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Nonlinear model of convection in Oberbeck-Boussinesq approximation describing the flat joint motion
of a binary mizture and viscous fluid with a common interface is investigated. It is important that the
longitudinal temperature gradient and the concentration is quadratic dependence on the coordinate z.

Stationary solution of the system is busilt.
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Convection is one of the most common of hydrodynamic phenomena in nature. Study of
convection is an important part of the theoretical fluid mechanics. Natural convective motions
occur in an inhomogeneous field of mass forces caused by the ununiform heating of the liquid.
The area of practical applications of this phenomenon is very wide. Convective processes influ-
ence the thermal conditions in the oil storage tanks, chemical process technology and others.
Theoretical study of natural convection usually deals with equations of motion in the Oberbeck-
Boussinesq approximation. Problems for thermal convection are very complex because of the
diversity of cavities and thermal boundary conditions for the nonlinear system of partial differ-
ential equations. Solutions of the Oberbeck-Boussinesq equations with a linear dependence of
temperature on one of the space coordinates firstly were studied by G.A.Ostroumov [1]. The
exact solution described plane stationary flow in a strip under action of longitudinal temperature
gradient and transversal gravity field, was obtained by R.V.Birikh [2]. Some generalizations of
this solution taking into account concentration of liquid mixture are described in [3]. The ex-
istence of solutions with nonlinear dependence of density on temperature and concentration is
proved in [4] where two boundary value problems with exponential temperature distribution on
the walls are solved. In [5-7] the exact solutions of the three-dimensional convection problem
for two immiscible viscous, incompressible fluids in a channel with a rectangular cross section in
the presence of the interface and under the influence of a longitudinal temperature gradient are
studied. In this paper we are built the exact solution of the two-layer convection system with
longitudinal temperature gradient at the solid walls and shear force of gravity.

1. Problem formulation

Let us consider the joint motion of a binary mixture and viscous fluid with a general interface.
Suppose that @ = {|z] < 00,0 <y <[} is the region occupied by a binary mixture and
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Oy = {|z] < 00, I} <y < Iz} is the region with a viscous fluid. The system is bounded by solid
walls y = 0 and y = ls with given temperature distribution on them.

For description of the motion of both region Q; (j = 1,2) we use the Boussinesq approxima-
tion. We assume that the temperature and the concentration differ only slightly from constant
mean values therefore the Oberbeck-Boussinesq approximation is valid

pj = poj(1— 5?9 — Bje),

where pg; is the characteristic medium density corresponding to the mean values of the tem-
perature and concentration in the layer j, 6 and c¢ are the deviations from their mean values (¢
corresponds to the light component), Bje and ﬁ]c are the temperature and concentration expansion
coefficient; 5§ = 0. Then the equations of binary mixture convection can be written in the form

1
u; + (u; - Vu; = *EVPJ' + v Au; — g(B9(0; — 60;) + B5(c; — coj))s
J
ajt + U.j . Vﬁj = XjA9j7 (1)
c1e +ug - Vq = dlAcl + adlAﬁl,

divu; = 0.

Here u; is the velocity field, p; is the pressure measured from the hydrostatic pressure corre-
sponding to po;, poj is the density, v; is kinematic viscosity, x; is the temperature conductivity,
dy is the diffusivity, ad; is the thermal diffusion coefficient. Normal thermal diffusion corresponds
to the value of a < 0, and for the anomalous a > 0.

We introduce the coordinate system with the = axis aligned with the lower boundary of the
layer 1 and the y axis directed vertically upward (Fig. 1).

Y

Fig. 1. The scheme of two-layer flow between the rigid walls with interface y = [y

Let us define the boundary conditions. On solid walls are put no-slip conditions and the

temperature distribution and the absence of mass flux through the walls are written as
y=0: w1 =0, 0=0(x), ciy+aby=0; @
y:l22 UQZO, 9:920(1')

At the interface y = l; the conditions of equality of the velocities, kinematic and dynamic
conditions are written as
up =uz, v =v2=0,

3)

P2l2U2y — P1V1ULy = —&101, — ®2C14.
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The condition of temperature continuity and the equality of heat fluxes are as follows
01 =02, k101, = kal2y. (4)
In addition, the condition of absence of mass flux through the interface is
c1y + abyy, = 0. (5)

Here k; = x;pjcp, are the thermal conductivities, o = o(0,c) is the coefficient of surface
tension. For many mixtures, the linear law provides a good approximation of this dependence

O'(G,C) = O'O — &1(9 — 00) — %2(01 — Co),

where a1 > 0 is the temperature coefficient and a5 is the concentration coefficient (usually seo < 0
since the surface tension increases with concentration). Constants 6, ¢y are the temperature and
concentration values of arbitrary point on interface.

