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1. Problem Statement. The Main Results
A quasi-linear system of equations of composite type is considered [1-3]:

(1 — ¢)ps 0 0 0
% + 5o (L= 9)psvs) =0, %i(b) + 5. (prdvy) =0,

o(vy —vs) = —k(9) (Crg;f - pfg) :

T = o) (B + 0.

or ot ox

ODtot _ g
o Ptotd,

Prot = o5 + (1 — @)ps;  DPe = Dot — D5 Prot = (1 — @)ps + dpy.

This quasi-linear system of equations describes 1D non-stationary isothermal motion of fluid
in poroelastic medium. The laws of conservation of mass for each phase, Darcy’s law for fluid
phase, the rheological Maxwell law and the equation of conservation of momentum for the system
describe this process. Here p,ps,vs, vy are, respectively, real density and velocity of solid and
fluid phases, ¢ is the porosity, p¢, ps are, respectively, pressures of the fluid and solid phases; p.
is the effective pressure, ps,: is the total pressure, pso: is the density of the two-phase medium,
g is the density of the mass forces, k(¢) is the coefficient of filtration, 5;(¢) is the coefficient of
bulk compressibility (specified function). The problem is written in the Eulerian coordinates x,
t. The real density of the fluid and solid particles ps, p; are assumed constant. The unknown
quantities are ¢, vs, V¢, Pf, Ds-

Local (with respect to time) solvability of the initial-boundary value problem for the system
of equations under consideration has been established in [4], a self-similar solution has been
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found in [5]. Numerical results for this system of equations are given in [1,2]. In these studies we
use Euler variables, additional assumptions about smallness of the speed of solid phase, and the
following relations between the functional parameters of the problem: k(¢) = E(;S”, Bi(¢) = Byd®,
where n, b are positive environment parameters. In this paper a complete sys/tLem of equations of
filtration in a deformable medium is considered. This system of equations can be reduced to a
degenerate parabolic equation using transition to Lagrange variables with respect to the speed
of the solid phase. To this equation we apply the well-known technique for proving finiteness of
the propagation speed of disturbances.

Rewrite the original system in Lagrange variables, following [6]. Suppose that T = Z(7,z, t)
is a solution of the Cauchy problem

oz -

5 = Vs(Z,7T), T |r=t= 2.

We set & = Z(0;x,t) and take & and ¢ for the new variables. Then [6] 1 — ¢(&,t) =

(1—¢"2)) J(&,t), where .J (&, t) = ?(i, t) is the Jacobian of the transformation, ¢°(z) = ¢|;—o.
x

The system of equations in the new variables has the form

0(1-¢) (1-4)% a0,

o 1o o O
o0 (1-9) o . . (1-9)
ot T 9PN =T g
o 1-¢) dpr . .
P(0s —0f) = —k(9) <(1¢0);; - Pfg> :
(1=0) 9b _ o b
1_¢0 8:?? - = t(¢) ata
(1-9) Opror ..
1-¢0 0z ™
Since A
o6 0 . - v,
Ush = 850 T %

it follows that the continuity equation for liquid phase can be reduced to the form

1A37¢3+ 1 9 1 ~0v,

(1-9) ot 1—¢0%(¢(6f_05))+1—¢0¢%:

Using the continuity equation for the solid phase, we find that

o ( ¢ 18 /.. .
ot <1_gg,> + (17¢0)%<(¢(1}f—vs)) =0.

Finally, passing from (Z,t) to the mass Lagrangian variables (y, t) by the rule

(1= ()i = dy, y() = / (1= () dn € [0, 11,
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and formally replacing y by z, we obtain

0 0
5 (155) + 5t - v =0, 0
a1 —9) 20U
5 TA-¢)5-=0 (2)
0
o0~ 07) = k() (1= O FE = oy Q
Ovs Ope
(1-19) o ——Bt(@Ea (4)
(1-9) agt;t = —Ptoty- (5)
Introduce a function G(¢) defined by the equation agfj) =3 @ (11 syt Therefore, from
(2) and (4), we obtain
dp. _ 9G(¢9)
ot ot
and hence
pe=—G(0) +Go+pl, Go=G(8°), ¢li=o=0" peli=o = p¢- (6)

Therefore, from (1) and (3), we have

5 (155) = 5 (e -0 % —p0)).

