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A probabilistic mechanism of the stochastic excitement in a model of flow reactor is studied. To analyze
this phenomenon in regions of mono- and bistability the stochastic sensitivity function technique and the
method of confidence ellipses are used.
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Introduction

Mathematical modeling and analysis of nonlinear dynamical systems in the presence of ran-
dom perturbations attracts attention of researchers from various fields of science. It is well
known that noise not only blurs the attractors of deterministic models but it can also lead to
qualitative changes in the stochastic dynamics due to nonlinearity of these models. The interplay
of nonlinearity and stochasticity results in such phenomena as noise-induced transitions [1, 2],
stochastic resonance [3,4], noise-induced order [5], chaos [6] and stochastic excitability [7]. These
phenomena are found in mechanics, physics, population and neural dynamics. Typically, the
system is extremely sensitive to noise near bifurcation points. An analysis of the effects of noise
on the oscillatory systems near the soft and hard Hopf bifurcations attracted attention of many
researchers (see, e.g., [8–12]).

Mathematical models of chemical kinetics [13] have always been a source of new problems
in nonlinear dynamics. The classical example is the model of the Belousov-Zhabotinsky reac-
tion [14]. Among the models of chemical kinetics, models of chemical flow reactor with ideal
mixing [15] play an important practical role.

One of the models of chemical flow reactor is considered in this paper. The phenomenon of
stochastic excitability is demonstrated and analyzed for this model. There are well developed
analytical methods for deterministic models. The analysis of the stochastic dynamics of nonlin-
ear systems faces serious difficulties. Indeed, the probability density function that satisfies the
Fokker-Planck-Kolmogorov equation gives a full probabilistic description of stochastic regimes.
The direct use of this equation is very difficult even in two-dimensional case. In this situation,
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one of the most common methods of stochastic analysis is a direct numerical simulation of ran-
dom trajectories and their subsequent statistical processing. However, this method is very costly
for parametric studies. Then the use of approximations and asymptotics based on the method of
quasipotential [16] and the stochastic sensitivity functions technique [17,18] is very actual. The
short description of this technique is given in the Appendix.

A brief description of the dynamic regimes of the initial deterministic model of chemical flow
reactor is given in Sec. 1.

Probabilistic mechanisms of stochastic excitability in the chemical reactor model with random
perturbations are studied in Sec. 2. Sec. 2.1 is devoted to the parametric region where the original
deterministic model exhibits at first glance a very simple regime with the stable equilibrium in
the form of a single attractor. It is shown that due to the nonlinearity of the model there is
intermittency of stochastic fluctuations of large and small amplitudes in this region. Analysis
of the probabilistic mechanism of the transition of system to supercritical regime is based on
the stochastic sensitivity functions technique and the method of confidence ellipses. The same
approach is used in Sec. 2.2 for the study of stochastic excitability in the bistability region.

1. Deterministic model

Consider a classical model of chemical flow reactor with ideal mixing introduced by Volter
and Salnikov [15]

ẋ = −x exp

(
−1

y

)
+ l(a− x), ẏ = x exp

(
−1

y

)
+m(b− y), (1)

where x is the dimensionless current concentration of a reagent, y is the dimensionless tempera-
ture, a is the input concentration in the reactor, b is the input temperature and l and m are pos-
itive parameters of the reactor. We follow [13] in the paper and use l = 0.5, m = 0.25, b = 0.165,
a is the control parameter. Even small variations in parameter a can lead to significant changes
in the dynamics of the system.

Fig. 1 shows the bifurcation diagram of model (1). One can see two bifurcation points
a1 = 1.580079 and a2 = 1.582843. Throughout the whole interval the system has equilibrium.
This equilibrium is stable if a < a2. If a > a2 the equilibrium loses its stability. Along with the
equilibrium, the system has another attractor if a > a1, namely, a stable limit cycle. It appears
at a = a1 as a result of the hard Hopf bifurcation. Thus, one can distinguish three intervals that
correspond to the qualitatively different dynamic regimes of deterministic system (1). If a < a1
the system is monostable with the stable equilibrium in the form of a single attractor. In the
interval a1 < a < a2 the system is bistable with two attractors. They are the stable equilibrium
and cycle. Their domains of attraction are separated by a separatrix in the form of the unstable
cycle. If a > a2 the system is monostable with the limit cycle in the form of a single attractor. In
Fig. 1 y-coordinates of the stable equilibria are shown as a red solid line and unstable equilibria
are shown as a red dotted line. Corresponding y-coordinates for cycle extreme values are shown
blue in color. Solid line indicates stable cycle and dashed line indicates unstable cycle.

