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Introduction

Real Gibbs measures arise in many problems of probability theory and statistical mechanics.
This measure, related to the Boltzmann distribution, generalizes the notion of canonical ensem-
ble. In addition, Gibbs measure is unique measure that maximizes the entropy of the expected
energy. But non-archimedean (p-adic) analogue of Gibbs measures have been little studied. It
is known that in the case of real numbers concepts of Gibbs measure and Markov random field
are identical. But in the p-adic case, the class of p-adic Markov random fields is wider than the
class of p-adic Gibbs measures [1]. One of the main problems of physics is to study the set of all
p-adic Gibbs measures (see e.g. [1,2]).

Let us present some main definitions from the theory of p-adic numbers (see [3-5]). Let p be

a prime number. Every rational number = # 0 can be represented in the form x = p”—, where
m
r,n € Z, m is a positive number, (n,m) = 1, where m and n are not divisible by p. A p-adic

norm of rational number z = p’"% is defined as follows
o= { P A
P 0, if . =0.

The completion of the set of rational numbers Q under p-adic norm leads to the field of p-adic
numbers Q, for every prime p. This p-adic norm satisfies the strong triangle inequality:

|z + ylp < max{falp, ylp}- (1)

This property shows that p-adic norm is a non-Archimedean norm.
It immediately follows from the strong triangle inequality that

1) if |z, # [ylp, then |z + yl, = max{[z[,, |yl,};
2) if x|, = |ylp, then |z + y|, < |z|y; For a € Q, and 7 > 0 we introduce

B(a,r) ={z € Qp: |z —al, <1}
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The p-adic logarithm is defined as

o0

log, () = log, (1 + (2 1)) = Y (- T

n=1

The power series converges for x € B(1,1). The p-adic exponent is defined as

0o "
expye) = 30 1
n=0

and the power series converges for = € B(0,p~*/(P~1).
Let = € B(0,p~ /@1, Then

[expy, (@), =1, |exp, () = 1y = |2[p, [log, (1 + )|y = |2[p,

log, (ex, (x)) = 7. exp(log,(1+)) = 1+u.
Let (X,B) be a measurable space, where B is an algebra of subsets of X. The function
p: B — Q, is a p-adic distribution if for any A;,..., A, € Bsuch that A, NA; =& (i # j) we
have the equality

n n
U Aj | = Z (A7)
j=1 j=1
A p-adic distribution is a measure if

sup{|u(A)|p : A € B} < 0.

A p-adic measure is a probability measure if u(X) = 1.
Let us consider the set of points x = (x1,...,xq), ¥; € Z, i = 1,...,d, i.e., the d is dimensional

d
integer lattice Z¢ with metric p(z';2") = Z |zt — 2!/|. Two points x and y of the lattice Z¢ are

=

called nearest-neighbors if p(z;y) = 1. It is symbohzed by < z,y >.
Let Q, be the set of p -adic numbers and ® = {—1,+1} is the set of spin values. By standard
way we can define the real (see. [6]) or p-adic (see [1]) Gibbs distribution for the Ising model.
For some natural number n the set

M, = {ac = (21, xq), x; 20,0 =1,...,d: p1(x,20) < n}

is called the fundamental quadrate. A point x € Z¢\ M, is called nearest-neighbor of the set
M, if there exists y € M,, such that < z,y >, i.e., p(x;y) = 1. The set of all nearest-neighbors of
M, is called the quadrate contour of M,, and it is designated as dM,,. Configuration o defined
on the set Z¢ is a function * € Z¢ — o(x) € ®. Restriction of o on any subset V C Z¢ is
designated as o(V), i.e., o(V) = {o(x), x € V}. The set of all configurations on M, is denoted
by €, and the set of all configurations on Z¢ is denoted by 2. Hamiltonian of the p-adic Ising
model is defined as follows:

o) =—J Y o(x)o(y), where |J|, <

<z,y>

(2)

@\H

Conditional Hamiltonian H,(c | ¢'), 0,0’ € Q of the p-adic Ising model on M,, has the form

Hy(o|o)=-] Y o —-J > o@)dy).

<z,y> <z,y>
@, y€Mnp zEMy ,y€EOMp,

In this paper, p-adic Gibbs distributions for the p-adic Ising model on Z% are studied.
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1. The p-adic Gibbs distributions

The p-adic conditional Gibbs distribution for configurations ¢ on the quadrate M,, and ¢’ on
Z%\ M,, with the Hamiltonian H, (o | ¢’) is the following p-adic number

(o | o') = By (o | 7))
" > exp, (=Hu(o | 0'))

o€y,

3)

Let us consider the following configurations:
ot ={o(x)=1}, o ={o(z)=-1}.

