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Modeling of Two-layer Fluid Flows with Evaporation
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Stationary convective flows of two immiscible viscous incompressible fluids (liquid and gas) under action
of the transverse gravity field and longitudinal temperature gradient along the interface are studied ana-
lytically. Mathematical model of the fluid flows with the effects of evaporation at the interface is based on
ezxact solutions to the Navier-Stokes equations in the Oberbeck-Boussinesq approximation. The effects of
the thermodiffusion and diffusive heat conductivity in the gas-vapor layer are taken into consideration.
The obtained solutions are used to model the flows in the two-layer gas-liquid system in the case when a
liquid exhibits the anomalous thermocapillary effect. Examples of the two-layer fluid flows are presented
for various values of the gas flow rate, longitudinal temperature gradient at the interface and the gravity

force acceleration.
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Introduction

Stationary two-layer fluid flows are studied on the basis of exact solutions to the Navier-
Stokes equations in the Oberbeck-Boussinesq approximation in two-dimensional case [1-3]. The
solutions are obtained in the case when only the longitudinal velocity is not equal to zero and it
depends on the transverse coordinate. The temperature distribution and pressure in the upper
and lower layers have the components which linearly depend on the longitudinal coordinate. The
longitudinal gradients of temperature and vapor concentration depend linearly on the transverse
coordinate. The longitudinal pressure gradient is a quadratic function with respect to the longi-
tudinal coordinate. One of the first results devoted to construction of an exact solution in the
infinite layer with evaporation at the "liquid-liquid" interface were obtained in [4]. The thermo-
capillarity effect at the interface has not been taken into consideration. The solution has been
used to model the binary flows with diffusion of the light impurity at interface [4].

The mentioned here solutions (see [1,2,4]) are solutions of the Birikh-Ostroumov type [5].
The solution of Birikh [5] has been constructed to describe the stationary convection in an infinite
horizontal strip with solid boundaries or with a non-deformable free boundary under the action
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of the gravity field and constant longitudinal temperature gradient (see also [6-8|). For the first
time the similar problem has been studied in [9].

In the present paper the Soret and Dufour effects [10,11] are taken into consideration in the
gas-vapor layer (see [3]). The exact solutions allow us to analyze the problem statements and
peculiarities of modeling of flow effects including the effect of anomalous thermocapillary which
attracts attention due to its importance for many liquids [12-16]. One of the main questions in
modeling of fluid flows in channels is the formulation of a condition for vapor concentration on
the upper solid wall of the channel. In the present paper the condition of the absence of the
vapor flux is assumed to be fulfilled on this boundary of the flow domain. It is also shown that
the constructed solutions can be used to model flows in the two-layer system when liquid exhibits
the anomalous thermocapillary effect.

1. Governing equation

The coordinate system (x,y) is chosen so that the vector of the gravity acceleration g is
directed opposite to the Oy axis (g = (0, —g)). In order to formulate our problem in dimensionless
form we introduce characteristic values of the problem as follows: the thickness of the liquid
layer [ is the characteristic length, u,. = v/l is the characteristic velocity, T} is the characteristic
temperature drop, p. = p1v7/1? is the characteristic pressure; here p; and v; are the density and
the coefficient of the kinematic viscosity of the liquid, respectively. The system of two viscous
incompressible fluids (liquid and gas-vapor mixture) fills the infinite horizontal layers with the
upper and lower boundaries y = h, y = —1 and plane y = 0 which is the thermocapillary
interface (see Fig. 1). Index 1 (superscript or subscript) is used to characterize the properties of
the liquid and index 2 is used to characterize the gas properties.

