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Работа посвящена моделированию кинетики процесса взрывного разложения кристаллов 
азида серебра при нелокальном характере стадии развития цепи. Моделирование процесса 
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1. Introduction
The main purpose of the simulation of the physical and chemical processes is the simultaneous 

examination of the chemical transformations and the physical processes, among these the main are the 
diffusion of the reagents and energy transfer [1, 2]. Determination of the mechanisms of the initiation, 
propagation and development of the energetic materials’ explosive decomposition has a wide applied 
meaning, as long as the inadvertent occurrence of the equipment based on the explosives causes 
significant material damage [3, 4]. The importance of the study lies in the necessity of development 
of the optical detonators [5] based on the initiating and high [6, 7] explosives. There are two ways 
to describe the explosive decomposition process – thermal [8] and chain model [9]. In terms of the 
thermal model it is supposed that the material decomposes according to the one-stage reaction [10], the 
constant of this stage has the Arrhenius dependence on the temperature. In terms of the chain model 
the self accelerated mode is due to the reagent multiplication [11]. A lot of the experimental data on 
the silver azide explosive decomposition, initiated by the Nd:Yag laser, were explained in terms of the 
chain model. The aim of this work is to simulate the kinetics of generation, propagation of the reaction 
taking into account non-local behavior of the propagation stage and the finite radius of the initiating 
pulse, phenomenological model of the process that was proposed [12].

2. Explosive decomposition model of the silver azide

According to the phenomenological model of the silver azide’s explosive decomposition the energy 
of the chain reaction might transfer along the crystal lattice and causes the e-h pairs’ generation. The 
intensity of the reagents’ generation is maximal in immediate vicinity of the reaction area and then 
decreases exponentially [13]:
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screening and tunneling, and its value was equal to k2 = 0.5·10-11 cm-3s-1 [14]. N6-complex decomposes 
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accumulated by the electron and vibrational degrees of freedom of the nitrogen molecule. In terms of 
the model of the dipole interaction with the electron system of the crystal the constants of deactivation 
were estimated for the cases of e-h pairs’ formation (ke~ 109 s-1) and energy transfer to a band hole 
(kν~ 10-12 cm3s-1) [15]. Deactivation of the nitrogen molecules causes the active particles generation – 
propagation stage takes place not only in the reaction area, but also outside it with probability 
~exp(-x/r0). r0 was calculated using the experimental data 50 ± 10 μm [16]. Intensity of the generation 
stage depended on the illumination inside the sample [17], and was not taken into account in the 
context of the work.

Simulation of the process of the energy transfer was made taking into account the real geometry 
of the sample – in cylindrical coordinate system using the difference scheme [18]. For the calculations 
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the sample was divided into kn cells with the same cross dimensions dx (Fig. 1). The reaction in cell 
n influences the speed of generation of the active particles (chain carriers) in all cells of the crystal, 
mathematically this might be described as an action of the functional on the function of concentration. 
In this work the functional was taken in form of square matrix kn·kn. The elements of the matrix, which 
relate the intensity of the chain carriers’ generation in cell n with the speed of the chemical reaction 
in cell m (Snm), were calculated by using the following procedure. The following conventional signs 
were used: Yn – number of holes in cell n, А – concentration of N6 complex, Sn – area of cell n. Let us 
estimate how the reaction speed in cell n influence the reaction speed in cell m. The distance between 
cells n and m might be calculated as:
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Speed of chain carriers’ generation in any cell n because of the reaction of N6 

decomposition in cell m might be calculated using the following expression: 

Snm = Tm xnm, (2)
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normalizing factor. 
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where Ymn is quantity of the chain carriers, generated in cell m per unit time due to the reaction in 

cell n. For the layer containing cell m:  
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Fig. 1. Layout view of the reaction area in a cylindrical coordinates to estimate the efficiency of the reagents’ 
generation in cell n due to the reaction in cell m
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The entire cylindrical segment with radius rn contains Anrndxdφ particles, so the number of particles 
generated in cell m:
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Calculation of matrix Smn was done in a spatial program, calculation of its components 

preceded the solution of the equation set, describing the kinetics of the decomposition process. 

Snm is square (kn×kn) matrix. Fig. 2 and 3 show the section of the matrix for the different values 

of n (n1 = 100 и n2 = 25). Maximal value of the y-coordinate corresponds to the cell, along which 

the section was made. It is obvious that the diagonal elements have the maximal values, as long 

as these elements correspond to the probability of e-h pairs’ generation in the same cell where 

the reaction takes place. 

