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Introduction

Let C be the complex plane, D be the unit disk on C, H(D) be the set of all functions,
holomorphic in D. For all 0 < p < +∞, α > −1 we define the class Sp

α as (see [14]):

Sp
α :=

{
f ∈ H(D) :

∫ 1

0

(1− r)αT p(r, f)dr < +∞
}
,

where T (r, f) =
1

2π

∫ π

−π

ln+ |f(reiφ)|dφ is the Nevanlinna characteristic of the function f ,

ln+ |a| = max(0, ln |a|), a ∈ C (see [8]).
Note that Sp

α-classes are a natural generalization of the Nevanlinna-Djrbashian classes. In
this paper we investigate the questions of interpolation in Sp

α-spaces. In solving the problem of
free interpolation, that is, with minimal restrictions imposed on the interpolated function, it is
important to find a natural class to which the restriction of on the interpolation set to belong.
We denote it lpα.

In [9] it was set that if f ∈ Sp
α, then

ln+M(r, f) = o

(
1

(1− r)
α+1
p +1

)
, r → 1− 0, (1)

where M(r, f) = max
|z|=r

|f(z)|.

It is clear that if f ∈ Sp
α and {αk}+∞

k=1 is a sequence of points from the unit disk, then the
operator R(f) = (f(α1), ..., f(αk), ...) maps the class Sp

α into the class of sequences

lpα =

{
γ = {γk}+∞

k=1 : ln+ |γk| = o

(
1

(1− |αk|)
α+1
p +1

)
, k → +∞

}
.
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In this article we answer the question under what conditions on the sequence {αk}+∞
k=1 the

operator R(f) maps the class Sp
α onto the class lpα.

Definition 1. A sequence {αk}+∞
k=1 is called interpolating for Sp

α if R(Sp
α) = lpα.

Let us note that the solution of interpolation problems in the various classes of analytic func-
tions has been widely discussed by Russian and foreign scientists: A. GNaftalevic [7], H. Shapiro
and A. Shields [11], S. A. Vinogradov, V. P.Havin [16], M. Djrbashian [4], N. A. Shirokov and
A. M.Kotochigov [6], K. Seip [12], A. Hartmann [5], V.A.Bednazh and F. A. Shamoyan [1] and
etc. The fundamental result in this area belongs to the L. Carleson [2]. This work continues the
research started in [10] in solving the interpolation problem in the classes of analytic functions
in the unit disk with power growth of the Nevanlinna characteristic.

The paper is organized as follows: in the first section we present the formulation of main
result of the article and give some auxiliary results, in the second section we present the proof
of main result.

1. Formulation of main result and proof of auxiliary results

To formulate and proof the results of the work we introduce some more notation and defini-
tions. For any β > −1 we denote πβ(z, αk) as M. M. Djrbashian’s infinite product with zeros at
points of the sequence {αk}+∞

k=1 (see [3]):

πβ(z, αk) =
+∞∏
k=1

(
1− z

αk

)
exp(−Uβ(z, αk)),

where

Uβ(z, αk) =
2(β + 1)

π

∫ 1

0

∫ π

−π

(1− ρ2)β ln |1− ρeiθ

αk
|

(1− zρe−iθ)β+2
dθρdρ. (2)

We denote πβ,n(z, αk) as infinite product πβ(z, αk) without n-th factor. As stated in [3], the
infinite product πβ(z, αk) is absolutely and uniformly convergent in the unit disk D if and only
if the series converges:

+∞∑
k=1

(1− |αk|)β+2 < +∞.

Definition 2. The angle of the πδ, 0 < δ < 1, contained in D, with vertex at the point eiθ and
with bisector reiθ, 0 6 r < 1 is said to be the Stolz angle Γδ(θ).

For any 0 < p <∞ we denote by Bs
1,p the O. Besov space on T of 0 < s < 2 order.

The main result of this article is the proof of the following theorem:

Theorem 1.1. Let α > −1, 0 < p < +∞, {αk}+∞
k=1 be the arbitrary sequence of complex numbers

from D, which is contained in a finite union of Stolz angles, i.e.

{αk} ⊂
n∪

s=1

Γδ(θs),

with certain 0 < δ <
p

2(α+ p+ 1)
.

