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1. Problem Statement. The Main Results

A quasi-linear system of equations of composite type is considered [1–3]:

∂(1− ϕ)ρs
∂t

+
∂

∂x
((1− ϕ)ρsvs) = 0,

∂(ρfϕ)

∂t
+

∂

∂x
(ρfϕvf ) = 0,

ϕ(vf − vs) = −k(ϕ)
(
∂pf
∂x

− ρfg

)
,

∂vs
∂x

= −βt(ϕ)
(
∂pe
∂t

+ vs
∂pe
∂x

)
,

∂ptot
∂x

= −ρtotg,

ptot = ϕpf + (1− ϕ)ps; pe = ptot − pf ; ρtot = (1− ϕ)ρs + ϕρf .

This quasi-linear system of equations describes 1D non-stationary isothermal motion of fluid
in poroelastic medium. The laws of conservation of mass for each phase, Darcy’s law for fluid
phase, the rheological Maxwell law and the equation of conservation of momentum for the system
describe this process. Here ρs, ρf , vs, vf are, respectively, real density and velocity of solid and
fluid phases, ϕ is the porosity, pf , ps are, respectively, pressures of the fluid and solid phases; pe
is the effective pressure, ptot is the total pressure, ρtot is the density of the two-phase medium,
g is the density of the mass forces, k(ϕ) is the coefficient of filtration, βt(ϕ) is the coefficient of
bulk compressibility (specified function). The problem is written in the Eulerian coordinates x,
t. The real density of the fluid and solid particles ρf , ρs are assumed constant. The unknown
quantities are ϕ, vs, vf , pf , ps.

Local (with respect to time) solvability of the initial-boundary value problem for the system
of equations under consideration has been established in [4], a self-similar solution has been
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found in [5]. Numerical results for this system of equations are given in [1, 2]. In these studies we
use Euler variables, additional assumptions about smallness of the speed of solid phase, and the

following relations between the functional parameters of the problem: k(ϕ) =
k

µ
ϕn, βt(ϕ) = βϕϕ

b,

where n, b are positive environment parameters. In this paper a complete system of equations of
filtration in a deformable medium is considered. This system of equations can be reduced to a
degenerate parabolic equation using transition to Lagrange variables with respect to the speed
of the solid phase. To this equation we apply the well-known technique for proving finiteness of
the propagation speed of disturbances.

Rewrite the original system in Lagrange variables, following [6]. Suppose that x̄ = x̄(τ, x, t)

is a solution of the Cauchy problem

∂x̄

∂τ
= vs(x̄, τ), x̄ |τ=t= x.

We set x̂ = x̄(0;x, t) and take x̂ and t for the new variables. Then [6] 1 − ϕ(x̂, t) =(
1− ϕ0(x̂)

)
Ĵ(x̂, t), where Ĵ(x̂, t) =

∂x̂

∂x
(x̂, t) is the Jacobian of the transformation, ϕ0(x) = ϕ|t=0.

The system of equations in the new variables has the form

∂
(
1− ϕ̂

)
∂t

+

(
1− ϕ̂

)2
1− ϕ0

∂v̂s
∂x̂

= 0,

∂ϕ̂

∂t
+

(
1− ϕ̂

)
1− ϕ0

∂

∂x̂
(ϕ̂v̂f ) = vs

(
1− ϕ̂

)
1− ϕ0

∂ϕ̂

∂x̂
,

ϕ̂(v̂s − v̂f ) = −k(ϕ)

((
1− ϕ̂

)
1− ϕ0

∂p̂f
∂x̂

− ρ̂f ĝ

)
,

(
1− ϕ̂

)
1− ϕ0

∂v̂s
∂x̂

= −βt(ϕ̂)
∂p̂e
∂t

,(
1− ϕ̂

)
1− ϕ0

∂p̂tot
∂x̂

= −ρ̂ĝ.

Since

vs
∂ϕ̂

∂x̂
=

∂

∂x̂
(ϕ̂vs)− ϕ̂

∂vs
∂x̂

,

it follows that the continuity equation for liquid phase can be reduced to the form

1(
1− ϕ̂

) ∂ϕ̂
∂t

+
1

1− ϕ0
∂

∂x̂

(
ϕ̂(v̂f − vs)

)
+

1

1− ϕ0
ϕ̂
∂vs
∂x̂

= 0.