Ay i
g
x’
‘1

Fig. 1. Geometry of fluid flow domains

The two-dimensional stationary convective fluid flows are characterized by the velocity field
(ut,v?), pressure p’, temperature T* and vapor concentration C' which satisfy the Oberbeck-
Boussinesq approximation of the Navier-Stokes equations. The convective flows of the liquid in
the lower layer are described by the system of equations which can be presented in the following
dimensionless form:

ulul + vlu; = —pL + Aul,

utvly +vtoty = —p, + Aot + GrT?,
ul + v, =0,

1
11 11 1
T, +vT, = AT,
u v'Ty -
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The stationary flows in the upper gas-vapor layer (see Fig. 1) are described by the following

equations:
2,2

1
u? u +vuy, = %T)i—l—PAuQ,
1 _
u?v? + 1)21;2 = —fpy +T7AV? + GrBT? + Gr.7%C,
D
uz + 'Uz =0, (2)
272 o272 = X (AT2 L FAC
ULy +v Yy ET ( + )7
WC, +0°C, = o (AC +@AT?).
c

Here p' is the modified pressure, p* = p' + Gr/(51T.)y, D*> = p* + Grp/ (81T )y. The following
dimensionless parameters arise in the problem: Gr = $,T.gl/v? is the Grashof number, Gr, =
vgl3/v3, Pr = v1/x1 is the Prandtl number, Sc = v5/D is the Schmidt number, ¥ = v, /vy is
the ratio of the coefficients of the kinematic viscosity, p = p2/p1 is the ratio of the gas and liquid
densities, ¥ = x2/x1 is the ratio of the coefficients of thermal conductivity of gas and liquid, D
is the coefficient of vapor diffusion, f; is the thermal expansion coefficient (i = 1,2), ~ is the
concentration expansion coefficient, § = 6/7., @ = T, coefficients § and « characterize the
Dufour and Soret effects, respectively.
Let us assume that solution of systems (1) and (2) has the form

ut = ul(y)v vt = 0,
T = (af +ajy)z +9i(y), C = (b1 + bay)z + o(y).
Because temperature is continuous at the interface y = 0 we have a} = a3 = A, A = const (see
section 2.). Then exact solutions (3) of system of equations (1), (2) can be written as follows:

(3)

! LY Y
u = ﬂGTCLQ + FGTA + 301 + yca + c3. (4)
T Gr(a})? ¢S Grddl 1
(A 1 Yy 2 2 g = A 2 1
A+ a)e+ 1068 7Py T 142 (1/Pr) T 120 (1/Pr) <GT( ) +3a201)+ (5)
4 3
Yy 1 1 Yy 1 1 y
I A 2 Z A =
g (1ypr) e T 2a20) g gy (e Taxes) 5 T es et o,

8

2 7 6 5 4 3 2
Pt = (%Gra%+yGrA+cl>x+%ky—&-y7k6+%k5+y€k4+yzk3+%k2+%k1+yko+08, (6)

2 y'l —2 Y1 el ) y?_ _
u ﬂ%(GT‘ﬁG;Q + Gr .U bg) EE(GTBA + Gr.v bl) + ?cl + ycy + C3, (7)
Y7
=(A+ a%y)x + 1008 72 (Grﬂ% + Gr.v bg)

(9 5
Y v
30 [J(Grﬂaz +Grv?ba) + 4*(G7’6A + Groh) | + ﬁo [ (GrBA+ Gro®b)+  (8)
4 3

+3B251] + ﬂ[Bﬁl + 2Bycs] + v [3102 + By¢s] + 3103 + yc4 + Cs,
y" B 2 o1 7 2 —2
C = (by + bay)z + —— =2 (GrBal + Gr,7%by) + —f{El(Grﬂaz + Gr72by)+
1008 v 5 720
v

4By (GrBA+ Grh) } + 1o { (GrBA + Gr7*h) + 3Ese: |+ (9)
4 ¥
+%{E151 + E252} + F{Eﬁz + E253} + %EIES + ycs + c7,
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2 — —
P = | (PGrBa3 + pGrovha) + y(pGrBA + pGr*by) + pres |a-+
. (10)

