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Today inverse problems of mathematical physics play an important role in science and appli-

cations [1]. Coefficient inverse problems for parabolic equations are problems of finding solutions

of differential equation with one (or more) unknown coefficients.

An inverse problem for a parabolic equation with a parameter is investigated. The parameter

has the same dimension as the spatial variable.

Inverse problems with unknown parameter arise in various problems: in studying boundary-

value problems for mixed-type equations and equation systems [2, 3]; in solving various inverse

problems [4–7]; in studying boundary-value problems for equation systems with small parame-

ters [8, 9].

1. Problem formulation

We consider the boundary-value problem

∂u(t, x, y)

∂t
= λ∆xu(t, x, y) + µ(t, y)f(t, x, y), (1)

u(0, x, y) = u0(x, y), (2)

u(t, x, y)|x∈∂Ω = 0, (3)

u(t, x, y)|x=y = φ(t, y), (t, x, y) ∈ QT , (4)

where

QT = {(t, x, y)|t ∈ [0, T ], x ∈ Ω, y ∈ D},

T > 0, Ω is a rectangular cuboid [0, l1] × [0, l2] × · · · × [0, ln] in R
n, D is a compact subset of

Ω with smooth boundary ∂D, ∆x =
n
∑

i=1

∂2

∂x2
i

is the Laplace operator, u(t, x, y) and µ(t, y) are

unknown functions. Functions f(t, x, y), u0(x, y) are given.
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We use following notation:

Dα
x =

∂|α|

∂α1x1 . . . ∂αnxn

is partial differential operator with respect to spatial variables x1 . . . xn, where α is multi-index

notation (α = (α1, . . . , αn), |α| = α1 + · · · + αn, αi > 0, αi ∈ Z);

Dβ
y =

∂|β|

∂β1y1 . . . ∂βnyn

is partial differential operator with respect to parameter y;

Ki > 0, i ∈ N,

are nonnegative constants that depends only on initial conditions of problem (1)–(4);

Zp(Ω) = {(u(t, x, y), µ(t, y)) |Dα
xu(t, x, y) ∈ C([0, T ] × Ω ×D),

|Dα
xu(t, x, y)| 6 K, µ(t, y) ∈ C([0, T ] ×D), |α| 6 p− 2}

is the class of continuous functions.

Let us assume that the following conditions are fulfilled:

|f(t, y, y)| > K1 > 0, y ∈ D,

∣

∣Dα
xD

β
yu0(x, y)

∣

∣ 6 K2,

∣

∣

∣

∣

Dα
xD

β
y

f(t, x, y)

f(t, y, y)

∣

∣

∣

∣

6 K3,
∣

∣Dβ
yφt(t, y)

∣

∣ 6 K4, (5)

|α| 6 p, |β| 6 1, (t, x, y) ∈ QT , p > 6;

∂k

∂xk
i

u0(x1, . . . , xi, . . . , xn, y)|xi=0,xi=li = 0, (6)

∂k

∂xk
i

f(t, x1, . . . , xi, . . . , xn, y)|xi=0,xi=li = 0, i = 1, . . . , n, k = 0, 2, 4, 6. (7)

We prove the following statements:

Theorem 1.1. Let us assume that initial data of problem (1)–(4) satisfy (5)–(7) for some p.
Then the problem has a solution of class Zp.

Theorem 1.2. The solution of problem (1)–(4) of class Zp is unique.

Theorem 1.3. Let us consider the Cauchy problem (1), (2), (4) in domain

E = {(t, x, y)|t ∈ [0, T ], x ∈ R
n, y ∈ D}.

a. This problem has a solution of class Zp(R
n) if conditions (5) are fulfilled in domain E.

b. The solution of the problem is unique.

2. Proof of existence

The proof of Theorem 1.1 is based on reduction of boundary-value problem to Cauchy prob-

lem. We construct an extension of functions u0, f from set QT to E in n steps. At the first step

we extend functions u0, f to R with respect to variable x1 as follows:

u0(−x1, x2, . . . , xn, y) = −u0(x1, x2, . . . , xn, y),
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f(t,−x1, x2, . . . , xn, y) = −f(t, x1, x2, . . . , xn, y), x1 ∈ [0, l1];

u0(x1 + 2kl1, x2, . . . , xn, y) = u0(x1, x2, . . . , xn, y),

f(t, x1 + 2kl1, x2, . . . , xn, y) = f(t, x1, x2, . . . , xn, y), k ∈ Z, x1 ∈ [0, l1].