For configurations ¢+ and o~ we define two p-adic Gibbs conditional distributions on the
quadrate M,,:

exp, (—H;(0))

pn(0) = p (o(My) | 05(Z4\ My)) = ;=

Zn
where
Hi(o)=—J Y o(@oly)—e] > o),
cwwehin €My EOMy, (@)
%, = Y exp,(—Hg(0)).
oeQ,
1 1
Lemma 1. Ifp # 2, |J|, < — then |H(0)|, < —.
p p

Proof. Taking into account the strong triangle inequality and using |o(x)|, = 1, we obtain

[H(o)l,=|J Y olz)aly)

<z,y>

<|Jp <

S

p

Lemma 2. Ifp# 2 then 2z} = 2z,

n and |Z7—:_‘p = ‘Z’;|p = 1

Proof. Let p # 2. From H (o) = H, (—0) we obtain z = 2. Let us consider the following
chain of equalities:

|z$|p = Z exp, (—H,(0))| = Z (exp, (—H, (o)) — 1) + ||| =
oeQy p oeQ, »

= max Z (expp (—H;_(O')) — 1) [0 = ‘ Q|| = ont| _ 1
cEQ, » P p p

Let us introduce the following notation
Hn(a) =—J Z <z,y> O'(J})O'(y)

z,yeEMy,
Theorem 1. Let p # 2. Suppose that there exist limits

lim pi5; (o) = p*.

n—oo

Then p-adic measures u™ and p~ are different. In addition, for any v € N a configuration o
can be found such that |u* (o) — p=(o)|, = |- p~"-
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Proof. Let an(0) = |p7; (0) — b, (0)],,.-
Using Lemmas 1 and 2, we have

exp, (—H, (o))  exp, (-H, (o))

Pag z

an (o) =

:L epr(Hn(O')> exp, | J Z o(x) —exp, | —J Z o(x) =

|2
nip <z,y> <z,y>

TEMp ,y€EdMp TEMp, ,y€dMp, p

’
p

= |exp, | 2J Z olx) | —1| =1|2J Z o(x)| = ‘2J (Zdnd_l —25_(0("))>

<z, y>
TEMnpn,y€EOMp p TEMnp,yEOMp p

where 0" = {o(z), x € 9M,,} and s~ (c(™) is the number of elements of the set

{z € OM,, : 0(z) = —1}.

1
T\ =1
Let ng = l<§d> . Note that for all n > ng the difference 2dn?~! —p" is a natural number.
Then there exists a configuration o such that o|sy;, = o™ and s~ (o(™) = 2n — p". For such n
the equality a,(c(™) = |4J|,-p~" = |J|,-p~" holds. Therefore we have lim a,(c) = |J|, -p~".
n—oo
O

Proposition 1. A cardinality of the set {0 : |, (o) — p1, (0)|,, = [J|p - p~"} is continuum.

2. Boundedness of p-adic Gibbs measures.

In this section we obtain the condition for p-adic Gibbs distribution to be a measure (bounded)
for the Ising model.

Theorem 2. A p-adic Gibbs distribution for the Ising model is bounded if and only if p # 2.

Proof. Consider the following expression for |u(oy,)|,:

o)l = |2l O
o . EGIQ exp, (H (¢n))
B 1 _ 1 »
EZ(:Z (expp (=H(o)) — 1) + Q0] g) (expp (=H(o)) — 1) + ond

if p #£ 2.
To prove unboundedness of p for p = 2 one needs only to show that p is not bounded on
some path in Z¢. Let m = {..,;x_1,%0,21, ...} be a path in Z?. Marginal distributions on = is of

the form
n—1

ﬂw(wn) = Pw(;c,n) H Pw(acm)w(a:m+1)a (5)

m=—n
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where w, is a configuration on {x_,,...,zg,...,z,} and P; are coordinates of invariant vector
of the matrix

o 1 exp,(J) exp,(—J)
P =(Py) = exp,,(J) + exp,(—J) < expp(=J)  exp,(J) ) '

We have
1 1
Pily = = > 2. 6
Pl = T )+ o, =~ oy () = 1)+ (oxpy (=) = 1) + 2 ©)
It follows from (5) and (6) that u is unbounded for p = 2. O
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HeenuncrBeHHOCTH p-aJudeckKoro pacipeaeienuss I'mobdca
st Mogesu V3unra Ha pemrerke Z4

Boxuj T. Tyrenos

B dannoti pabome das modesu Haunea na Z¢ muw noxasicem needuncmseniocms p-aduseckozo pacnpede-
senus Tubbea. Kpome moeo, dokastcem, wmo p-aduveckue 2ubbCOSCKUE PaACnpedeseHue ABAAOMCA 02Pa-
HUNEHHDLMU 0206 U MOAbKO moezda, Ko2da p # 2.

Kmoueswie crosa: pacnpedeserue Iubbea, modeav Hsumnea, pewemra.
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