8 7 _ 4_ 3_ _ —
Fat 2ok + ko 4+ L+ yko + B,

6 5
Y+ Y+ Y+ Y
kr 4+ Zke + ks + =
+ g T + 7 + 6 + 5
v A — (x/Pr)db v 2 — (x/Pr)db b
The coefficients By = (V/:%) (x/ 126 L By, = (Z/Sc)ai &/ 7’)5727 E, = { B S
) (/Sc)x2(1 —ad) (v/Se)(x/Pr)(1 —ad) (7/Se)
631}, Ey = {W?S%) —aB2:|7 ki, k; (i =0, ...,7) in expressions (6), (10) for p* and in expressions
(8), (9) for T? and C depend on the initial parameters of the problem such as p;, v, xi, 8i, D, 7, g
(i = 1,2). The values of the integration coefficients ¢;,¢; (i = 1,...,8), and relations for param-

eters by, by, a% (i,j = 1,2) (see the form of exact solution (3)) are determined by the boundary

conditions.

2. Boundary conditions and algorithm for computing
the integration constants

h

Let us assume that the gas flow rate in the upper layer @ is given Q = / u?(y)dy. The
characteristic value @, of the gas flow rate is equal to pau.l. On the solid walls yoz —landy=nh
of the channel the no-slip conditions should be fulfilled: u'|,—_; =0, u?|,—;, = 0. We assume
that the vapor concentration on the upper boundary y = h satisfies the condition of the absence
of the vapor flux (Cy)’y:h = 0 and the temperature boundary regime is determined as follows.
The lower solid boundary y = —1 is assumed to be the heat-insulating wall: (Tyl)\y:,l = 0. The
constant heat flux is maintained on the upper wall y = h: (T;))|y=n = 07.

We suppose that the interface y = 0 is the thermocapillary surface that remains to be
undeformed one. The continuity of the velocity and temperature are written as follows:
ully—o = u?|y=0, T'|y=0 = T?|y=0. The heat transfer condition includes the diffusive vapor flux

at the interface: (T; — ET; — SECy)‘ = —AM. The mass balance equation at the interface is
y=0

of the form: M = —(Cy, +aT})

. Here K = ko /K1, K is the heat conductivity coefficient of
y=

the fluid, X = AM.I/(k1T.), X is the latent heat of evaporation, M, is the characteristic value of
the mass of the liquid evaporated from unit surface area per unit time, M, = Dpy/I.

The saturated vapor concentration can be found with the help of relation C|y,—g = C,[1 +
g(T?|y=0 — Tp)], C. is the saturated vapor concentration at T? = Ty, € = €T}, ¢ is the parameter
that includes the molar mass of the evaporated liquid, the universal gas constant, the latent heat
of evaporation and Ty [1,2].

We assume that surface tension linearly depend on temperature:

o=1-a7(T' =T). (11)

Here 7 = MaCa/Pr, Ma = orT.l/(p1v1x1) is the Marangoni number, Ca = u.piv1/0¢ is
the capillary number, Pr = vy /x; is the Prandtl number. The dimensional parameters og, o1
are constants, og is the value of surface tension at some reference temperature and o is the
temperature coefficient of the surface tension.

In the case of normal thermocapillary effect at the interface we have

Gr =37 (>0), for T <T. (12)
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If the liquid exhibits the anomalous thermocapillary effect the coefficient of the surface tension
can grow with temperature [10,12,13] (see also [14,17]), so that the coefficient T (see (11)) has
the following value:

Gr=-0 (7 >0), for T">T. (13)

The parabolic dependence of the surface tension on temperature with a minimum at a temper-
ature interval was presented [12-14].

The kinematic condition at the interface is fulfilled automatically because the normal com-
ponent of the velocity vector is equal to zero at the interface y = 0 due to (3). Projection of the
dynamic condition (see, for example, [10]) on the normal and tangential vectors to the interface
y = 0 gives the following relations: p' = p?, u), = pvul — o A.
We note that T%|,—o = Az + ¢5. Then conditions (12), (13) allow us to find the coordinate

7 = (T — ¢5)/A. (14)

The inequality 7} < T (see (12)) is fulfilled for z < T if A > 0. If A < 0, this inequality is
fulfilled for « > Z. In this case the choice of the value o is determined according to (12).