At i-th step (2 6 i 6 n) we extend functions u0, f from [0, li] to R with respect to variable xi in

the same way. We denote the extensions of functions u0, f as u∗0, f
∗, respectively.

By (5), (6), functions u∗0, f
∗ have continuous partial derivatives with respect to variables

x1, . . . , xn up to p-th order on whole set R
n. One should note that functions u∗0, f

∗ are odd

and periodic with respect to variables xi with period 2li. By this, the following conditions are

fulfilled:

u∗0(x1, . . . , xi, . . . , xn, y) + u∗0(x1, . . . ,−xi, . . . , xn, y) = 0, (8)

u∗0(x1, . . . , li + xi, . . . , xn, y) + u∗0(x1, . . . , li − xi, . . . , xn, y) = 0, (9)

f∗(t, x1, . . . , xi, . . . , xn, y) + f∗(t, x1, . . . ,−xi, . . . , xn, y) = 0, (10)

f∗(t, x1, . . . , li + xi, . . . , xn, y) + f∗(t, x1, . . . , li − xi, . . . , xn, y) = 0. (11)

We use u∗0, f
∗ as the initial data for the Cauchy problem

∂u(t, x, y)

∂t
= λ∆xu(t, x, y) + µ(t, y)f∗(t, x, y), (12)

u(0, x, y) = u∗0(x, y), (13)

u(t, x, y)|x=y = φ(t, y), (14)

for t ∈ [0, T ], x ∈ R
n, y ∈ D ⊂ R

n.

After substitution x = y, y ∈ D to (12) one can find µ(t, y):

µ(t, y) =
1

f∗(t, y, y)
(φt(t, y) − λ∆xu(t, y, y)) , y ∈ D. (15)

Using (15), we reduce problem (12)–(14) to auxiliary Cauchy problem for nonclassic partial

differential equation

∂u(t, x, y)

∂t
= λ∆xu(t, x, y) +

1

f∗(t, y, y)
(φt(t, y) − λ∆xu(t, y, y)) f

∗(t, x, y), (16)

u(0, x, y) = u∗0(x, y), t ∈ [0, T ], x ∈ R
n, y ∈ D. (17)

Existence of solution of problem (16)–(17) is proved with the use of the method of weak

approximation (MWA, see [10–12]). We split the problem into two fractional steps and make

time shift by τ/2 in the trace of unknown function:

∂uτ (t, x, y)

∂t
= 2λ∆xu

τ (t, x, y), t ∈ (kτ, (k +1 /2)τ ], (18)

∂uτ (t, x, y)

∂t
= 2

f∗(t, x, y)

f∗(t, y, y)
(φt(t, y) − λ∆xu

τ (t−τ /2, y, y)) , t ∈ ((k +1 /2)τ, (k + 1)τ ], (19)

uτ (0, x, y) = u∗0(x, y), k = 0, . . . , N − 1, Nτ = T, x ∈ R
n, y ∈ D. (20)
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We prove (see Appendix 3.) that functions

∂

∂t
Dα

xu
τ (t, x, y),

∂

∂xi
Dα

xu
τ (t, x, y),

∂

∂yi
Dα

xu
τ (t, x, y), |α| 6 p− 2 (21)

are uniformly (with respect to τ) bounded in domain E. This implies uniform boundedness and

uniform equicontinuity of function sets {Dα
xu

τ}, |α| 6 p− 2 in compact subset

ΠM = {(t, x, y)|t ∈ [0, T ], |xi| 6 M, y ∈ D, i = 1, . . . , n}.

Applying Arzelà–Ascoli theorem about compactness, we show the existence of the subsequence

uτk(t, x, y) of sequence uτ (t, x, y), which converges to some function u(t, x, y) with its partial

derivatives {Dα
xu

τ}, |α| 6 p − 2. It follows from the theorem on convergence of MWA that

function u(t, x, y) is a solution to (16)–(17) in ΠM and

‖Dα
xu

τ −Dα
xu‖C(ΠM ) → 0, |α| 6 p− 2

for τ → 0. Since M is an arbitrary constant, function u(t, x, y) is a solution to (16)–(17) in whole

domain E.