Thus, as the input concentration a changes some kind of hysteresis is observed in the reactor.
Let us first consider what happens when parameter a increases. If a < a1 the reactor goes to
the stable regime. When a grows and a < a2 minor changes of the equilibrium characteristics
of concentration and temperature are observed in the reactor. However, when the parameter
passes through the bifurcation point a2 where a > a2, an abrupt breakdown from equilibrium
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Fig. 1. Bifurcation diagram of deterministic model (1)

regime to oscillatory mode occurs in the reactor. With the decrease of parameter a where a > a1
the reactor operates in an oscillatory mode. When parameter a passes through the point of
bifurcation a1 where a < a1 the reverse jump from oscillating mode to equilibrium occurs.

The presence of even small random perturbations can significantly change this scenario.

2. Dynamics of stochastic model

Consider model (1) with random disturbances

ẋ = −x exp

(
−1

y

)
+ l(a− x) + ε1ξ1, ẏ = x exp

(
−1

y

)
+m(b− y) + ε1ξ2. (2)

Here ξ1,2(t) are standard Gaussian noises with parameters Eξi(t) = 0, Eξi(t)ξi(τ) = δ(t− τ),
ε1,2 are noise intensities.

Under the influence of random perturbations stochastic trajectories of system (2) leave the
stable equilibrium and randomly oscillate around it. The dispersion of the deviations of these
trajectories from the equilibrium depends on the intensity of the noise and stochastic sensitivity
of the system. Consider what happens in the system when the noise intensity increases.

2.1. Stochastic excitability in the region of stable equilibrium

Consider the dynamics of stochastic system (2) in the region of monostability a < a1, where
the deterministic model has a stable equilibrium in the form of a single attractor. Here, peculiar-
ities of the phase portrait of deterministic system (1) play an important role. The equilibrium is
a stable focus but the behaviour of trajectories depends essentially on the initial deviation. For
a small initial deviation, the trajectory monotonically approaches to the equilibrium along the
regular spiral curve. If the deviation exceeds some threshold the trajectory at first goes far away
from the equilibrium and after that it begins to approach the equilibrium (see Fig. 2 a).

As parameter a approaches the bifurcation point a1 this transient phase consists of series of
large-amplitude turns (see Fig. 2 b). Initial data that correspond to large-amplitude deviations
and damped oscillations are separated by a specific curve (pseudoseparatrix) in the phase plane.
This curve separates subcritical and supercritical regions. Computed pseudoseparatrices are
shown in Fig. 2 by red dashed lines.
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a)

b)

Fig. 2. Phase portraits of the deterministic model for a) a = 1.57, b) a = 1.58 (with enlarged
fragment)

For small random perturbations stochastic trajectories are concentrated near the stable equi-
librium and they are entirely in the subcritical region. The solutions x(t), y(t) of system (2)
oscillate with small stochastic amplitudes around the equilibrium values.

When the noise intensity increases stochastic trajectories fall into a supercritical region.
They considerably deviate from the equilibrium and return again in the neighborhood of the
equilibrium. As a result, stochastic oscillations of small amplitude alternate with stochastic
oscillations of large amplitude.

Fig. 3 shows trajectories and corresponding solutions for a = 1.57 and a = 1.58 and for
various noise intensities (ε1 = ε2 = ε). Results of simulation for a = 1.57, ε = 0.0004 (red) and
ε = 0.0008 (blue) are shown in Fig. 3 a. As one can see, for ε = 0.0004 solutions do not intersect
the pseudoseparatrix and the system functions in a subcritical regime. When the noise increases
(ε = 0.0008) the trajectory exhibits large-amplitude deviations in crossing the separatrix. The
system turns into a supercritical mode where low-amplitude oscillations alternate with large
amplitude deviations. These two modes are observed for a = 1.58, ε = 0.0001 and ε = 0.0003

(see Fig. 3 b). As one can see, the closer the parameter a to the bifurcation point a1 the smaller
noise is required to put the system in the supercritical regime. This change clarifies the geometric
mechanism of stochastic excitability in the region of the stable equilibrium. It should be noted
that stochastic excitability is observed in this model at very low, in fact, at the background noise.