2.1. Algorithm for computing the integration constants

Al. In the case when the condition of the flux absence is prescribed for vapor concentration
C at the wall y = h, the equalities b = 0 and ¢’(h) = 0 should be satisfied (the prime
denotes the derivative with respect to y).

A2. The continuity conditions for velocity and temperature at the interface y = 0 require
c3 = C3, c5 = C5 and a% :a% = A.

A3. Taking into account the thermal insulation of the wall y = —1 and the boundary regime
on y = h, we have a} = 0, 0(—1) = 0 and a3 = 0, 05(h) = 0T, respectively.

A4. The equation of mass balance and the heat transfer condition at the interface y = 0
result in the following relations: M = —(¢s + @cy), by + @a2 = 0, ai — Ka3 — S Rby = 0,
c4 —FCy — 0RCg = —AM (two of them are fulfilled identically).

A5. The condition for the saturated vapor concentration is fulfilled if the longitudinal temper-
ature and concentration gradients A and by, constants ¢; and ¢5 are related as follows:
by = C,gA, ¢; = Cy + C.E(C5 — Tp).

A6. The dynamic conditions at the interface result in relations between ¢; and ¢; (i = 1,2):
Co = CopV — orA, 1 = cipv.

AT7. The system of linear algebraic equations for calculation of unknown constants ¢; (i = 1,2, 3)
follows from the no-slip conditions and the given gas flow rate. When ¢; (i = 1,2,3) are
known the constants ¢y, cs, ¢ can be found.

A8. The integration constant ¢g is determined from the equation ¢’'(h) = 0 with the use of ¢;
(i=1,2,3).

A9. Constant ¢4 is determined from the equation 67 (—1) = 0 when ¢, ¢z, ¢3 are known.

A10. The integration constant ¢, should satisfy the relation ¢, = ¢4 /(% + @) — ¢ (6K + \)/(F +
A@). This relation is a consequence of the heat transfer and mass balance conditions at the
interface y = 0.
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A1l. The given heat flux at the boundary y=h leads to the relation

PR S (P P S S
0" = ﬂBlE(GTﬂA + GT‘CV bl) + FBlcl + 73162 + hBlcg +Cq. (15)

This relation should be considered as a compatibility condition that follows from the form
of exact solution (3).

A12. The mass velocity of the evaporated liquid at the interface can be found with the use of
the mass balance equation when ¢4 and ¢z are known.

Assume that cs is equal to zero (c5 = 0). Then the coordinate T on the Ox axis is T = T /A
(see 14). The presented algorithm (A1l)-(A12) of calculation of the integration constants c;
(j=1,..,5)and ¢ (i =1,...,7) should be used twice in order to get two sets of the integration
constants. We denote them by (c;r, ¢) for o7 = and (c;, ¢ )foror=-0(j=1,2,3,4,i=
1,2,3,4,6). Equation (15) is the condition for the parameter §1. It determines the temperature
boundary regime on the upper solid wall of the channel.

3. Examples of the two-layer fluid flows

We consider the two-layer system, where the lower and upper layers with equal thicknesses [
are filled by n-heptan and nitrogen, respectively [12,13,18]. The values of the physico-chemical
parameters of the liquid and gas are presented in Tab. 1.

The Dufour and Soret parameters are § = 1073(K) and o = —5 - 1073 (1/K), respectively.

Table 1. Values of physico-chemical parameters of the liquid and gas

Parameter n-heptan nitrogen
p, g/cm? 0.68 1.2-1073
v, cm? /s 0.568 - 10~2 0.15
k, kal/(cm s K) | 0.3346-103 | 0.65-10 1
X, cm? /s ~ 1073 0.3
00, dyne/cm 44
or, dyne/(cm K) 0.133
D, cm?/s ~ 1071
A kal/g ~ 102
g, 1/K ~1072-1071
— ~10 T -1
B, 1/K ~ 1073 0.337-1072

We chose the thickness of the liquid layer I = 0.5 cm as the characteristic scale of the flow
domain. Then u, = 0.011 cm/s. Tab. 2 presents the values of the dimensionless parameters
of the gas-liquid system. If the characteristic temperature drop is equal to T, = 10 K then
Gr =~ 40289, Gr. ~ —3379 in the case of normal gravity (¢ = 981 cm/s?) and Gr ~ 402.89,
Gr. =~ —33.79 in the case of low gravity (¢ = 9.81 cm/s?). According to [13] (see also [14]) we
chose the dimensional value T equal to 35°C. It defines the behavior of the surface tension with
respect to the temperature at the interface.