Using the continuity equation for the solid phase, we find that

∂

∂t

(
ϕ̂

1− ϕ̂

)
+

1

(1− ϕ0)

∂

∂x̂

(
(ϕ̂(v̂f − v̂s)

)
= 0.

Finally, passing from (x̂, t) to the mass Lagrangian variables (y, t) by the rule

(1− ϕ0(x̂))dx̂ = dy, y(x̂) =

∫ x̂

0

(
1− ϕ0(η)

)
dη ∈ [0, 1],
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and formally replacing y by x, we obtain

∂

∂t

(
ϕ

1− ϕ

)
+

∂

∂x
(ϕ(vf − vs)) = 0, (1)

∂(1− ϕ)

∂t
+ (1− ϕ)2

∂vs
∂x

= 0, (2)

ϕ(vs − vf ) = k(ϕ)

(
(1− ϕ)

∂pf
∂x

− ρfg

)
, (3)

(1− ϕ)
∂vs
∂x

= −βt(ϕ)
∂pe
∂t

, (4)

(1− ϕ)
∂ptot
∂x

= −ρtotg. (5)

Introduce a function G(ϕ) defined by the equation
∂G(ϕ)

∂ϕ
=

1

βt(ϕ)(1− ϕ)
. Therefore, from

(2) and (4), we obtain
∂pe
∂t

= −∂G(ϕ)
∂t

,

and hence

pe = −G(ϕ) +G0 + p0e, G0 = G(ϕ0), ϕ|t=0 = ϕ0, pe|t=0 = p0e. (6)

Therefore, from (1) and (3), we have

∂

∂t

(
ϕ

1− ϕ

)
=

∂

∂x

(
k(ϕ)((1− ϕ)

∂pf
∂x

− ρfg)

)
.

Taking into account the equality pf = ptot − pe and equations (5), (6) we have

∂

∂t

(
ϕ

1− ϕ

)
=

∂

∂x

(
k(ϕ)

βt(ϕ)

∂ϕ

∂x

)
− ∂

∂x
(k(ϕg((1− ϕ)ρs − (1 + ϕ)ρf )) .

Further on, we introduce a new function s = ϕ/(1 − ϕ) instead of ϕ ∈ [0, 1), and assume [2]
that

k(ϕ) =
k

µ
ϕn, βt(ϕ) = βϕϕ

b,

where k is the permeability, µ is the dynamic viscosity of the fluid, βϕ is the coefficient of bulk
compressibility of solid phase, b, n are positive environment parameters (in what follows it is
assumed that 0 6 n+ b− 2, 0 < n− b 6 2). Then the equation for s can be expressed as

∂s

∂t
=

∂

∂x

(
d(s)

∂s

∂x

)
+
∂f(s)

∂x
, (7)

it is assumed that there is a constant M > 0 such that we have the following estimates

0 6 s 6M <∞,
k

µβϕ
sn−b(1 +M)b−n−2 6 d(s) 6 k

µβϕ
sn−b, g > 0,

|f(s)| 6 k

µ
sng (ρs + (1 + 2M)ρf ) .

The main result of this paper can be formulated as follows: let s(x, t) be a weak solution
of (7) in Kρ0(x0) × (0,∞), Kρ0(x0) = {(x, x0) : |x − x0| < ρ0} such that s0(x) ≡ s(x, 0) = 0
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in Kρ0
(x0). Then there exist T > 0 and ρ(t) ∈ (0, ρ0) such that s(x, t) = 0 for all t 6 T and

x ∈ Kρ(x0). Under additional assumptions on the character of vanishing of s0(x) it is proved
that s(x, t) = 0 in Kρ0(x0). Questions of the existence of the corresponding solution are not
considered here. The local energy method developed in the papers [7, 8] is used for the proof .