To conduct the parametric analysis of stochastic excitability the stochastic sensitivity func-
tion technique and the method of confidence ellipses are used (see Appendix). Eigenvalues
λ1(a), λ2(a) and the corresponding eigenvectors of stochastic sensitivity matrix W (a) represent
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a)

b)

Fig. 3. Phase portraits and solutions y(t) of stochastic system for a) a = 1.57 with ε = 0.0004
(red), ε = 0.0008 (blue), b) a = 1.58 with ε = 0.0001 (red), ε = 0.0003 (blue)

main spatial characteristics of the probability distribution of random states of stochastic system
(2) around the equilibrium of deterministic system (1). The a-dependence of λ1(a) > λ2(a) is
ploted in Fig. 4. Large values of the sensitivity (>104) are the cause of high excitability of this
stochastic model.

Fig. 4. Stochastic sensitivity of equilibria

The spatial distribution of random states around the equilibrium can be described by confi-
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dence ellipses. Eigenvectors of the stochastic sensitivity matrix W (a) determine the directions of
the principal axes and eigenvalues define the size of the semi-axes of the confidence ellipses (see
Appendix). Fig. 5 shows random states and the confidence ellipse for system (2) with a = 1.57,
ε = 0.0001 and confidence probability p = 0.99. As one can see, the confidence ellipse adequately
reflects the spatial features of the dispersion of random states.

Fig. 5. Random states and confidence ellipse for a = 1.57 with ε = 0.0001

The mutual arrangement of the pseudoseparatrix and confidence ellipses can be used as a
criterion of the system transition from the subcritical to the supercritical regime. Indeed, the
ellipse size is proportional to the intensity of the noise. For low noise ellipse lies entirely in the
subcritical region. The ellipse intersects the separatrix and includes points of the supercritical
region with increase in noise. This intersection is taken to be an indicator of the transition to
the supercritical regime with large-amplitude oscillations.

Confidence ellipses and pseudoseparatrices of the system for a = 1.57 and a = 1.58 and
for various noise intensity are shown in Fig. 6. In Figure 6 a the smaller ellipse corresponds

a) b)

Fig. 6. Confidence ellipses for a) a = 1.57 and ε = 0.0004, ε = 0.0008, b) a = 1.58 and
ε = 0.0001, ε = 0.0003. Pseudoseparatrix is shown red in color.

to ε = 0.0004 and larger ellipse corresponds to ε = 0.0008 for a = 1.57. As one can see, the
ellipse does not touch the pseudoseparatrix for ε = 0.0004, so the system operates in subcritical
mode (see Fig. 3 a, red color). When the noise increases (ε = 0.0008), the ellipse crosses the
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pseudoseparatrix and the system falls into the supercritical mode (see Fig. 3 a, blue color). In
Fig. 6 b, the smaller ellipse corresponds to ε = 0.0001 and the larger ellipse corresponds to
ε = 0.0003 for a = 1.58. As one can see, in this case, the transition of the system into the
supercritical mode can be also predicted from location of confidence ellipses (see Fig. 3 b).

2.2. Stochastic excitability in a bistability zone

Let us consider the dynamics of stochastic system (2) in the bistability region a1 < a < a2.
The deterministic model has two attractors in this region (a stable equilibrium and a stable limit
cycle) separated by an unstable cycle (see Fig. 7 a for a = 1.582 and ε = 0). In this region,
the unstable limit cycle plays a role of the separatrix that divides domains of attraction of the
equilibrium and the stable cycle.

a)

b)

Fig. 7. Generation of large-amplitude stochastic oscillations for a = 1.58: a) stable cycle (blue
solid line), an unstable cycle (red dashed line) and equilibrium (black dot) of the deterministic
system; b) stochastic trajectory and solutions of the stochastic system with ε = 0.00004 (black)
and ε = 0.00006 (green)

Stochastic trajectories that start from a stable equilibrium are located entirely within the
domain of attraction of this equilibrium for weak noise. This means that there is a subcritical
dynamic regime. The solution x(t), y(t) of system (2) oscillates with a small amplitude around
the equilibrium.