We should to add the initial conditions: u; =0, 6; = 69(z,y), c1 = ”(z,y). All the physical
characteristics of the system are assumed to be constant and correspond to the mean temperature
and concentration.

2. Exact solution of the two-dimensional problem

We find the form of the solution describing the convective flow in the system of liquids with
the interface in the form

uj = Uiy, t)e + Wiy, 1), v = Vi(y,1);
0; = Aj(y,)2® + Bj(y, 1), c1 = Hi(y,t)a® + Ex(y, 1), (6)
pj = P(z,y,1).
The substitution of solution (6) into equations of motion (1) gives the relations

viUjyy — Ut = UF = VU = 29/ _(ﬂfAj + B5Hj)dy + s;(t),

pljpj = (ViUjyy — Up = U} — Vjij)%Q + hi(y, 1), (7)
hjy = viViyy = Vi = ViViy + g(ﬁ?Bj + B7Ej),
W; =0, V,=-U,.
The equations for determining of the temperature and the concentration field take the form
Aje +2U5Aj + ViAjy = X5 Ajyy,
Bji + VjBjy = x; (24; + Bjyy ) ,
Hyy +2U Hy + ViHyy = di (Hiyy + a1 Aiyy),

Evw+ViEy, =di (2H1 + E1yy + @1(241 + Biyy)) .
The following boundary condition at solid walls are held
U1(0,t) =0, Us(lz,t) =0, A1(0,t) = A1o(t), Aa(l2,t) = Az(t);
B1(0,t) = Big(t), Ba(la,t) = Bao; 9)
Hiy(0,t) + a1 A14(0,t) =0;  E14(0,t) + a1B14(0,t) = 0.
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The boundary conditions at the interface y = [; are:

Up=Us, paolUsy — p111Usy = =281 41 — 280 Hy,
Ay =4y, k1A = kaAgy;

(10)
By = Bs, lely = szQy;
Hyy+a1Ay =0; Eyy+a1By = 0;
ll l2
Ui(y,t)dy = 0, Us(y, t)dy = 0. (11)

0 l
The first from conditions (11) is a consequence of the kinematic conditions, when the interface
is stationary, and the second one is the slip condition for velocity components V5(y,t) on the
wall of y = [5.
The initial data are written in the form

Ui(y,0) =0, Vj(y,0) =0, Aj(y,0)=a)(y),

Bi(y,0) =b(y), Hi(y,0) = H°(y), Ei(y,0)=E’y).

Note that this problem is nonlinear and inverse. Because of the function s;(t) remains
unknown as well as functions Uj, V;, A;, B;, Hi, Eq.
We introduce the characteristic length scales, time functions Uj, V;, Py, Aj, Bj, Hi, E1, hj, s;

VERSE
respectively

12 AAl AAI2
r=0¢ t=-2r U;=2"Dyr v = B0y po— w AALP;
V1 P11 ,BQA/flyl ,8 AAL
j=A0AAY, By =AABRB;, Hy="- f Hf, By = 5 ——1F (12)
1
EElAAll « EElAA %
hj - hjv j = l 7
P1 Pl

where AA = max |A2o(t) — A1o(t)] > 0. If Agg(t) = Aip(t) than AA = maxmax |Ajo(y)| > 0.
> i

We have the multiplier
P1 V%

called the Marangoni number at the nonlinear summands in equations (7)-(8) written with

M= (13)

dimensionless variables. Let us mention here also Prandtl number Pr;, Schmidt number Sc;,
parameter G; = Gr;/M (where Gr; is Grashof number), parameter w and split ratio :

) ) ¢ 12 0 c
PT‘j:i, SCj:ﬁ7 G = gﬁ il , W= %2ﬁi’ '(p: aﬁgl.
X d; &) a1 0 B

3. Stationary solution

In the present section we describe stationary solution of (7)—(8). Assume that the motion is
creeping in one layers so M <« 1 and parameter G; = Gr;/M = O(1). These conditions can be
valid in either thin layer or very viscous fluid according to the formula (13).

In such case the steady state problem (7)—(8) has a special form

I/j 6

—U; :2G4/ Aj+ =

by A J ( B¢
A B;

Jnm =

C

])dn + Sj,
g =0, —24;, (14)
Hlnn =0, Elnn = _2Hl;
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Vin = =Uj,
P Vi 2

Zp=2U;,, 2>+ h,,

0 7T gy, M J (15)
]

Vi
hjn = ;i%nn +GiBj + B¢

G\ E;.