We prove that pair of functions (u(t, x, y), µ(t, y)) (where µ(t, y) is given by (15)) is solution

to (12)–(14). Because u(t, x, y) is a solution to (16), (17) substitution of (u(t, x, y), µ(t, y)) to

(12), (13) gives us identity (16), (17). After substitution x = y, y ∈ D to (16), (17) we show

that u(t, x, y) satisfies
∂u(t, y, y)

∂t
= φt(t, y), y ∈ D.

We assume that φ(t, y) satisfies initial data:

u0(y, y) = φ(0, y), y ∈ D.

Under this assumption function ψ(t) = u(t, y, y) − φ(t, y) is a solution to Cauchy problem

ψ′(t) = 0,

ψ(0) = 0.

Thus ψ(t) ≡ 0 and (14) is fulfilled.

Remark. If we assume that u∗0, f
∗ are arbitrary functions satisfying (5) in domain E then we

prove Theorem 1.3 a.

We prove that the solution of Cauchy problem u(t, x, y) satisfies boundary conditions (3).

Solution uτ of split problem (18)–(20) satisfies

uτ (t, x1, . . . , xi, . . . , xn, y) + uτ (t, x1, . . . ,−xi, . . . , xn, y) = 0, (22)

uτ (t, x1, . . . , li + xi, . . . , xn, y) + uτ (t, x1, . . . , li − xi, . . . , xn, y) = 0 (23)

for any τ > 0, as it is proved in Appendix 3.. Because uτ (t, x, y) converges to u(t, x, y) in ΠM

for any M > 0 we can set M0 > max(l1, . . . , ln). Then we have QT ⊂ ΠM0
.

Relations (22)–(23) have a limit as τ → 0. We assume τ → 0 and xi = 0 in (22)–(23) and

obtain (3). Solution of Cauchy problem (12)–(14) satisfies (1), (2), (4) in QT and (3) is fulfilled.

This proves Theorem 1.1.
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3. Proof of uniqueness

Let us assume that (u1(t, x, y), µ1(t, y)), (u2(t, x, y), µ2(t, y)) are two arbitrary solutions of

problem (1)–(4) of class Zp. We denote u∗ = u1 −u2, µ
∗ = µ1 −µ2. Functions u∗, µ∗ satisfy the

following problem

∂u∗(t, x, y)

∂t
= λ∆xu

∗(t, x, y) + µ∗(t, y)f(t, x, y), (24)

u∗(0, x, y) = 0, (25)

u∗(t, x, y)|x∈∂Ω = 0, (26)

u∗(t, x, y)|x=y = 0, (27)

for (t, x, y) ∈ QT .

After substitution x = y, y ∈ D into (24) one can find µ∗(t, y) using (15) with φ(t) ≡ 0. Next

we substitute µ∗(t, y) into (24). Function u∗ satisfies the following problem

∂u∗(t, x, y)

∂t
= λ∆xu

∗(t, x, y) −
λ · f(t, x, y) · ∆xu

∗(t, y, y)

f(t, y, y)
, (28)

u∗(0, x, y) = 0, (29)

u∗(t, x, y)|x∈∂Ω = 0, (30)

for (t, x, y) ∈ QT .

We differentiate twice relations (28)–(30) with respect to xi. Then
∂2u∗

∂x2
i

is a solution to

second-order parabolic boundary-value problem

∂

∂t

∂2

∂x2
i

u∗(t, x, y) = λ∆x
∂2

∂x2
i

u∗(t, x, y) −
λ · ∂2

∂x2

i

f(t, x, y) · ∆xu
∗(t, y, y)

f(t, y, y)
, (31)

∂2

∂x2
i

u∗(0, x, y) = 0, (32)

∂2

∂x2
i

u∗(t, x, y)|x∈∂Ω = 0, (33)

for i = 1, . . . , n.

We apply the maximum principle to (31)–(33) and obtain

∣

∣

∣

∣

∂2

∂x2
i

u∗(t, x, y)

∣

∣

∣

∣

6 K3t sup
x∈Rn

|∆xu
∗(t, x, y)| , i = 1, . . . , n.

