yk(y)Tk(t) =
√
2

∞∑
k=1

pk(t)

sinµk
sinµk(2y − 1). (25)

Also it is possible to write known function f(y, t) as below

f(y, t) =
∞∑
k=1

fk(t) sinµk(2y − 1),

so, with series for Z(y, t) and f(y, t) and using (22)

pk(t) =
(
2

∫ 1

0

U0y(y) sinµk(2y − 1)dy −
∫ t

0

fk(τ)e
4µ2

kτdτ
) sinµk√

2
e−4µ2

kt.
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If take integrate from all sides of equation (14) along y from 0 to 1, then knowing Z(y, t) from (25),

w(t) = 2
√
2

∞∑
k=1

pk(t)− 2G

∫ 1

0

∫ y

0

(
A(r, t) +M(r, t)

)
dr dy, (26)

therefore

w(t) = 2
√
2

∞∑
k=1

pk(t)− 2G

( ∞∑
k=1

g3k(t)
1− (−1)k

k2π2
+

∞∑
k=1

g1k(t)
( ((−1)k − 1)kπψ

24
+
kπψ

6
+

1

kπ

))
−

−2G

(
1

6
(1 + ψ)

(
A2(t)−A1(t)

)
+

1

2
A1(t)

)
.

So, knowing w(t) original function U(y, t) determine from

U(y, t) =

∫ y

0

Z(r, t) dr,

here U(y, t) = −
√
2

2

∞∑
k=1

pk(t)

µk sinµk

(
cosµk(2y−1)−cosµk

)
. Hence U(y, t) is completely detected

and then using equation (15) will be find V (y, t)

V (y, t) =

√
2

2

∞∑
k=1

pk(t)

µk sinµk

(
1

2µk

(
sinµk(2y − 1) + sinµk

)
− y cosµk

)
.

Last step is finding pressure from (16)

p(x, y, t) =

[
2G

∫ y

0

(
A(z, t) +M(z, t)

)
dz + w(t)

]
x2/2 + a(y, t),

where∫ y

0

(
A(z, t) +M(z, t)

)
dz =

∞∑
k=1

g1k(t)
(kπψ

6
((−1)k − 1)y3 +

kπψ

2
y2 +

1− cos kπy

kπ

)
+

+
∞∑
k=1

g3k(t)

kπ
sin kπy +

(
A2(t)−A1(t)

)1 + ψ

2
y2 +A1(t)y,

a(y, t) = G
∞∑
k=1

g4k(t)

kπ
sin kπy +G

∞∑
k=1

g2k(t)

(
1− cos kπy

kπ
+
kπψy3

(
(−1)k − 1

)
6

+
kπψy2

2

)
−

−
√
2

2

∞∑
k=1

ṕk(t)

µk sinµk

(cosµk − cosµk(2y − 1)

4µ2
k

+
y sinµk

2µk
− y2 cosµk

2

)
+

+

√
2

2

∞∑
k=1

pk(t)

µk sinµk

(
cosµk(2y − 1)− cosµk

)
+G

(
B2(t)−B1(t)

)
(1 + ψ)

y2

2
+GB1(t)y.

In above expressions all values for g1k(t), g
2
k(t), g

3
k(t) and g4k(t) are known from (17), (18), (19)

and (20) respectively. Thus all dimensionless unknown functions U, V, p, T and C are detected.
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Об одном двумерном движении бинарной смеси в плоском
слое

Немат Дараби
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Свободный, 79, Красноярск, 660041

Россия
Хамид Малах

Институт прикладной математики и механики
Санкт-Петербургский политехнический университет Петра Великого

Политехническая, 29, Санкт-Петербург, 195251
Россия

В данной работе оценивается специальное решение для уравнений термодиффузии, которые опи-
сывают движение бинарной смеси в плоском слое. Когда число Рейнольдса мало (Re → 0), то
можно упростить эти уравнения. Чтобы найти давление, в ходе решения проблемы необходимо
решить обратную задачу. Ответы на нестационарном режиме представлены в тригонометри-
ческих рядах Фурье.

Ключевые слова: число Рейнольдса, уравнения термодиффузии, бинарная смесь, нестационарный
режим.
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