When the intensity of noise increases, stochastic trajectories intersect separatrix (unstable
limit cycle), go to the domain of attraction of the stable cycle and then continue to move near
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the closed phase curve of this cycle.
Fig. 7 b shows the trajectory starting from the equilibrium and the corresponding solution

for a = 1.582, the noise intensity ε = 0.00004 (black line) and ε = 0.00006 (green line). As
one can see, for ε = 0.00004 random trajectories do not cross the separatrix and the system
operates in the subcritical regime. When the noise increases (ε = 0.00006), trajectories intersect
the separatrix and start to oscillate in the neighborhood of the stable cycle. Thus, the system
turns from small-amplitude oscillations to large-amplitude oscillations.

Using the stochastic sensitivity functions technique and the confidence ellipses method, we
obtain the following results (see Fig. 8).

Fig. 8. Confidence ellipses for a = 1.582 and ε = 0.00004 (small ellipse), ε = 0.00006 (large
ellipse). Unstable cycle is plotted by red dashed line and stable cycle is plotted by blue solid line

As one can see, for ε = 0.00004 the ellipse lies entirely in the domain of attraction of the
equilibrium. The system operates in subcritical mode (see Fig.7 b, black line). When the noise
increases (ε = 0.00006), the ellipse intersects the separatrix (unstable cycle) and the system
falls into a supercritical mode (see Fig.7 b, green line). As can be seen from a comparison with
the results of direct numerical simulation of random trajectories, the arrangement of confidence
ellipses can be used for the prediction of transition to the supercritical mode.

Appendix

To study the influence of random perturbations on dynamical systems, the following stochastic
system is used

ẋ = f(x) + εσ(x)ξ, (3)

where x is n-dimensional vector, f(x) is sufficiently smooth n-dimensional vector function, ε

is a scalar parameter of noise intensity, σ(x) is a sufficiently smooth n × n-matrix function
that defines the dependence of random disturbances on the system states, ξ(t) is n-dimensional
Gaussian white noise with the parameters Eξ(t) = 0, Eξ(t)ξ⊤(τ) = δ(t − τ)I, I is the identity
n× n-matrix.

It is assumed that deterministic system (3) (ε = 0) has an exponentially stable equilibrium x̄.
For weak noise one can use the following asymptotics for stationary density ρ(x, ε) of random

states distribution around the equilibrium ρ(x, ε) ≈ K ·exp
(
−v(x)

ε2

)
, where v(x) is the quasipo-
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tential [16]. In a small neighborhood of the equilibrium x̄ we use a quadratic approximation for

the quasipotential v(x) ≈ 1

2

(
x − x̄,W−1(x − x̄)

)
, where ( · , · ) is the scalar product. This

approximation allows us to represent the asymptotic behaviour of the stationary density in the
form of a normal distribution ρ(x, ε) ≈ K · exp

(
− (x−x̄,W−1(x−x̄))

2ε2

)
with covariance matrix ε2W

which characterizes the dispersion of random trajectories of stochastic system (3) around the
equilibrium x̄.

The matrix W is a unique solution of the algebraic equation

FW +WF⊤ = −S, (4)

where F =
∂f

∂x
(x̄), S = σ(x̄)σ(x̄)⊤.

Matrix W relates the noise intensity ε2 to the covariance ε2W of random states around the x̄.
It plays a role of the matrix stochastic sensitivity coefficient of the equilibrium x̄.

This matrix describes the spatial arrangement of random states of stochastic system (3)
around the deterministic equilibrium x̄. Using this matrix, we can construct the corresponding
confidence domains. In the two-dimensional case, the confidence ellipse is defined by the equation(

x− x̄,W−1(x− x̄)
)

= 2k2ε2, (5)

Let us assumed that λ1, λ2 are eigenvalues and u1, u2 are normalized eigenvectors of W . Then
using coordinates z1 = (x− x̄, u1) and z2 = (x− x̄, u2), the equation of the confidence ellipse can

be written in the standard form
z21
λ1

+
z22
λ2

= 2k2ε2.

The stochastic sensitivity functions technique and the method of confidence domains was
successfully used in the analysis of noise-induced transitions [17,18] and chaos control [19].