Summation of these inequalities for i = 1, . . . , n gives

n
∑

i=1

∣

∣

∣

∣

∂2

∂x2
i

u∗(t, x, y)

∣

∣

∣

∣

6 K3nt sup
x∈Rn

|∆xu
∗(t, x, y)| 6 K3nt

n
∑

i=1

sup
x∈Rn

∣

∣

∣

∣

∂2

∂x2
i

u∗(t, x, y)

∣

∣

∣

∣

.

One can set ξ so as K3nξ < 1 and obtain

n
∑

i=1

sup
x∈Rn

∣

∣

∣

∣

∂2

∂x2
i

u∗(t, x, y)

∣

∣

∣

∣

= 0, t ∈ [0, ξ].
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This proves that the right-hand side of (28) is equal to zero. By the maximum principle

u∗(t, x, y) ≡ 0 for t ∈ [0, ξ].

Let us consider problem (28), (30) for t ∈ [ξ, T ] with initial data u∗(ξ, x, y) = 0. Using the

same reasoning we prove that u∗(t, x, y) ≡ 0 for t ∈ [ξ, 2ξ]. After finite number of steps we prove

that u∗(t, x, y) ≡ 0 for t ∈ [0, T ].

With u∗ = 0 in (24) we have

µ∗(t, y)f(t, x, y) = 0, ∀x ∈ Ω, ∀y ∈ D.

Since f(t, x, y) 6= 0 for x = y we have µ(t, y) ≡ 0. This proves Theorem 1.2.

Note. Let us assume that (u1, µ1), (u2, µ2) are two arbitrary solutions of the Cauchy problem

(1), (2), (4) in domain E and formulate the following Cauchy problem for u∗ = u1 − u2, µ∗ =

µ1 − µ2:

∂u∗(t, x, y)

∂t
= λ∆xu

∗(t, x, y) + µ∗(t, y)f(t, x, y), (34)

u∗(0, x, y) = 0, (35)

u∗(t, y, y) = 0, (36)

for (t, x, y) ∈ E.

One can prove in exactly the same way as we did it for (24)–(27) that u∗ ≡ 0 and µ∗ ≡ 0.

This proves Theorem 1.3 b.

Appendix

A. Proof of statement (21)

Split-problem (18)–(20) is n-dimensional Cauchy problem for parabolic equation (18), (20)

at the first fractional step and the Cauchy problem for ordinary differential equation (19), (20)

at the second fractional step. Note that the initial data of split-problem satisfies (5).

We use the following notation:

Uτ
α,β(t) = sup

ξ∈[0,t]

sup
x∈Rn,y∈D

∣

∣Dα
xD

β
yu

τ (ξ, x, y)
∣

∣ , Uτ (t) =

=
∑

|α|6p

∑

|β|61

Uτ
α,β(t), Ũτ (t) =

∑

|α|6p

Uτ
α,0(t), (37)

are nonnegative increasing functions. They are bounds of uτ and its partial derivatives.

Zeroth whole step (k = 0) is considered. At the first fractional step we differentiate (18), (20)

up to p times with respect to xi and once with respect to yi and obtain

∂

∂t
Dα

xD
β
yu

τ (t, x, y) = 2λ∆xD
α
xD

β
yu

τ (t, x, y), t ∈ (0,τ /2], x ∈ R
n, y ∈ D.

The application of the maximum principle to this equation gives

∣

∣Dα
xD

β
yu

τ (t, x, y)
∣

∣ 6 K2, t ∈ [0,τ /2]. (38)
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Solution of problem (18), (20) at the second fractional step can be expressed in explicit form:

uτ (t, x, y) = uτ (τ/2, x, y) + 2

∫ t

τ /2

f(ξ, x, y)

f(ξ, y, y)
(φt(ξ, y) − λ∆xu

τ (ξ −τ /2, y, y)) dξ, t ∈ [τ/2, τ ].

Upon differentiating this identity with respect to xi, we obtain bounds for respective partial

derivatives:

|Dα
xu

τ (t, x, y)|6 |Dα
xu

τ (τ/2, x, y)| +K5τ

(

1 + sup
ξ∈[τ /2,τ ]

|∆xu
τ (ξ −τ /2, y, y)|

)

, t ∈ [τ/2, τ ]. (39)

Using (37), inequalities (38)–(39) can be expressed in the following form:

Uτ
α,0(t) 6 Uτ

α,0(0), t ∈ [0,τ /2],

Uτ
α,0(t) 6 Uτ

α,0(0) +K5τ



1 +
∑

|α|=2

Uτ
α,0(0)



 6 Uτ
α,0(0) +K5τ

(

1 + Ũτ (0)
)

, t ∈ [0, τ ].