Taking into account the equality p; = pior — pe and equations (5), (6) we have

d( ¢ \ _ 0 (k(o) 99 9
o (1—¢> ~ oz (ﬁtw) ax) ~ g (MO = 9)pe = {1+ s

Further on, we introduce a new function s = ¢/(1 — ¢) instead of ¢ € [0,1), and assume [2]
that

k(@) = %dﬂa Bi(6) = s,

where k is the permeability, ;1 is the dynamic viscosity of the fluid, B4 is the coefficient of bulk
compressibility of solid phase, b,n are positive environment parameters (in what follows it is
assumed that 0 <n+b—2, 0 <n—b<2). Then the equation for s can be expressed as

Js 0 0s 0f(s)
_— = — d —_— s 7
ot 837( (s)8m>+ O Q
it is assumed that there is a constant M > 0 such that we have the following estimates
k n—>b b—n—2 k n—>b
0<s<M<oo, —s"°(1+M) <d(s) < —s"7" g=>0,
1B 1B

k
[f(s)] < ps”g (ps + (L+2M)py).

The main result of this paper can be formulated as follows: let s(z,t) be a weak solution
of (7) in K, (z0) x (0,00), Kp,(20) = {(x,20) : | — 20| < po} such that so(z) = s(x,0) =0

- 469 -



Margarita A. Tokareva Localization of Solutions of the Equations of Filtration in Poroelastic Medium

in K,,(zo). Then there exist T > 0 and p(t) € (0, po) such that s(z,t) = 0 for all t < T and
x € K,(x0). Under additional assumptions on the character of vanishing of so(x) it is proved
that s(z,t) = 0 in K, (x9). Questions of the existence of the corresponding solution are not
considered here. The local energy method developed in the papers [7, 8] is used for the proof .
On Q and Q7 we consider several function spaces following the notation from [9]. Suppose
that || - ||4,q is the norm on the Lebesgue space L, (), ¢ € [1, 00]. For brevity, let ||-||q = || |l¢.0
|-l =1l l2,0 - We also use the space Co‘ * of infinitely differentiable functions with compact
support in 2, and the Sobolev spaces W;,(Q), where [ is a natural number and p € [1, o], with

!
norms || fllwy) = 20 |10z fllp.o-

m

Definition 1. By a weak solution of the equation (7) with initial condition so(x) we mean a
non-negative bounded measurable function s(x,t) (0 < s(xz,t) < M) on Q x (0,00), if VT > 0
and any open subset Q1 C R! the following conditions are fulfilled

0

s € L00(07T7 W;(Q))a %

(snb“) € Ly[(0,T) x ], (8)

tlgr(l)/Qsdx:/Qsodm, 9)

and Vo (z,t) Eé"x’((QT) x Q1)

/OOO/Q [d(S)gigi _ agf) (p] dz dt = /000/95%‘; d:cdt+/gs(x70)gp(g;,o) dx. (10)

We introduce the notation

A(p,t)E/ s2(z, t)dz, B(p,t)E/
Kp(IO) Kp(QJO)

and without loss of generality we assume that xy = 0.

»
3
&
7N
Q
g
———
[\
<9
8

Lemma. Suppose that (8), (9) are fulfilled. Then for s(p,t) we have the estimates

$7(p,t) < C; AT (p,t)[B2 (p,t) + p A7 (p,1))?, i=1,2, (11)
where
n b 2 1
= — — — ]_ 0 = (5 = —.
77973 +1>0, 247’ Or
If i=1 then r € (1,2), 0<n—->b<2,
Ci=CM (re=250=0) max(o, Mmr_2),
andif i=2, n—b=2,
4 1, C3=Cmax(o,1)
= = = X|O
n—b—|—2 ) 2 ) 9