The following statements are equivalent:
i) {αk}+∞

k=1 is an interpolating sequence in Sp
α;
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ii) the series converges:
+∞∑
k=1

npk
2k(α+p+1)

< +∞, (3)

nk = card

{
zk : |zk| < 1− 1

2k

}
, k = 1, 2, ..., and there exists a sequence {εk}+∞

k=1, ε(k) → 0,

k → +∞ such that

|π′
β(αk)| > exp

−ε(k)
(1− |αk|)

α+1
p +1

, (4)

for all β >
α+ 1

p
.

The proof of the theorem is based on the following statements.

Theorem 1.2 (see [14, 15]). Let α > −1, β >
α+ 1

p
. The following assertions are equivalent:

1) f ∈ Sp
α;

2) function f allows the following representation in D

f(z) = cλz
λπβ(z, zk) exp

 1

2π

π∫
−π

ψ(eiθ)dθ

(1− e−iθz)β+1

 , z ∈ D,

where {zk}+∞
k=1 is an arbitrary sequence from D, satisfying the condition

+∞∑
k=1

npk
2k(p+α+1)

< +∞,

ψ ∈ Bs
1,p, s = β − α+ 1

p
, λ ∈ Z, cλ ∈ C.

Here and in the sequel, unless otherwise noted, we denote by c, c1, ..., cn(α, β, ...) some arbi-
trary positive constants depending on α, β, ..., whose specific values are immaterial.

For the further exposition of the results we introduce metrics in spaces Sp
α and lpα as follows:

ρ(f, g) =

∫ 1

0

(1− r)α
(∫ π

−π

ln
(
1 + |f(reiθ)− g(reiθ)|

)
dθ

)p

dr for 0 < p 6 1,

ρ(f, g) =

(∫ 1

0

(1− r)α
(∫ π

−π

ln
(
1 + |f(reiθ)− g(reiθ)|

)
dθ

)p

dr

) 1
p

for p > 1.

for all f, g ∈ Sp
α.

ρlpα(a, b) = sup
k>1

{
(1− |αk|)

α+1
p +1 ln(1 + |ak − bk|)

}
.

for all a = {ak}, b = {bk} ∈ lpα. It is easy to check that these spaces are complete metric spaces
with respect to these metrics.

The following statement is valid:

Lemma 1.3. If the operator R(f) = (f(α1), ..., f(αn), ...) maps space Sp
α onto space lpα, then

there exists the sequence of the functions {gn(z)}+∞
n=1 ∈ Sp

α such that

sup
n>1

ρSp
α
(gn, 0) 6 C, C > 0
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and

gn(αk) = γ
(n)
k , where γ(n)k =

0, for all k ̸= n,

exp δ(k)

(1−|αk|)
α+1
p +1

, for k = n,

where k, n = 1, 2, ..., δ(k) = o(1), k → +∞.

The proof of Lemma 1.3 repeats the reasoning conducted in the proof of the corresponding
assertions from [10] with α+1

p + 1 index.

2. Proof of main result

Let prove the implication i) → ii).
We assume that {αk}+∞

k=1 ∈ D is an interpolation sequence in the class Sp
α, (α > −1, 0 < p <

∞), i.e. for any {γk} ∈ lpα there exists a function f ∈ Sp
α such that f(αk) = γk, k = 1, 2, ... .

Let consider the sequence {γk}+∞
k=1: γ1 = 1, γ2 = γ3 = ... = 0. Evidently, {γk}+∞

k=1 ∈ lpα. Since
{αk}+∞

k=2 is zero-sequence for the function f ∈ Sp
α, then we have an estimate (3) as follows from

Theorem 1.2.
In order to show (4) we fix n ∈ N and take the sequence γ

(n)
k = 0, k ̸= n, γ(n)k =

exp
δ(n)

(1− |αn|)
α+1
p +1

, k = n, where δ(n) → 0, n → +∞. By Lemma 1.3 there exists a func-

tion gn ∈ Sp
α such that ρSp

α
(gn, 0) 6 C and gn(αk) = γ

(n)
k for all k = 1, 2, ..., where the constant

C > 0 is independent on n. In particular, gn(αn) = γ
(n)
n . According to Theorem 1.2, any function

gn ∈ Sp
α can be represented as

gn(z) = cλnz
λnπβ,n(z, αk) exp{hn(z)}, z ∈ D,

where hn(z) =
1

2π

∫ π

−π

ψn(e
iθ)

(1− ze−iθ)β+1
dθ, β >

α+ 1

p
.