~

~
~
~
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We model the two-layer fluid flows for the system "n-heptane-nitrogen" in the case of positive
values of the longitudinal temperature gradient A: A =0.1 K/cm, A = 0.01 K/cm. The temper-
ature coeflicient of the surface tension g changes sign at the point . The dimensional velocity
profiles are shown in Fig. 2-6. The figure captions contain dimensional values of longitudinal
temperature gradient, gas flow rate denoted with the same symbols A and ) as dimensionless
quantities and gravity acceleration g.

Pictures 2 and 3 demonstrate the velocity pro-
files at various values of the longitudinal temper-
ature gradient A at the interface. The qualita-

Table 2. Values of dimensionless parameters
of the gas-liquid system

tive and quantitative differences of the flow struc- Parameter Value
ture and sharp differences in the fluid flows at P 1.76-107°
the right and the left of the point Z are observed v 26.41
with the increase of the longitudinal gradient A K 0.19
(dimensional analog X of the point T is equal to X 397.35
3500 (cm) for flows demonstrated in Fig. 2 and B 3.18
X = 350 (cm) for flows in Fig. 3). The veloc- Pr 7.52
ity value at the interface is equal to U = 0.25 Sc 1.63
cm/s if A=0.1 K/cm (see Fig. 3, solid line) and a 5.1072
U=1.16cm/sif A =0.01 K/cm (see Fig. 2, solid Pl 10~4
line). Here the temperature coefficient of surface z 0.49
tension is equal to oy = 0.133 dyne/(cm K) (in By 278
the dimensionless case we have 6r = 0.03). In - 0.03

the case of anomalous temperature dependence of
the surface tension when o = —0.133 dyne/(cm
K) (6p = —0.03) the value of velocity at the interface is U = 2.85 cm/s for A = 0.1 K/cm (Fig. 3,
dashed line) and U = 1.42 cm/s for A = 0.01 K/cm (Fig. 2, dashed line). Figs. 2 and 3 present
the flows under conditions of normal gravity (g = 981 cm/s?) in the case that the thickness of the
gas and liquid layer is equal to 0.5 cm, dimensional gas flow rate is Q = 1.8-1072 g/(cm s). The
dimensionless parameters are h = 1, [ = 1, QQ = 246.1, Gr = 40289. The values of velocity at
the interface U and of the mass rate of evaporated liquid M are presented in Tab. 3 for various
values of the longitudinal temperature gradients. More intensive evaporation is observed for
larger value of the longitudinal temperature gradient and also in the case of anomalous effect of
thermocapillarity. Fig. 4 demonstrates the flow structure in the system away from the point of
change of thermocapillarity character T in the case that the longitudinal temperature gradient
is equal to A =0.1 K/cm.

A decrease of intensity of the gas flow rate results in quantitative and some qualitative
differences in the flow (see Figs. 2 and 5). The velocity at the interface has the value U = 1.16
(Fig. 2, solid line) and U = 0.025 cm/s (Fig. 5, solid line) for positive value of temperature
coefficient of the surface tension o = 0.133 (g = 0.03) if the gas flow rate is equal to Q =
1.8-107% g/(cm s) and Q = 1.8 - 10~* g/(cm s), respectively. For negative value op = —0.133
(6r = —0.03) the values of velocity at the interface are equal to U = 1.42 (Fig. 2, dashed line)
and U = 0.28 cm/s (Fig. 5, dashed line) in the case of gas flow rate Q = 1.8-1072 g/(cm s) and
Q =1.8-10"* g/(cm s), respectively. Here X = 3500 (cm) for flows demonstrated in Fig. 2 and
Fig. 5. Tab. 4 presents the values of the interface velocity U and the mass rate of evaporated
liquid M for two values of the gas flow rate @ = 1.8-1072 g/(cm s) and Q = 1.8-107% g/(cm s).
It should be noted that for a larger value of the specific mass gas flow rate @) the flow and
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evaporation processes are more intensive.