Integrating (14) provides a solution to the problem as the

Al =min+ma, Ay =man+my,

mq ms3
By = —==n" = man® +msn +me, By = —==0° — mar® +man + ms,

m
Hy =mgn +myo, Ei= —?9773 — maign” 4+ mun + ma, (16)

mi+m meo +m S
112 It 2 3 10773>+21772+m1377+m14,

U1:G1(
ms 4

my 3 VSo 2
Us = vG (— — ) — .
2 = VG 1277 + 3 n° )+ 5 N~ + misn + mig

Constants m;, i = 1,16, s1, s2 in (16) determined from the boundary conditions (9)—(11) and

have the form

[(Agyg — A Asol — km
my = (liOT_FlkO)’ mg = Ao, mg=kmy, my= %, me = Bio,
312(2k1—2k — 1) Ayo—31 (1—1)* Ao+ 313 (Bio— Bao)+ ma (I (KI2+ 3kl — 12 — 6 k) +2k)
ms = )
302 (kI — k — 1)
3A10 kP + 31 (kI2— 212 — k) Ago+ 3kl® (Bio— Bao) + k (kI® — 3kI*— P+ 612+ 2k) my
m7 = )
302 (kl — k — 1)
_ BAw? 4 3Lk~ k20 + 1) Agg + 312 (Baol(1 — k) — Buok) _
5 32 (kl—k—1)
k(K2 =3kl =12+ 2k +61—2)m
312(kl—k—1) ’
mg =¢Ymy, mig = YA, min =Pms, mig =0,
W+1)((Tpr (I-1)—4l)mi+5410 Bpr (1-1)—-21)) G,
mi3 = +
60(pvl—pv—1)
v (=1’ @Bk(—1)mi+540) Gy vp (Ww+1)(I—1) (A +mi)
6003 (pvi—pv—1) pvl—pv—1 ’
S Ip(W+1)(1+2)5A10+3m1)vGy  lp (WYw+1)(1+2) (Ao +m1)v
15 = - _

60 (lvp—pr—-0(1-1) (lvp—pv-=0(1-1)
502v(1—1)(P+41+1)p—312(1+3)) Ay G2
6012 (lvp —pv —1)
kmy (2p (1—1) (213 +312 =121 =3)v — > (71> + 61— 33)) v G2
6013 (lvp— pv —1)

)
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vp(W+1)21+1)(5A104+3m1)G1 —60vp (Yw+1)(21+1) (A10+m1)+
120(lvp—prv—1)(1—1)
PRACELEY (1—1)(200 (1> =1) pr—51 (61> +31— 1))+
1208 (lvp—prv =0 (1—-1)
vGy (I =1)k (2 (1—1) (412 =31 —6) pr —141° + 151 + 121 — 3) my_
+ 1208 (v p—pr—D(I=1) ’

mie = —

o — 7(’1/)4-1) ((l— 1) (25A10+9m1)p1/—2l(10A10+3m1))G17
e 20 (prl—pv—1)
v (=1 @Bk(—1)my+5A501) Gy —60Bvp (hw+1) (I —1) (Arg +m)

2003 (pvl—prv—1) ’

Pp(p+1)(5A10+3m1) Gy —600%p (pw+1) (A1o+m1)+
200 —-1)(pv —pr—1)

(I-1*@k(l-1)2pr (1—1)=31)mi+5Ax1L4pr (1 —1)—=51)) Gy

200 —=1)(lpy —pv—1)12 '

S9 = —

+

The expression for Vj, P; can be obtained with help of formulas (15) and have not shown

here because cumbersome.

On Fig. 2a we represent the velocity profiles. In the upper layer the vertical velocity com-
ponent V for parameters Ajg = 0.1, Ayg = —0.3, B1g = 25, Bog = 20, G; = 1.05, G2 = 0.98,
M = 0.034 is positive and the horizontal component of the velocity changes sign. The fluid
moves vertically when & = 0 along the y axis and vertically downward in the lower layer and

symmetrically rotated about the axis y (Fig. 2b).

Fig. 2. Profiles of the velocity components U and V (a) and isolines of the stream function

by = —Vja (b)
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JIBymMepHOe cTalimoHapHoe Te'deHne OmHapHOil cMecu
U BA3KON YKUJKOCTU B IIJIOCKOM CJIOE

Mapuna B. EdbumoBa

B nacmosauwets cmamove paccmampusaemcs HeAuHetiHaa Modeasb Konsexyuu 6 npubsustcenuu Obepbexa—

Byccunecna, onucwvlearULAA NAOCKOE COBMECITMHOE deuotcenue 6unapnoﬁ cmecy U 8A3K0U menﬂonpoeod—

Hotl otrcudkocmu ¢ obuleth nogeprrocmsvlo pazdesa. Baotcro, umo npodosvrwil epaduenm memnepamypol

U KOHUYEHMPAUUY UMEEM KEAOPATMUNHYIO 3A6UCUMOCTL om Koopduram x. Ilocmpoeno cmayuonaproe

PEWEHUE CUCTMEMDL.

Kmoueswie crosa: ypasnenus Obepbexa—byccunecka, Konsexkmueroe deustcerue, bUHAPHAA CMECH, YCMa-

HOBUBWLEECA TEeHEHUE.
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