So,

|gn(αn)| = |γ(n)n | = exp
δ(n)

(1− |αn|)
α+1
p +1

= |cλn | |αn|λn |πβ,n(αn, αk)| | exp{hn(αn)}|,

where δ(n) → 0, n→ +∞.
Since exp{hn(z)} ∈ Sp

α, then taking into account the estimate (1) we have:

|gn(αn)| = exp
δ(n)

(1− |αn|)
α+1
p +1

6 c1|πβ,n(αn, αk)| exp
ν(n)

(1− |αn|)
α+1
p +1

,

where the sequence ν(n) → 0, n→ +∞, is chosen so that ν(n) > δ(n).
From the last inequality we obtain:

|πβ,n(αn)| > exp
−ε(n)

(1− |αn|)
α+1
p +1

, (5)

where ε(n) = (ν(n)− δ(n)) is positive infinitesimal sequence.
The same manner as in [10], it can be shown that (5)⇒(4). Thus, the implication i) → ii) is

established.
Now we prove that ii) → i). Suppose that {αk}+∞

k=1 be the arbitrary sequence of complex
numbers from D, which is contained in a finite union of Stolz angles, and the estimates (3), (4)
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are valid. Let us show that there exists a function Ψ ∈ Sp
α such that Ψ(αk) = γk, k = 1, 2, ... for

each {γk}+∞
k=1 ∈ lpα, where {γk}+∞

k=1 ∈ lpα, i.e.

γk = exp
δ(k)

(1− |αk|)
α+1
p +1

, (6)

δ(k) → 0, k → +∞.
We denote by {qk} the sequence with general term qk = δk + εk, k = 1, 2, ..., where {εk}

is an infinitesimal sequence from the estimate (4), {δk} is an infinitesimal sequence from the
estimate (6).

We construct a function Ψ(z) as follows:

Ψ(z) =
+∞∑
k=1

γk
πβ(z, αj)

(z − αk)

1

π′
β(αk, αj)

(
1− |αk|
1− αkz

)m
f(z)

f(αk)
, (7)

where β >
α+ 1

p
, m >

α+ 1

p
+ 1,

f(z) = exp

n∑
s=1

+∞∑
m=1

qmk
(1− ρm

2)β̂

(1− zρme−iθs)β̂+
α+1
p +1

, z ∈ D,

where 0 < β̂ <
α+ 1

p
+ 1, qk → 0, k → +∞. Here the sequence {qk} is depending on the

sequence of nodes {αk}, therefore the function f depends on k, that is f = fk.

For brevity β′ = β̂ +
α+ 1

p
+ 1. It is obvious, that Ψ(αn) = γn, n = 1, 2, ....

Without lost of generality we assume that interpolating nodes are contained in the Stolz angle
Γδ(θ). Then we have

f(z) = fk(z) = exp
+∞∑
m=1

qmk
(1− ρm

2)β̂

(1− zρme−iθ)β′ , z ∈ D.

Let us show that Ψ ∈ Sp
α. First we estimate f(αk) in the angle of Γδ(θ).

|f(αk)| =exp
+∞∑
m=1

qmk ℜ (1− ρm
2)β̂

(1− αkρme−iθ)β′ =

=exp
+∞∑
m=1

qmk (1− ρm
2)β̂

ℜ(1− αkρme
−iθ)β

′

|1− αkρme−iθ|2β′ .