06 —

y, cm
o
]

— 520133 dyne/(em K)
| /4 — = G,=0.133 dyne/(cm K)

T 71 T 1 T 1 T 1T T 1

2 3
u(y), cmis

Fig. 2. Velocity profiles for positive and negative values of op. Here A = 0.01K/cm, Q =
1.8-1073g/(cm s), g = 981 cm /s?

0.6 —

= —
0.4 — -~
~
- ~
~
02 — \
- e
£ -
e el e Ll
>
/
Ve
.02 —
7
4 V4 . 5, =().133 dyne/(em K)
— = 5,=0.133 dyne/(cm K)
-04 — <
P
R L A L B
0 1 4 5

2 3
u(y), cmis

Fig. 3. Velocity profiles for positive and negative values of op. Here A = 0.1 K/cm,Q =
1.8-1073g/(cm s), g = 981 cm /s>

The velocity profiles are presented in Fig. 6 in the case of low gravity g = 9.81 cm/s?
(Gr =~ 402.89). Quantitative flow characteristics are changed slightly in comparison with the
case g = 981 cm/s? (see Fig. 5). One can observe appearance of a reverse flow near the interface.
The values U and M under normal (g = 981 cm/s?) and low gravity (¢ = 9.81 cm/s?) are
presented in Tab. 5 in the case that Q = 1.8 - 1074 g/(cm s), A = 0.01 K/cm. The value of the
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velocity at the interface U is equal to —0.003 cm/s (Fig. 6, solid line). The value of parameter
X is equal to 3500 (cm) for flows demonstrated in Fig. 5 and Fig. 6. Values of the mass of
evaporated liquid are of the same order in the cases of normal and low gravity.

06 —

04 —

-0.6 T | T T | T I T |
340 345 350 355 360 365
X, cm

Fig. 4. Velocity profiles for positive and negative values of op (right and left). Here A =
0.1K/em, @ =1.8-1073g/(cm s), g = 981 cm /s?

06 —

=
04 — -~
~
- =~
~
02 — \
E b
£ -
R e e w i ~— - - -
>
Ve
Ve
02 —
e
— 5 =0.133 dyne/(cm K)
] d —  — G=0.133 dynef
=0, iyne/(em K)
-04 — -
7
B I L
Q 0.1 0.2 0.3 04 05
u(y), cm/s

Fig. 5. Velocity profiles for positive and negative values of op. Here A = 0.01 K/cm, Q =
1.8-107*g/(cm s), g = 981 cm/s?
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06 —

i y ,=0.133 dyne/(em K)

—  — G,=—0.133 dyne/(cmK)

00 — T T T T T T T 1
-0.1 0 0.1 0.2 0.3 0.4 0.5
u(y), cm/s

Fig. 6. Velocity profiles for positive and negative values of op. Here A = 0.01 K/cm, Q =
1.8-107*g/(cm s), g = 9.81cm/s?

Table 3. Values of interface velocity U and mass rate of evaporated liquid M; @ = 1.8 - 1073
g/(cm s), g = 981cm/s?

or = 0.133 dyne/(cm K) | o = —0.133 dyne/(cm K)

A, K/em | U, em/s | M, g/(cm?s) | U, em/s | M, g/(cm? s)
0.1 0.25 3.29-107% 2.85 1.45-1073
0.01 1.16 6.45-10° 1.42 7.56-10°

Table 4. Values of interface velocity U and mass rate of evaporated liquid M; A = 0.01 K/cm,
g = 981cm/s?