The same technique can be applied on the first and subsequent whole steps. At the first

whole step (k = 1) bounds for uτ and its partial derivatives are

Uτ
α,0(t) 6 Uτ

α,0(0) +K5τ
(

1 + Ũτ (0)
)

, t ∈ [τ,3τ /2],

at the first fractional step and

|Dα
xu

τ (t, x, y)| 6
∣

∣Dα
xu

τ (3τ/2, x, y)
∣

∣+K5τ

(

1 + sup
ξ∈[3τ /2,2τ ]

|∆xu
τ (ξ −τ /2, y, y)|

)

, t ∈ [3τ/2, 2τ ],

at the second fractional step. Hence

Uτ
α,0(t) 6 Uτ

α,0(0) +K5τ
(

1 + Ũτ (0) + 1 + Ũτ (τ)
)

, t ∈ [τ, 2τ ].

After applying this technique k times, we obtain

Uτ
α,0(t) 6 Uτ

α,0(0) +K5τ

k
∑

j=1

(

1 + Ũτ ((j − 1)τ)
)

, t ∈ [0, kτ ], k = 1, . . . , N. (40)

Then we sum (40) over all α, |α| 6 p and prove that

Ũτ (t) 6 Ũτ (0) +K6τ
k
∑

j=1

(

1 + Ũτ ((j − 1)τ)
)

6

6

(

1 + Ũτ (0)
)

(1 +K6τ)
k
− 1 6 K7, t ∈ [0, kτ ], k = 1, . . . , N. (41)

Because

(1 +K6τ)
k

6 (1 +K6τ)
N

6
(

eK6τ
)N

= eK6Nτ = eK6T ,

K7 does not depend on τ and (41) is the uniform bound.

Consider first-order partial derivatives
∂

∂yi
Dα

xu
τ . The partial derivatives can be estimated

by (38) with |β| = 1 at every first fractional step. At second fractional steps we first differentiate

– 287 –



Kirill V.Korshun On some Inverse Problem for a Parabolic Equation with a Paramete

the explicit solution of (19), (20) with respect to xi and then with respect to yi (considering

uτ (ξ, y, y) as composite function of y):

∂

∂yi
Dα

xu
τ (t, x, y) =

∂

∂yi
Dα

xu
τ (τ/2, x, y) +

∫ t

τ /2

(

2Dα
x

∂

∂yi

f(ξ, x, y)

f(ξ, y, y)

)

×

× (φt(ξ, y) − λ∆xu
τ (ξ −τ /2, y, y)) dξ +

∫ t

τ /2

(

2Dα
x

f(ξ, x, y)

f(ξ, y, y)

)

×

×

(

∂

∂yi
φt(ξ, y) − λ

∂

∂xi
∆xu

τ (ξ −τ /2, y, y) − λ
∂

∂yi
∆xu

τ (ξ −τ /2, y, y)

)

dξ.

Because every partial derivative Dα
xu

τ is bounded by (41) the following inequalities are true:

∣

∣

∣

∣

∂

∂yi
Dα

xu
τ (t, x, y)

∣

∣

∣

∣

6

∣

∣

∣

∣

∂

∂yi
Dα

xu
τ (τ/2, x, y)

∣

∣

∣

∣

+ τ
(

K3 · (K4 + λK7) +K3·
(

K4 + λK7+

+λ sup
ξ∈[0,τ /2]

∣

∣

∣

∣

∂

∂yi
∆xu

τ (ξ −τ /2, y, y)

∣

∣

∣

∣

))

,

Uτ
α,β(t) 6 Uτ

α,β(0) +K8τ



1 +
∑

|α|=2

Uτ
α,β(0)



 6 Uτ
α,β(0) +K8τ (1 + Uτ (0)) , t ∈ [0, τ ]. (42)

Using the same line of reasoning on every whole step, we obtain

Uτ
α,β(t) 6 Uτ

α,β(0) +K8τ

k
∑

j=1

(1 + Uτ ((j − 1)τ)) , t ∈ [0, kτ ], k = 1, . . . , N. (43)

Then we sum (43) over all α, β, |α| 6 p, |β| = 1 and obtain

Uτ (t) 6 Uτ (0) +K9τ

k
∑

j=1

(1 + Uτ ((j − 1)τ)) 6

6 (1 + Uτ (0)) (1 +K9τ)
k
− 1 6 K10, t ∈ [0, kτ ], k = 1, . . . , N.