On Ω and QT we consider several function spaces following the notation from [9]. Suppose
that || · ||q,Ω is the norm on the Lebesgue space Lq(Ω), q ∈ [1,∞]. For brevity, let || · ||q = || · ||q,Ω,

|| · || = || · ||2,Ω . We also use the space
o

C ∞ of infinitely differentiable functions with compact
support in Ω, and the Sobolev spaces W l

p(Ω), where l is a natural number and p ∈ [1,∞], with

norms ||f ||W l
p(Ω) =

l∑
m=0

||Dm
x f ||p,Ω.

Definition 1. By a weak solution of the equation (7) with initial condition s0(x) we mean a
non-negative bounded measurable function s(x, t) (0 6 s(x, t) 6 M) on Ω × (0,∞), if ∀T > 0
and any open subset Ω1 ⊂ R1 the following conditions are fulfilled

s ∈ L∞(0, T,W 1
2 (Ω)),

∂

∂x

(
sn−b+1

)
∈ L2[(0, T )× Ω1], (8)

lim
t→0

∫
Q

sdx =

∫
Q

s0dx, (9)

and ∀φ(x, t) ∈
o

C∞((0, T )× Ω1)∫ ∞

0

∫
Ω

[
d(s)

∂s

∂x

∂φ

∂x
− ∂f(s)

∂x
φ

]
dx dt =

∫ ∞

0

∫
Ω

s
∂φ

∂t
dx dt+

∫
Ω

s(x, 0)φ(x, 0) dx. (10)

We introduce the notation

A(ρ, t) ≡
∫
Kρ(x0)

s2(x, t)dx, B(ρ, t) ≡
∫
Kρ(x0)

sn−b

(
∂s

∂x

)2

dx,

and without loss of generality we assume that x0 = 0.

Lemma. Suppose that (8), (9) are fulfilled. Then for s(ρ, t) we have the estimates

sσ(ρ, t) 6 CiA
1−θ
r (ρ, t)[B

1
2 (ρ, t) + ρ−δA

1
r (ρ, t)]θ, i = 1, 2, (11)

where

σ =
n

2
− b

2
+ 1 > 0, θ =

2

2 + r
, δ =

1

θr
.

If i = 1 then r ∈ (1, 2), 0 < n− b < 2,

C1 = CM
(rσ−2)(1−θ)

2 max(σ,M
rσ−2

r ),

and if i = 2, n− b = 2,

r =
4

n− b+ 2
= 1, C2 = Cmax(σ, 1),

C is a positive constant independent of the radius ρ.

– 470 –



Margarita A.Tokareva Localization of Solutions of the Equations of Filtration in Poroelastic Medium

Proof follows [10]. For all u ∈W1
q(Kρ(0)) we have the estimate [11]

|u(ρ)| 6 C ·
(
∥ux∥q,Kρ(0) + ρ−δ∥u∥r,Kρ(0)

)θ ∥u∥1−θ
r,Kρ(0)

, (12)

θ =
q

q − r + qr
, δ =

1

θr
, q > 1, 1 6 r 6 ∞.

Take in (12) u = sσ and q = 2, then

sσ(ρ, t) 6 C ·

(
σ

(∫
Kρ(0)

s2σ−2

(
∂s

∂x

)2

dx

) 1
2

+ ρ−δ

(∫
Kρ(0)

srσ dx

) 1
r

)θ(∫
Kρ(0)

srσ dx

) 1−θ
r

. (13)

Let us strengthen the right-hand side of (13). If 0 < n− b < 2, then

srσ = s2 srσ−2 6Mrσ−2 s2, r ∈
(
1,

4

n− b+ 2

)
.