But

ℜ(1− αkρme
−iθ)β

′
= ℜ

(
1− rkρme

−i(φk−θ)
)β′

=

= ℜ
(
1− ρmrk + ρmrk(1− e−i(φk−θ))

)β′

= ℜ
(
1− ρmrk + ρmrk(1− e−i(φk−θ))

)β′

=

= (ρmrkρ)
β′

· ℜ
(
1− ρmrk
ρmrkρ

+ e−iφ

)β′

,

where αk = rke
iφk , (1− e−i(φk−θ)) = ρe−iφ, |φ| < πδ

2
<

π

2β′ . So we have ℜ(1− αkρme
−iθ)β

′ >

c1(ρmrkρ)
β′

, c1 > 0, by Lemma, established in [13].
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From the other hand,

|1− e−i(φk−θ)|β
′
= 2β

′
sinβ

′
(
θ − φk

2

)
= 2β

′
sinβ

′ φ

2
,

therefore

ℜ 1

(1− αkρme−iθ)β′ >
c1(ρmrk)

β′
2β

′
sinβ

′
(

θ−φk

2

)
(
(1−ρmrk)2+ 4 sin2

(
θ−φk

2

)
ρmrk

)β′ >
2β

′
sinβ

′ φ
2

(1− ρmrk)2β
′ ·
(
1 +

4 sin2 φ
2

(1−ρmrk)2

)β′ .

Since {αk} ⊂ Γδ(θ), we have ∣∣∣sin( θ−φk

2

)∣∣∣
(1− rk)

6 C.

Hence,

ℜ 1

(1− αkρme−iθ)β′ > c(β′)

(1− ρmrk)β
′ .

Thus we have the following estimate for f(αk) in the angle of Γδ(θ):

|f(αk)| > exp c(β′)
+∞∑
m=1

qmk
(1− ρm

2)β̂

(1− rkρm)β′ .

We will continue this estimate. For this purpose we split the interior sum into two parts:

S =
+∞∑
m=1

qmk
(1− ρm

2)β̂

(1− rkρm)β′ =
∑

(1−ρm)6(1−rk)

(. . .) +
∑

(1−ρm)>(1−rk)

(. . .) = S1(k) + S2(k).

We estimate each of them separately. Let estimate the sum S2.

S2(k) =
∑

(1−ρm)>(1−rk)

qmk
(1− ρm

2)β̂

(1− rkρm)β′ >

>
∑

ρm<rk

qmk
1

(1− ρ2m)β′−β̂
>

> 1

2

∑
ρm<rk

qmk
1

(1− ρm)
α+1
p +1

.

Without lost of generality we assume that 1 − ρm = q̂m, 0 < q̂ < 1, and we find that the sum
above converges to δ2(k) =

qk

q̂(β′−β̂) − qk
= o(1), k → +∞.

Now we get lower estimate for the sum S1.

S1(k) =
∑

(1−ρm)6(1−rk)

qmk
(1− ρm

2)β̂

(1− rkρm)β′ >

>
∑

ρm>rk

qmk
(1− ρm

2)β̂

(1− rkρm)
α+1
p +1(1− rkρm)β̂

>

> 1

(1− r2k)
α+1
p +1

∑
ρm>rk

qmk
(1− ρm

2)β̂

(1− rkρm)β̂
.
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Since ∑
ρm>rk

qmk
(1− ρm

2)β̂

(1− rkρm)β̂
6

+∞∑
m=1

(qk)
m
,

then S1(k) >
δ1(k)

(1− r2k)
α+1
p +1

, where δ1(k) ≈
qk

1− qk
, δ1(k) → 0, k → +∞.

From the estimation for S1, S2 we finally set:

S > δ1(k)

(1− r2k)
α+1
p +1

+ δ2(k),

whence we conclude that

|f(αk)| > exp
δ0(k)

(1− r2k)
α+1
p +1

, (8)

where δ0(k) = sup
j
δj(k), j = 1, 2. It is obvious, that δ0(k) ∼

qk
1− qk

.

From condition (3) we conclude (see [15])

+∞∑
k=1

(1− |αk|)m < +∞ (9)

for all m >
α+ 1

p
+ 1. Taking into account the convergence of the series (9), we obtain that the

infinite product πβ(z, αj) and the series (7) are absolutely and uniformly convergent in D.
Now we need to prove that function Ψ(z) is analytic in D and Ψ ∈ Sp

α.
Now we get an upper estimate for the function |Ψ(z)|. Since {γk}+∞

k=1 ∈ lpα and condition (4)
is valid, we have:

|Ψ(z)| 6
+∞∑
k=1

|γk|
|πβ(z, αj)|
|z − αk|

1

|π′
β(αk, αj)|

(
1− |αk|
|1− αkz|

)m |f(z)|
|f(αk)|

6

6
+∞∑
k=1

exp
δ(k)

(1− |αk|)
α+1
p +1

|πβ(z, αj)|
|z − αk|

exp
ε(k)

(1− |αk|)
α+1
p +1

(
1− |αk|
|1− αkz|

)m |f(z)|
|f(αk)|

.