C' is a positive constant independent of the radius p.
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Proof follows [10]. For all u € W}(K,(0)) we have the estimate [11]

_ 0 .y
u(p)] < O (l[uallg i, 0) + 2~ Nullr ik, ) 1l 2 ) (12)
q 1
h——9  s—_— 4>1 1<r<oo
q77"+q'l"’ 07’7 Q/ ) \T\OO

Take in (12) v = s? and ¢ = 2, then

e

2 % 0 1:9
s7(p,t) < C- o—(/ 520—2(‘95) dm) +p—5</ 5" dx) (/ 5" da:) - (13)
Ky (0) Oz K,(0) K,(0)

Let us strengthen the right-hand side of (13). If 0 <n —b < 2, then
ro 2 ro—2 ro—2 2 4
s’ =s5%s <M s°y rell,——).
n—>b+2

If n—b=2, then take r =4/(n —b+2) =11n (13), and, given that s = 5257772 < 52, we

deduce )
(ro—2)(1-6) 95\ 2 2
s7(p,t) KCM T e / snb () dr | +
K, (0) Oz

[4

1 1-9
FM p~° / s dx / s2dx ,
K,(0) K, (0)

f0<n—-5b<2 1<r<2 andif n—b=2, r=1, then

a 2 % 1 0 (1—-0)
s7(pt) <C-|o </ §nP (s) dm> + p5</ s dx) (/ s d:c) ,
K,(0) O K,(0) K,(0)

that is, we come to (11). O

Theorem 1. Assume that the conditions (8)—(10) are fulfilled and additionally t € [0,T],
T <T*, where

2
1
T* < min | 4M>7 02 (min <1, iu + M2 )) ,
uBs 2

1426 1420y (20— D)pBy 1 o9 A
((po P )(25+1)4k1{3w (o) )y =12

If s(x,t) is a weak solution of (7) and so(x) = 0 in Ky, (x0), 0 < po < dist(xg,0G), then
s(z,t) =0 almost everywhere in K, ) (xo), 0 <t <T < T*. Moreover

1

(1425 10 20-1) %
p1(t) =( po Lt =" (w(po, 1)) :

where if 0 <n—>b<2, then

L:4012Q(T)v re (172)7
and if n—b=2, then
4

L =4C3 - Q(r), e R

1.
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In both cases

! 20+1 25-1) yo-1 LAY
w(pg,t) = su B(po, s)ds, r + 72 M ) —
o0ty = s [ Blospts, @) = 3577 (508 -

kn
o (ps + (1 +2M)py),

K;=C; [ po® + T po® ' M2~ 1>] . i=1,2, F
and constants C1 and Cy are determined in (11).

Theorem 2. Assume that in addition to the conditions of Theorem 1 we have

241r

t 2—r
| Bonar<c. [ s%<x>dx<K3(p—po)  Vpe (o R).  (14)
0 Kp(IO)

Then there exists Ty depending on the data of the problem such that s(x,t) = 0 for almost all
x € K, (x0) and t € [0, Tp].

2. Finite Propagation Speed of Disturbances

t+h
Proof of Theorem 1. Suppose in (10) ¢(z,t) = ©n(|x — zo] )&k (t h/ x,7))dT, where
he (0, T—1),
T;(s) = min(|s|,1)sign s,

1, rel0,p—1/n],
on(r) =4 nlp—r), relp—1/npl,
07 TE[p,po],

1, relo,t—1/k,
&(r)=4q k(t—r), relt—1/kt,
0, rel,T%.