If n− b = 2, then take r = 4/(n− b+ 2) = 1 in (13), and, given that srσ = s2 srσ−2 6 s2, we
deduce

sσ(ρ, t) 6 CM
(rσ−2)(1−θ)

r ·

σ (∫
Kρ(0)

sn−b

(
∂s

∂x

)2

dx

) 1
2

+

+M
rσ−2

r ρ−δ

(∫
Kρ(0)

s2 dx

) 1
r

θ (∫
Kρ(0)

s2 dx

) 1−θ
r

,

if 0 < n− b < 2, 1 < r < 2, and if n− b = 2, r = 1, then

sσ(ρ, t) 6 C ·

(
σ

(∫
Kρ(0)

sn−b

(
∂s

∂x

)2

dx

) 1
2

+ ρ−δ

(∫
Kρ(0)

s2 dx

) 1
r

)θ(∫
Kρ(0)

s2 dx

) (1−θ)
r

,

that is, we come to (11). 2

Theorem 1. Assume that the conditions (8)–(10) are fulfilled and additionally t ∈ [0, T ],
T 6 T ∗, where

T ∗ 6 min

(
4M2−b−nF−2

1

(
min

(
1,

k

µβϕ
(1 +M)b−n−2 − 1

2

))2
)
,

((
ρ1+2δ
0 − ρ1+2δ

) (2θ − 1)µβϕ
(2δ + 1)4kK2

i

w1−2θ(ρ0, t)

) 1
1−θ

, i = 1, 2.

If s(x, t) is a weak solution of (7) and s0(x) = 0 in Kρ0(x0), 0 < ρ0 < dist(x0, ∂G), then
s(x, t) = 0 almost everywhere in Kρ1(t)(x0), 0 6 t 6 T 6 T ∗. Moreover

ρ1(t) =

(
ρ0

1+2δ − L t1−θ(w(ρ0, t))
2θ−1

) 1
1+2δ

,

where if 0 < n− b < 2, then
L = 4C2

1 ·Q(r), r ∈ (1, 2),

and if n− b = 2, then

L = 4C2
2 ·Q(r), r =

4

n− b+ 2
= 1.
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In both cases

w(ρ0, t) = sup
06τ6t

∫ τ

0

B(ρ0, s)ds, Q(r) =
2δ + 1

2θ − 1

(
1

2
ρδ0 + T

1
2M2(δ−1)ρδ−1

0

)2θ (
k

µβϕ

)2

,

Ki = Ci

[
1

2
ρ0

δ + T
1
2 ρ0

δ−1M2(δ−1)

]θ
, i = 1, 2, F1 =

kng

µ
(ρs + (1 + 2M)ρf ) ,

and constants C1 and C2 are determined in (11).

Theorem 2. Assume that in addition to the conditions of Theorem 1 we have∫ t

0

B(ρ, τ)dτ 6 C0,

∫
Kρ(x0)

s20(x)dx 6 K3

(
ρ− ρ0

) 2+r
2−r

, ∀ρ ∈ (ρ0, R). (14)

Then there exists T0 depending on the data of the problem such that s(x, t) = 0 for almost all
x ∈ Kρ0(x0) and t ∈ [0, T0].

2. Finite Propagation Speed of Disturbances

Proof of Theorem 1. Suppose in (10) φ(x, t) = φn(|x − x0|)ξk(t)
1

h

∫ t+h

t

Tl(s(x, τ))dτ , where

h ∈ (0, T − t),
Tl(s) = min(|s|, l)sign s,

φn(r) =


1, r ∈ [0, ρ− 1/n],

n(ρ− r), r ∈ [ρ− 1/n, ρ],

0, r ∈ [ρ, ρ0],

ξk(r) =


1, r ∈ [0, t− 1/k],

k(t− r), r ∈ [t− 1/k, t],

0, r ∈ [t, T ∗].

We have∫ ∞

0

∫
Kρ0 (x0)

[
d(s)

∂s

∂x
ξk(τ)

∂

∂x

(
φn

1

h

∫ t+h

t

Tl(s(x, ψ))dψ

)
− ∂f(s)

∂x
φ(x, τ)

]
dx dτ =

=

∫ ∞

0

∫
Kρ0 (x0)

sφn
∂

∂τ

(
ξk

1

h

∫ t+h

t

Tl(s(x, ψ))dψ

)
dx dτ +

∫
Kρ0 (x0)

s(x, 0)φ(x, 0) dx. (15)