We estimate the factor
|πβ(z, αj)|
|z − αk|

. Using the well-known estimate for the Djrbashian product

(see [13]):

ln+ |πβ,k(z, αj)| 6 cβ

+∞∑
k=1

(
1− |αk|
|1− αkz|

)β+2

,

we get:

|πβ(z, αj)|
|z − αk|

=
1

|z − αk|
|πβ,k(z, αj)|

|αk − z|
|αk|

| exp (−Uβ(z, αk))| 6 c̃β
|πβ,k(z, αj)|
|1− αkz|

,

|πβ,k(z, αj)|
|1− αkz|

6 c̃β
|1− αkz|

exp

(
cβ

+∞∑
n=1

(
1− |αn|
|1− αnz|

)β+2
)

for all β >
α+ 1

p
.
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Therefore

|Ψ(z)|6 exp

(
cβ

+∞∑
n=1

(
1− |αn|
|1− αnz|

)β+2
)
×|f(z)|×c̃β ·

+∞∑
k=1

exp
δ(k) + ε(k)

(1− |αk|)
α+1
p +1

· 1

|f(αk)|
(1− |αk|)m

|1− αkz|m+1
.

Now we consider the last factor in the product:
+∞∑
k=1

exp
qk

(1− |αk|)
α+1
p +1

· 1

|f(αk)|
(1− |αk|)m

|1− αkz|m+1
,

where qk = δ(k) + ε(k).
We split the sum into n parts:

n∑
s=1

∑
αk∈Γδ(θs)

exp
qk

(1− |αk|)
α+1
p +1

· 1

|f(αk)|
(1− |αk|)m

|1− αkz|m+1
.

Since {αk} ⊂
n∪

s=1
Γδ(θs) for certain 0 < δ <

p

2(α+ p+ 1)
, we can apply for each part the

equation (8). Thus we have:
n∑

s=1

∑
αk∈Γδ(θs)

exp
qk − δ0(k)

(1− |αk|)
α+1
p +1

· (1− |αk|)m

|1− αkz|m+1
.

Since qk − δ0(k) = qk − qk
1− qk

= −q2k < 0, we have the following estimate:

exp
qk − δ0(k)

(1− |αk|)
α+1
p +1

6 1,

for all k = 1, 2, ... .
Thus we have:

|Ψ(z)| 6 exp

(
cβ

+∞∑
n=1

(
1− |αn|
|1− αnz|

)β+2
)

× |fk(z)| × c̃β ·
+∞∑
k=1

(1− |αk|)m

|1− αkz|m+1
.

Taking into account the convergence of the series (9), we have:
+∞∑
k=1

(1− |αk|)m

|1− αkz|m+1
6 c

(1− |z|)m+1

+∞∑
k=1

(1− |αk|)m 6 c1
(1− |z|)m+1

for all m >
α+ 1

p
+ 1.

The estimate of function |Ψ(z)| takes form:

|Ψ(z)| 6 exp

(
cβ

+∞∑
n=1

(
1− |αn|
|1− αnz|

)β+2
)

× |fk(z)| ×
c2

(1− |z|)m+1
.

From the works of F.A. Shamoyan (see [14], also [15, p. 132]) and of the author (see [9]) it
follows that a majorizing function in the last inequality belongs to Sp

α space, and hence Ψ ∈ Sp
α

for all α > −1, 0 < p < +∞.
This shows that ii) → i). �
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helpful comments.
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Об интерполяции в классах аналитических в круге
функций с характеристикой Р.Неванлинны
из Lp-весовых пространств

Евгения Г. Родикова

В статье получено решение интерполяционной задачи в классе аналитических функций в единич-
ном круге, характеристика Р.Неванлинны которых принадлежит Lp-весовым пространствам,
при условии, что узлы интерполяции принадлежат конечному числу углов Штольца.

Ключевые слова: интерполяция, аналитические функции, характеристика Р.Неванлинны, углы
Штольца.
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