This work was partially supported by the RFBR, no. 16-08-00388 and by the Government of
the Russian Federation, Act 211, contract 02.A03.21.0006

References

[1] W.Horsthemke, R.Lefever, Noise-Induced Transitions, Berlin, Springer, 1984.

[2] Yu.I.Neimark, P.S.Landa, Stochastic and chaotic oscillations, Moscow, Nauka, 1987 (in
Russian).

[3] M.D.McDonnell, N.G.Stocks, C.E.M.Pearce, D.Abbott, Stochastic resonance: From Sup-
rathreshold Stochastic Resonance to Stochastic Signal Quantization, Cambridge University
Press, 2008.

[4] V.S.Anishchenko, V.V.Astakhov, A.B.Neiman, T.E.Vadivasova, L.Schimansky-Geier, Non-
linear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development,
Springer-Verlag, Berlin–Heidelberg, 2007.

[5] K.Matsumoto, I.Tsuda, Noise-induced order, J. Stat. Phys., 33(1983), 87–106.

[6] J.B.Gao, S.K.Hwang, J.M.Liu, When can noise induce chaos? Phys. Rev. Lett., 82(1999),
113-1135.

– 277 –



Irina A.Bashkirtseva, Polina M.Fominykh Analysis of the Stochastic Excitement in a Model ...

[7] B.Lindner, J.Garcia-Ojalvo, A.Neiman, L.Schimansky-Geier, Effects of noise in excitable
systems, Physics Reports, 392 (2004), 321-424.

[8] P.S.Landa, Nonlinear Oscillations and Waves in Dynamical Systems, Springer, 1996.

[9] O.V.Ushakov et al, Coherence resonance near a Hopf bifurcation, Phys. Rev. Lett., 95 (2005),
123903.

[10] I.Bashkirtseva, L.Ryashko, H.Schurz, Analysis of noise-induced transitions for Hopf sys-
tem with additive and multiplicative random disturbances, Chaos, Solitons and Fractals,
39(2009), 72–82.

[11] A.Zakharova, T.Vadivasova et al, Stochastic bifurcations and coherencelike resonance in a
self-sustained bistable noisy oscillator, Phys. Rev. E, 81(2010), 011106.

[12] I.Bashkirtseva, T.Ryazanova, L.Ryashko, Stochastic bifurcations caused by multiplicative
noise in systems with hard excitement of auto-oscillations, Phys. Rev. E, 92(2015), 042908.

[13] V.I.Bykov, S.B.Tsybenova, Nonlinear models of chemical kinetics, Moscow, Krasand, 2011
(in Russian).

[14] A.M.Zhabotinsky, Concentration Auto-Oscillations, Moscow, Nauka, 1974 (in Russian).

[15] B.V.Volter, I.E.Salnikov, Stability of operation modes of chemical reactors, Moscow, Khi-
miya, 1981 (in Russian).

[16] M.I.Freidlin, A.D.Wentzell, Random Perturbations of Dynamical Systems, Springer, New
York, 1984.

[17] I.Bashkirtseva, L.Ryashko, Sensitivity analysis of stochastic attractors and noise-induced
transitions for population model with Allee effect, Chaos, 21(2011), 047514.

[18] I.Bashkirtseva, A.B.Neiman, L.Ryashko, Stochastic sensitivity analysis of the noise-induced
excitability in a model of a hair bundle, Phys. Rev. E, 87(2013), 052711.

[19] I.Bashkirtseva, G.Chen, L.Ryashko, Stochastic equilibria control and chaos suppression for
3D systems via stochastic sensitivity synthesis, Communications in Nonlinear Science and
Numerical Simulation, 17(2012), 3381–3389.

Анализ стохастической возбудимости в модели проточно-
го реактора

Ирина А. Башкирцева
Полина М. Фоминых

Институт математики и компьютерных наук
Уральский федеральный университет

Ленина, 51, Екатеринбург, 620000
Россия

В работе исследован вероятностный механизм явления стохастической возбудимости в модели
проточного реактора. Для параметрического анализа этого явления в зонах моно- и бистабильно-
сти использована техника функций стохастической чувствительности и метод доверительных
эллипсов.

Ключевые слова: случайные возмущения, возбудимость, стохастическая чувствительность, до-
верительные эллипсы.
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