or = 0.133 dyne/(cm K) | o = —0.133 dyne/(cm K)
Q,g/(cms) [ U,em/s | M, g/(cm®s) | U, em/s | M, g/(cm? s)
1.8-107 1.16 6.45-10° 1.42 7.56-10°
1.8-107% 0.025 3.29-10°° 0.28 1.45-107°

Table 5. Values of interface velocity U and mass rate of evaporated liquid M; Q = 1.8 - 10~*
g/(cm s), A =0.01 K/cm

or = 0.133 dyne/(cm K) | o = —0.133 dyne/(cm K)
g, cm/s? | U,em/s | M, g/(cm?®s) | U, em/s | M, g/(cm? s)
981 0.025 3.29-10°° 0.28 1.45-107°
9.81 —0.003 1.24-107° 0.26 1.24-107°
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Conclusion

The constructed solutions to the Navier-Stokes equations in the Oberbeck-Boussinesq approx-
imation allow us to model the two-layer fluid flows with the thermocapillary interface including
the evaporation effects at the interface and the Dufour and Soret effects in the gas-vapor phase.
The evaporation effect is modeled by the use of the thermal boundary condition and mass balance
equation at the interface. The anomalous thermocapillarity effect at the interface is also taken
into consideration. For the n-heptanol-nitrogen systems the velocity profiles that characterize
the fluid flows are presented. The effects of gravity and the longitudinal temperature gradient
along the interface on the fluid flows are investigated. The obtained results demonstrate the
quantitative and qualitative differences in the flow of liquid in the case of normal and anomalous
thermocapillary effect and also in the conditions of normal and low gravity.

Authors gratefully acknowledge the support of this work by the Russian Foundation of Basic
Research, grant 14-08-00163.
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MopenmupoBaHne ABYXCJOMHBIX Te€UYEeHUIl C MCIIapeHneM
Ha I'paHUIle pa3jeja Npu HAJIUIUN aHOMAJbHOT'O

TePMOKaIIMJLJIIPHOro 3ddekra

Ouasbra H. T'onyaposa
Exarepuna B. PesanoBa

CmayuonapHble KOHBEKTNUBHDIE Theenus 08YT HECMEWUBAIOWUTCA dHeudkocmel, (orcudkocmu u 2a3a),
Harodawueca nod 0eticmeuem NONEPeH020 NoAA CUAbL MAHCECTIU U NPOJOABHO20 2PAdUEHMA TEMNEDQ-
mypot, C030aHH020 800AL 2PAHULLL PA30esa, USYHAIOMES anaaumusecky. Mamemamuveckoe modeauposa-
Hue mevenul orcudkocmets ¢ yuemom IPPHexmos ucnaperus Ha ePAHuYEe Paddesa nPoeooumcs Ha 0CHO8e
MOUHBE peweruti cucmemo, ypasrenuti Hasve—Cmokca 6 npubsuscenuu Obepbexa—bByccunecka. Yuu-
muiearomces maxoice agexmo, mepmoduddysuu u udpdysuorrot. mensonposodnocmu. Ilocmpoertoie
DEWeEHUA NPUMEHAIOMCA OAA ONUCAHUA MeYeHUT 8 08YTCAOUHOT cucmeme HCudKoCmu U 2636 6 CAYUaE,
K020a HCUOKOCTMb TAPAKMEPUIYEMCA GHOMAALHHM MEPMOKANUAAAPHOIM IPPERmMom Ha 2paruye pasde-
aa. I[Ipusodames npumepv, 08YTCAOTHBT MeweHUt NPU PABAUNHBLE 3HAYERUAT YOeAbHO20 Pacroda 2a3a,
nPodoaLHO20 2PaAdUEHNA TMEMNEPAMYDPYL U YCKOPEHUA CUAbL TAHCECTIU.

Kaouesoie cao8a: MGMEMAMUNECKAA MOJEAD, 2DAHULA PA30eAq, UCNAPEHUE, MOYHOE PEUEHUE, GHOMAND-
HOT MEPMOKANUAAADPHUT, PPerm.

— 59 —