‘We have

/ / { 5’“( )9z : ( n;IL/tHth(s(wvw))dw) - 81;55) @(x,f)] dx dr =
— /OOO/K,)O(M)S%;T (fkill/tt’“th(s(:v,w))dw)dxdT+/Kpo(xo)s(ao)ga(x,o) de. (15)

Taking into account the Lebesgue theorem with k£ — oo we get

) oo 8 1 t+h
g [T PO(IO)ssonaT(ﬁkh / I’z(s(x,df))dw) dr dr =

8§k
hm/ / / ))dvp dx dT+
K (To) 87 h T{ 1/)

+ lim /o /Kpo(zo)s @nfk% <Tl(5(z,7' +h))— Tl(s(o:,T))> drdr =

k—o0
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t 1 [t+h
=— lim k/ J swnf/ Ty (s(x,))dy do dr+
oo S K@)
e 1
+/ / S¢ny (Tl(s(x,T +h)) — Tl(S(CE,T))> dedr =
0 Kﬁo(xo)

:_/Km(ms%;[%ns(x, dz/)dx+/ / sou ( (s (33,7'—|—h))—Tl(s(x,T))> dz dr

and, therefore, at h — 0 the identity (15) can be written as

85 Opn 0s 0Ty  Of(s)
g T _
//K m){ o oz 1T (d( Vot or ~ ox )Pl drdr

=— / sopTy dx + / s0(x)nTi(s(x,0)) da.
Kpq (z0)

Ko, (z0)

Therefore, after passing to the limit as I — oo, we obtain

)02 On 05\ _ 0 _
/ /Kpo(Io)|: %E + <d( )(ax> Pn — 8.13) Lpns] dedr =

= / 52, dx +/ s2(x)pn dz.
KPO (370) Kpo (550)

Finally, passing to the limit as n — oo, we have

) 65 O¢n
Jim / / oz 0z I

. K 0s K 0s
:771152071/0 / sd(s )%dxd'rff/o sd(s )%dT

p—1/n<|z—xo|<p

Therefore, we arrive at the equality(zg = 0)

/ 2dx+//{ g; gi]dsz/Opsgder/Otsd(s)g;(p,T)dS]dT. (16)

Let
a(p,t) = sup A(p,7).

o<t
It follows from (16) that
k
+—1+Mb" 2w(p,t) < — 1 + Iy, 17
a(p,1) 5¢( ) (p)uﬂ¢1 2 (17)
where .
Js
Il / 5(p77_)n b+t aix(p77—) dTa

e [ |2
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Applying the Holder inequality and (11), we obtain

‘ s
= n_b+17 <
I /0 s(p,T) . (p,s)ds <

<[ L p,m) 2 T>)2df)%( / L) dT)é =<?;:>%a1(p, 1,

ai(p;t) E( /OtS"‘b“(p, T)) < (/Ot(B
< c¢(</0t B(p,T)dT)é + pé(/OtAf(p,T)dT) ;)Htlzg a7 (p,t) <
<

]
wh(0,8) a7 (p,8)" + Tha? (p, t)) .

|

(p,7) + p~ 0 A% (p,7)

Nl

N—
[
QU
)
N—
(SIS
7 N\
Nﬁ
N
1S
>
3
N—
QU
3
N———
N
N

< Cip Ot'T

But p < pg, and moreover

aw (p,t) < alp,t) a‘s*l(po,t) < a(p,t) po’ ! M2O=D 551,
Consequently,
1-0 0 1 0
ar(p,t) < Cip~°t = <p20(a +w) + Tzapg—lMOz(é—n) <
1-0 1 1 0
Correspondingly,
ow\ 2
L < Kit= p~ [a(p,t) + w(p, 1))’ (6) :
where

Now we estimate I5.

‘We have 5 5
/ ~1|08
- < n - F ,
ar| % |ox| Tt
where
Fr=—g(ps + (1 +2M)py)
Therefore,

t rp 2 3 t rp
I, < F1</ / (65) Sn_bda:d7'> </ s"+bda:d7') <
o Jo \Ox o Jo
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Consequently, (17) takes the form