Taking into account the Lebesgue theorem with k → ∞ we get

lim
k→∞

∫ ∞

0

∫
Kρ0 (x0)

sφn
∂

∂τ

(
ξk

1

h

∫ t+h

t

Tl(s(x, ψ))dψ

)
dx dτ =

= lim
k→∞

∫ ∞

0

∫
Kρ0 (x0)

sφn
∂ξk
∂τ

1

h

∫ t+h

t

Tl(s(x, ψ))dψ dx dτ+

+ lim
k→∞

∫ ∞

0

∫
Kρ0 (x0)

sφnξk
1

h

(
Tl(s(x, τ + h))− Tl(s(x, τ))

)
dx dτ =
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= − lim
k→∞

k

∫ t

t−1/k

∫
Kρ0 (x0)

sφn
1

h

∫ t+h

t

Tl(s(x, ψ))dψ dx dτ+

+

∫ ∞

0

∫
Kρ0 (x0)

sφn
1

h

(
Tl(s(x, τ + h))− Tl(s(x, τ))

)
dx dτ =

= −
∫
Kρ0 (x0)

sφn
1

h

∫ t+h

t

Tl(s(x, ψ))dψ dx +

∫ ∞

0

∫
Kρ0 (x0)

sφn
1

h

(
Tl(s(x, τ+h))−Tl(s(x, τ))

)
dx dτ

and, therefore, at h→ 0 the identity (15) can be written as∫ t

0

∫
Kρ0 (x0)

[
d(s)

∂s

∂x

∂φn

∂x
Tl +

(
d(s)

∂s

∂x
φn

∂Tl
∂x

− ∂f(s)

∂x

)
φnTl

]
dx dτ =

= −
∫
Kρ0 (x0)

sφnTl dx+

∫
Kρ0 (x0)

s0(x)φnTl(s(x, 0)) dx.

Therefore, after passing to the limit as l → ∞, we obtain∫ t

0

∫
Kρ0 (x0)

[
sd(s)

∂s

∂x

∂φn

∂x
+

(
d(s)

(
∂s

∂x

)2

φn − ∂f(s)

∂x

)
φns

]
dx dτ =

= −
∫
Kρ0 (x0)

s2φn dx+

∫
Kρ0 (x0)

s20(x)φn dx.

Finally, passing to the limit as n→ ∞, we have

lim
n→∞

∫ t

0

∫
Kρ0 (x0)

sd(s)
∂s

∂x

∂φn

∂x
dx dτ =

= − lim
n→∞

n

∫ t

0

∫
ρ−1/n<|x−x0|<ρ

sd(s)
∂s

∂x
dx dτ = −

∫ t

0

sd(s)
∂s

∂x
dτ.

Therefore, we arrive at the equality(x0 = 0)∫ ρ

0

s2dx+

∫ t

0

∫ ρ

0

[
d(s) (

∂s

∂x
)2 − s

∂f

∂x

]
dx dτ =

∫ ρ

0

s20 dx+

∫ t

0

sd(s)
∂s

∂x
(ρ, τ) ds] dτ. (16)

Let
a(ρ, t) = sup

06τ6t
A(ρ, τ).

It follows from (16) that

a(ρ, t) +
k

µβϕ
(1 +M)b−n−2w(ρ, t) 6 k

µβϕ
I1 + I2, (17)

where

I1 =

∫ t

0

s(ρ, τ)n−b+1

∣∣∣∣ ∂s∂x (ρ, τ)
∣∣∣∣ dτ,

I2 =

∫ t

0

∫ ρ

0

s(ρ, τ)

∣∣∣∣∂f(s)∂x

∣∣∣∣ dxdτ.
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Applying the Hölder inequality and (11), we obtain

I1 =

∫ t

0

s(ρ, τ)n−b+1 ∂s

∂x
(ρ, s)ds 6

6
(∫ t

0

sn−b(ρ, τ)

(
∂s

∂x
(ρ, τ)

)2

dτ

) 1
2
(∫ t

0

sn−b+2(ρ, τ) dτ

) 1
2

=

(
∂w

∂ρ

) 1
2

a1(ρ, t),

a1(ρ, t) ≡
(∫ t

0

sn−b+2(ρ, τ)

) 1
2

6 Ci

(∫ t

0

(
B

1
2 (ρ, τ) + ρ−δ A

1
r (ρ, τ)

)2
dτ

) θ
2
(∫ t

0

A
2
r (ρ, τ)dτ

) 1−θ
2

6

6 Ci

((∫ t

0

B(ρ, τ)dτ

) 1
2

+ ρ−δ

(∫ t

0

A
2
r (ρ, τ)dτ

) 1
2
)θ

t
1−θ
2 a

1−θ
r (ρ, t) 6

6 C1ρ
−δt

1−θ
2

(
w

1
2 (ρ, t) a

1−θ
rθ (ρ, t)ρδ + T

1
2 a

1
rθ (ρ, t)

)θ

.