(44)

Inequality (44) shows uniform (with respect to τ) boundedness of partial derivatives

Dα
xD

β
yu

τ (t, x, y).

We differentiate (18), (19) with respect to xi up to p − 2 times. Because the right-hand side

contains uniformly bounded functions then the left-hand side

∂

∂t
Dα

xu
τ (t, x, y), |α| 6 p− 2,

is also uniformly bounded. This proves statement (21).

B. Proof of relations (22) and (23)

We prove relations (22) and (23) with the use of the method of fractional steps.
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At t = 0 relations (22), (23) are fulfilled. It follows from (8) and (9). At the first fractional

step uτ satisfies the Cauchy problem (18), (20). The solution of this problem is of the form

(see [13])

uτ (t, x1, x2, . . . , xn, y) =

∫

Rn

u∗0(ξ1, ξ2, . . . , ξn, y)W (x, ξ, t, 0)dξ1dξ2 . . . dξn, (45)

W (x1, x2, . . . , xn, ξ1, ξ2, . . . , ξn, t, z) =
1

4π(t− z)
√

(2λ)n
exp









−

n
∑

i=1

(xi−ξi)
2

2λ

4(t− z)









. (46)

We substitute this solution into (22) and (23) and obtain

uτ (t, x1, . . . , ci + xi, . . . , xn, y) + uτ (t, x1, . . . , ci − xi, . . . , xn, y) =

=

∫

Rn

u∗0(ξ1, . . . , ξn, y)

4πt(2λ)n/2






exp






−

(ci + xi − ξi)
2 +

∑

j 6=i

(xj − ξj)
2

8λt






+

+exp






−

(ci − xi − ξi)
2 +

∑

j 6=i

(xj − ξj)
2

8λt












dξ1 . . . dξn =

= −

∫

Rn

u∗0(ξ1, . . . , ci − ξi, . . . , ξn, y)

4πt(2λ)n/2
exp






−

∑

j 6=i

(xj − ξj)
2

8λt






×

×

[

exp

(

−
(xi + ξi)

2

8λt

)

+ exp

(

−
(xi − ξi)

2

8λt

)]

dξ1 . . . dξn, i = 1, . . . , n, ci = 0, l1, t ∈ (0,τ /2].

Note that all integrands are odd functions with respect to ξi, hence all integrals are equal to

zero.

At the second fractional step, uτ have the following form:

uτ (t, x, y) = uτ (τ/2, x, y) + 2

∫ t

τ /2

f(ξ, x, y)

f(ξ, y, y)
(φt(ξ, y) − λ∆xu

τ (ξ −τ /2, y, y)) dξ, t ∈ [τ/2, τ ].

We substitute this expression into (22) and (23) and obtain

uτ (t, x1, . . . , ci + xi, . . . , xn, y) + uτ (t, x1, . . . , ci − xi, . . . , xn, y) =

= uτ
(τ

2
, x1, . . . , ci + xi, . . . , xn, y

)

+ uτ
(τ

2
, x1, . . . , ci − xi, . . . , xn, y

)

+

+2

∫ t

τ

2

(f∗(ξ, x1, . . . , ci + xi, . . . , xn, y) + f∗(ξ, x1, . . . , ci − xi, . . . , xn, y)) · . . . dξ = 0,

where i = 1, . . . , n, ci = 0, l1. All terms in this identity are equal to zero by statements proved

earlier.

Thus, relations (22) and (23) are fulfilled for t ∈ [0, τ ]. Using the same line of reasoning k

times, we prove that (22) and (23) are fulfilled for t ∈ [0, kτ ] and, therefore, for all t ∈ [0, T ].
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Об одной обратной задаче для параболического уравнения
с параметром

Кирилл В. Коршун

В статье рассмотрена краевая обратная задача для n-мерного параболического уравнения с па-

раметром. Получены достаточные условия на входные данные, обеспечивающие однозначную раз-

решимость задачи в классе гладких функций.

Ключевые слова: дифференциальные уравнения, краевая задача, метод слабой аппроксимации.
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