min(1, %< M) alp, ) + wlps 1)) < Mg(ﬁh ‘D <

1
0 2 1 no
—Kip~® (alp, t) + w(p, 1))’ (af) + o AMTE i atw), =12

Now choose t in such a way that

1 bin=2 1 k 1
Motz < 1 1+ M)P"2) — —.
> 2 < min(1, M/3¢(+ ) ) 3
Therefore,
1 k ow \ 2
—(a+w) < —K;t 2 6a—|—w‘9<>
(0 w) < Kt'E g a ) (G
Accordingly,
k ow\ ?
PPt < (a+w) % < 27¢Kt <8p) ,
and hence
0
p26w2(1 0) < K;tl_G%, (18)
k 5 .
where K} = 4(—K;)*, i =1, 2.
KB
Integrating (18) by p from p; to pg, we find that (1 < r < 2)
1 1426 1426 #,1-0 0 20—1 2601 1
<K't t) — t) ———.
2(5+ 1(p0 — P ) i (w (p07 ) w (plv ))29_ 1
Therefore, we have
2041, 2041,
p%+26 _p(1)+26+ 0 K tl 0 29 1(P0 t) > 0 lK tl 6 29 1(p17t)« (19)

Choosing t such that the equality

2041, -
1+26 _ 1426 _ K170 w1 (pg. 1),

P1 — M0 2971 [

holds, we obtain that w(p,t) = 0 for all p < p1, i.e. s(z,t) = 0 almost everywhere in K,(0) for
p < p1 and
: 2—b—n p—2 : k b—n—2 1 2
0<t<min|4M 'Fy min | 1, — (1 4+ M) — = ,
1B 2

(p1+26 _ p1+26) 20 —1 w1—20(p t) ﬁ
0 (26 + 1)K 0 '
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3. Metastable Localization of Solutions

Proof of Theorem 2. Following the initial reasoning in Theorem 1 and formally replacing in
(15) p by R, for all p € (0, R) we deduce the initial equality (16). According to the conditions of
the theorem, so(x) = 0 in the ball K, (x¢). Therefore, the first integral on the right hand side
of the equality (16) (of s3 ) is in fact ( for p € (po, R)) taken over the interval (po, p), and hence
the estimate (14) is valid. Other terms of the right hand side of (16) are estimated in the same
way as in Theorem 1. So, instead of (19) we have for all t < T

1 1
k - 2 261
—Ki(a+w)?p? = <881;}) + K3 <pp0> .

Latw) <
—(a+w) <
2 1B

The first term of the right hand side is estimated by using Young’s inequality
1

1
1 1—6 o 2(1—0) k -0 20—1

g1-0

Choosing /¢ = > (0, we obtain

46

1 1 1
1 1-60 . s (Ow\T@-D [ k i -1
- < t2p T [ — — K, Ks(p— .
4(a+w) glie P (8/)) (H5¢ ) + 3(p ,00>

Using the inequality a? + w? > (a + w)?, 0 <p < 1, a,w > 0, we have

2(1-6)
2(1-6) 201-0) —2 —25 [ K 2 g 0w 2(1-6) 20t
w < (4(1-9)) e p —K;) 77— + (4K3) P = Po .
1B dp
The result is a special case of the inequality
e
wagctﬁw;+c(p_po) ’ O<G<1a pe[p()vR]? (20)

studied in [12]. As shown in the cited paper, (20) implies the equality w(pg,t) = 0 for all
t € [0, o], where tg is calculated from the relation

2
o= (1= 0) 270, RICICEP7, €7 = (- 0) 02y () L =12
¢

Therefore s(z,t) = 0 for almost all x € K, (x¢) and t € [0, Ty, To = min(to, 7).
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Jlokanmzarus perienuii ypaBHeHuil (puiibTparium
B IIOPOYIIPYIOil cpene

Maprapura A. TokapeBa

B pabome paccmampusaemca cucmema YpasHeHul, 00HOMePHO20 HECTNAUUOHAPHO20 OBUNCEHUS HCUOKO-

cmu 8 nopoynpyeot cpede. Memodom unmMe2pasbHoiT IHEP2EMUMECKUT OUEHOK YCTNAHABAUBLEMCA AOKA-

ausayua pewerut ypasHerud.

Karoueswie caosa: guavmpayus, 3axon lapcu, nopoynpyzocmsv, A0KAAUSAGUUS, MEMACTNAOUALHAA AOKA-

AUBAUUA.
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