But ρ < ρ0, and moreover
2w

1
2 a

1−θ
rθ = 2w

1
2 a

1
2 6 a+ w,

a
1
rθ (ρ, t) 6 a(ρ, t) aδ−1(ρ0, t) 6 a(ρ, t) ρ0

δ−1M2(δ−1), δ > 1.

Consequently,

a1(ρ, t) 6 Ciρ
−δt

1−θ
2

(
ρδ0
2
(a+ w) + T

1
2 aρδ−1

0 M
2(δ−1)
0

)θ

6

6 Ciρ
−δt

1−θ
2 (a+ w)θ

(
1

2
ρθ0 + T

1
2 ρδ−1

0 M2(δ−1)

)θ

.

Correspondingly,

I1 6 Kit
1−θ
2 ρ−δ [a(ρ, t) + w(ρ, t)]θ

(
∂w

∂ρ

) 1
2

,

where

Ki = Ci

[
1

2
ρ0

δ + T
1
2 ρ0

δ−1M2(δ−1)

]θ
, i = 1, 2.

Now we estimate I2.
We have ∣∣∣∣∂f∂x

∣∣∣∣ 6 sn−1

∣∣∣∣ ∂s∂x
∣∣∣∣F1,

where
F1 =

kn

µ
g(ρs + (1 + 2M)ρf ).

Therefore,

I2 6 F1

(∫ t

0

∫ ρ

0

(
∂s

∂x

)2

sn−bdxdτ

) 1
2
(∫ t

0

∫ ρ

0

sn+bdx dτ

) 1
2

6

6 F1w
1
2M

n+b−2
2

(∫ t

0

∫ ρ

0

s2dx dτ

) 1
2

6 F1M
n+b−2

2 w
1
2 a

1
2 t

1
2 6 1

2
F1M

n+b−2
2 t

1
2 (a+ w).
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Consequently, (17) takes the form

min(1,
k

µβϕ
(1 +M)b−n−2)(a(ρ, t) + w(ρ, t)) 6 k

µβϕ
I1 + I2 6

6 t
1−θ
2

k

µβϕ
Kiρ

−δ (a(ρ, t) + w(ρ, t))θ
(
∂w

∂ρ

) 1
2

+
1

2
F1M

b+n−2
2 t

1
2 (a+ w), i = 1, 2.

Now choose t in such a way that

1

2
F1M

b+n−2
2 t

1
2 6 min(1,

k

µβϕ
(1 +M)b−n−2)− 1

2
.

Therefore,

1

2
(a+ w) 6 k

µβϕ
Kit

1−θ
2 ρ−δ(a+ w)θ

(
∂w

∂ρ

) 1
2

.

Accordingly,

ρδw1−θ 6 (a+ w)1−θρδ 6 2
k

µβϕ
Kit

1−θ
2

(
∂w

∂ρ

) 1
2

,

and hence

ρ2δw2(1−θ) 6 K∗
i t

1−θ ∂w

∂ρ
, (18)

where K∗
i = 4(

k

µβϕ
Ki)

2, i = 1, 2.

Integrating (18) by ρ from ρ1 to ρ0, we find that (1 6 r < 2)

1

2δ + 1
(ρ1+2δ

0 − ρ1+2δ
1 ) 6 K∗

i t
1−θ(w2θ−1(ρ0, t)− w2θ−1(ρ1, t))

1

2θ − 1
.