Asymmetry of the elements of matrix Snm is explained by the fact that the recombination 

of the reagents in the neighborhood of the surface is faster than in the crystal bulk. If the 

considering cell is in the area next to the surface (distance between the cell and the surface is 

smaller than ro) reflected energy does not absorbed significantly by the layer of the sample, so 

the energy of the secondary wave is bigger than the same value in case of the cells , which are far 

from the surface. This is the case of the cells with numbers 1: (ni-1) or (ni+1): n. While moving 

to the centre of the crystal the curve becomes symmetrical. Maximal values among the elements 

of each line, as it was mentioned above, correspond to the probability of the generation in the 
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Calculation of matrix Smn was done in a spatial program, calculation of its components preceded 
the solution of the equation set, describing the kinetics of the decomposition process. Snm is square 
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Asymmetry of the elements of matrix Snm is explained by the fact that the recombination of the 
reagents in the neighborhood of the surface is faster than in the crystal bulk. If the considering cell is 
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in the area next to the surface (distance between the cell and the surface is smaller than ro) reflected 
energy does not absorbed significantly by the layer of the sample, so the energy of the secondary wave 
is bigger than the same value in case of the cells , which are far from the surface. This is the case of the 
cells with numbers 1: (ni-1) or (ni+1): n. While moving to the centre of the crystal the curve becomes 
symmetrical. Maximal values among the elements of each line, as it was mentioned above, correspond 
to the probability of the generation in the same cell where the reaction takes place. The maximal 
values of the element sii differ for the different lines (Fig. 3). Dependence of sii on the number of the 
cell has several extremes. The maximal value corresponds to the crystal centre, because in that case sii 

 

Fig. 2. Probability of the e-h pair generation in cell n because of the reaction in cell m = 25

Fig. 3. Probability of the e-h pair generation in cell n because of the reaction in cell m = 100
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is calculated as a sum of probabilities of generation from all cells of the crystal and at the same time 
always contains the part, which considering the maximal contribution of the centre cell.

Ordinary differential system describing the process of the reaction with non-local development 
stage (1-6) was solved using the Runge-Kutta method of 1-5 order with time varied pitch. During the 
calculation of the kinetics the relative error does not exceed 10-12. Results of the simulation of the 
processes of the chain reaction initiation and development, initiated by the laser pulse with diameter 
600 μm, presented on Fig. 4 and Fig. 5. Constants of the elementary stages, used to simulate the process, 
were estimated in works [14,15,19]. After the termination of the laser action concentration of reagent А 

Fig. 4 Calculated distributions of A complexes in the crystal in 60, 90, 120, 150 ns after the impulse termination

 

Fig. 5. Calculated distributions of A complexes in the crystal in 400, 500, 600, 700 ns after the impulse 
termination
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(N6 complex) increases (Fig. 4), while the concentration of the chain carriers decreases (electron-hole 
pairs) – induction period of the reaction. A similar situation occurs for the homogeneous variant of the 
chain reaction [20]. Then the reagents’ concentrations begin to increase outside the initiated zone at a 
distance about 100 μm. Estimation of the diffusion shift D·t (D = 0.25 cm2/s diffusion coefficient [21], 
t – time of calculation) gives the value ~ 1 μm. Hence, the main reason of the reaction initiation outside 
the irradiated zone is not a diffusion, but generation of the reagents due to the non-local character of 
the branching stage.

When the induction period is over the concentrations of the holes and complex A begin to grow 
in step both in the irradiated area and in the area, which was not initially acted by the laser pulse. 
Development of the chain reaction causes decomposition of the anion sublattice and degeneration of 
the chain reaction. But by this time concentrations of the reagents outside the radiated zone increase 
and become more than their critical values, and so two reaction fronts are formed. These fronts move 
towards the crystal edges (Fig. 5).

3. Resume

Non local behavior of the chain propagation stage causes significant active particles’ redistribution. 
The concentrations of the active particles, generated by means of this way, decrease exponentially 
outside the reaction area. The active particles are generated symmetrically on all sides outside the 
reaction area. Optimal area of the crystal for the reaction to develop is the centre of the radiation 
zone. 

This work was supported by Russian Foundation for Basic Research for the financial support 
(grant №14-03-00534 А) and Ministry of Education and Science of the Russian Federation 
(governmental project № 2014/64).
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