Therefore, we have

ρ1+2δ
1 − ρ1+2δ

0 +
2δ + 1

2θ − 1
K∗

i t
1−θw2θ−1(ρ0, t) >

2δ + 1

2θ − 1
K∗

i t
1−θw2θ−1(ρ1, t). (19)

Choosing t such that the equality

ρ1+2δ
1 = ρ1+2δ

0 − 2δ + 1

2θ − 1
K∗

i t
1−θ w2θ−1(ρ0, t),

holds, we obtain that w(ρ, t) = 0 for all ρ 6 ρ1, i.e. s(x, t) = 0 almost everywhere in Kρ(0) for
ρ 6 ρ1 and

0 6 t 6 min

(
4M2−b−nF−2

1

(
min

(
1,

k

µβϕ
(1 +M)b−n−2 − 1

2

))2

,

((
ρ1+2δ
0 − ρ1+2δ

) 2θ − 1

(2δ + 1)K∗
i

w1−2θ(ρ0, t)

) 1
1−θ

)
.
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3. Metastable Localization of Solutions

Proof of Theorem 2. Following the initial reasoning in Theorem 1 and formally replacing in
(15) ρ by R, for all ρ ∈ (0, R) we deduce the initial equality (16). According to the conditions of
the theorem, s0(x) = 0 in the ball Kρ0(x0). Therefore, the first integral on the right hand side
of the equality (16) (of s20 ) is in fact ( for ρ ∈ (ρ0, R)) taken over the interval (ρ0, ρ), and hence
the estimate (14) is valid. Other terms of the right hand side of (16) are estimated in the same
way as in Theorem 1. So, instead of (19) we have for all t < T

1

2
(a+ w) 6 k

µβϕ
Ki(a+ w)θρ−δ t

1−θ
2

(
∂w

∂ρ

) 1
2

+K3

(
ρ− ρ0

) 1
2θ−1

.

The first term of the right hand side is estimated by using Young’s inequality

1

2
(a+ w) 6 ε

1
θ θ(a+ w) +

1− θ

ε
1

1−θ

t
1
2 ρ−

δ
1−θ

(
∂w

∂ρ

) 1
2(1−θ)

(
k

µβϕ
Ki

) 1
1−θ

+K3

(
ρ− ρ0

) 1
2θ−1

.

Choosing ε1/θ =
1

4θ
> 0, we obtain

1

4
(a+ w) 6 1− θ

ε
1

1−θ

t
1
2 ρ−

δ
1−θ

(
∂w

∂ρ

) 1
2(1−θ)

(
k

µβϕ
Ki

) 1
1−θ

+K3

(
ρ− ρ0

) 1
2θ−1

.

Using the inequality ap + wp > (a+ w)p, 0 < p < 1, a, w > 0, we have

w2(1−θ) 6 (4(1− θ))2(1−θ)ε−2 ρ−2δ

(
k

µβϕ
Ki

)2

t1−θ ∂w

∂ρ
+ (4K3)

2(1−θ)

(
ρ− ρ0

) 2(1−θ)
2θ−1

.

The result is a special case of the inequality

wσ 6 C tκ w′
ρ + C

(
ρ− ρ0

) σ
1−σ

, 0 < σ < 1, ρ ∈ [ρ0, R], (20)

studied in [12]. As shown in the cited paper, (20) implies the equality w(ρ0, t) = 0 for all
t ∈ [0, t0], where t0 is calculated from the relation

t0 = ((1− σ) 21−σ, R/C∗
i C

1−σ
0 )2/σ, C∗

i = (4(1− θ))2(1−θ)ε−2 ρ−2δ

(
k

µβϕ
Ki

)2

, j = 1, 2.

Therefore s(x, t) = 0 for almost all x ∈ Kρ0(x0) and t ∈ [0, T0], T0 = min(t0, T
∗).
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Локализация решений уравнений фильтрации
в пороупругой среде

Маргарита А. Токарева

В работе рассматривается система уравнений одномерного нестационарного движения жидко-
сти в пороупругой среде. Методом интегральных энергетических оценок устанавливается лока-
лизация решений уравнений.

Ключевые слова: фильтрация, закон Дарси, пороупругость, локализация, метастабильная лока-
лизация.
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