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The Lyapunov exponents for Anderson localization are studied in a one dimensional disordered system.

A random Gaussian potential with the power law decay ∼ 1/|x|q of the correlation function is considered.

The exponential growth of the moments of the eigenfunctions and their derivative is obtained. Positive

Lyapunov exponents, which determine the asymptotic growth rate are found.
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In this paper we consider Anderson localization [1] in a one dimensional disordered system

with a long-range correlations. The recent realization of disordered systems by using ultra cold

atoms [2, 3] in optical lattices and microwave realization of the Hofstadter butterfly [4] show

that the random potential in the experiments are highly correlated. The increased interest in

the problem of Anderson localization in random potentials with long-range correlations is also

relevant to studies of the metal-insulator transition [5, 6].

Anderson localization in a one dimensional disordered system is described in the framework

of the eigenvalue problem

ǫφ(x) = − d2

dx2
φ(x) − V (x)φ(x) , (1)

with a Gaussian random potential V (x). The long-range correlations of the disorder is modelled

by the two point correlation function C(x) with the power law decay at the large scale

〈V (x′)V (x)〉 = Cq(x − x′) =
Cq

|x − x′|q , (2)

where q > 0. Spectral properties of the random operator of Eq. (1) (and its discrete counterpart)

were studied [7–9], and a rigorous result on localization of Eq. (1) with the power-law correlation

functions was stated in [8]. It has also been shown by various techniques under study of the

metal-insulator transition. that all eigenfunctions are localized for correlated potentials with the

correlation decay rate 0 < q < 1 [6, 10–12]. Due to the physical interpretation, see discussion

in Ref. [5], one of the main results is the absence of the absolutely continuous spectra for the

random Schrödinger operator (1) with the correlation properties due to Eq. (2). This means that

the eigenfunctions φ(x) are localized, and investigation of Lyapunov exponents is a serious task

related to localization of the eigenfunctions.

The Lyapunov exponents are important in spectral theory, since they govern the asymptotic

behavior of the wave functions. They are defined on the asymptotic behavior of the averaged
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envelope γs(ǫ) = lim
x→∞

〈ln φ2(x)〉
2x

. It was shown by rigorous analysis that the positive Lyapunov

exponents are absent for the absolutely continuous spectrum, while the positiveness of the Lya-

punov exponents ensures that the spectrum is pure point [9, 13].

In this paper, we calculate 〈φ2(x)〉 of solutions of Eq. (1) for a certain energy ǫ, with given

boundary conditions at some point, for example φ(x = 0) and φ′(x = 0), where prime means

the derivative with respect to x. Since the distribution of random potentials is translationally

invariant, it is independent of the choice of the initial point as x = 0. It will be shown that this

quantity grows exponentially with the rate γ(ǫ) = lim
x→∞

ln〈φ2(x)〉
x

> 0. Note that it is different

from γs, which supposes a knowledge of all the even moments [14–17].

We develop a general procedure which is suitable for calculation of all moments of the wave

function and its first derivative. To this end the Schrödinger equation (1) is considered as the

Langevin equation and the x coordinate as a formal time. For the δ correlated process it can be

easily mapped on the Fokker-Planck (diffusion) equation for the probability distribution function

P(φ, φ′) [13, 18]. Unlike this, the two point correlation function (2), which corresponds to the

stationary process, leads to additional integration over the formal ”time” with a memory kernel.

The method of consideration enables one to observe the exponential growth of 〈φ2(x)〉 with the

Lyapunov exponent γ(ǫ) > 0.

Since the Schrödinger equation (1) is a linear stochastic equation, equations for the 2n mo-

ments of the type

Mk,l(x) = 〈[φ(x)]k[φ′(x)]l〉 , k + l = 2n, k, l = 0, 1, 2, . . . , (3)

can be obtained in the closed form. To this end we rewrite Eq. (1) in the form of the Langevin

equation. The x coordinate is considered as a formal time on the half axis x ≡ τ, τ ∈ [0,∞) and

the new dynamical variables u(τ) = φ(x), v(τ) = u̇ = φ′(x) are defined. In the new variables

the Langevin equation reads

u̇ = v , v̇ = −[ǫ + V (τ)]u , (4)

where V (τ) is now the long-range correlated noise

Cα(τ) =
Cα

τ1+α
. (5)

It is convenient to set q = 1 + α and Cq ≡ Cα. In the new variables the expectation values of

Eq. (3) are now Mk,l(τ) = 〈ukvl〉. Solutions of Eq. (4) are obtained as functionals

v(t) = −
t

∫

0

[ǫ + V (τ)]u(τ)dτ , u(t) =

t
∫

0

v(τ)dτ . (6)

Following [16] we obtain a temporal equation for the moments from the Langevin equation (4)

and its solutions (6). Differentiating Mk.l(τ) with respect to τ , we obtain

Ṁk,l = kMk−1,l+1 − lǫMk+1,l−1 − l〈V (t)uk+1vl−1〉 . (7)

Eq. (7) can be obtained in a closed form. The application of the Furutsu-Novikov formula [19]

to the last term in Eq. (7) yields

〈V (t)F [V (t)]〉 =

t
∫

0

dτ ′〈V (t)V (τ ′)〉
〈δF [V (τ)]

δV (τ ′)

〉

. (8)
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Eq. (8) can be found explicitly for the δ correlated noise. The correlation function can be

expanded in the δ function and its derivatives C(t − τ) =
∑

p
cpδ

(p)(t − τ). To this end the

correlation function is truncated C(x− x′) = 0 for |x− x′| > X0, where X0 is an arbitrary large.

Substituting this expansion in Eq. (8), we obtain∗

t
∫

0

dτC(t − τ)
〈δF [V (τ)]

δV (τ)

〉

= −(l − 1)

t
∫

0

Cα(t − τ)Mk+2,l−2(τ)dτ . (9)

We also used here that the variational derivative equals zero when τ > t. Here the solution

of Eq. (6) is used to obtain the functional derivative of the functional F [V (τ)] = uk+1vl−1.

Substituting the solution of Eq. (9) in Eq. (7), we obtain that the temporal behavior of the

moments is described by the fractional–differential equation

Ṁk,l = kMk−1,l+1 − lǫMk+1,l−1 + l(l − 1)Dα
t Mk+2,l−2 , (10)

where the convolution integral in Eq. (9) is the fractional derivative Dα
t f(t)

Dα
t f(t) = Cα

t
∫

0

f(τ)dτ

(t − τ)1+α
. (11)

Here the correlation function Cα(t) defines the memory kernel, or the causal function. Eqs.

(10) and (11) are relevant to the fractional Fokker-Planck equations which describe a variety

of physical processes related to fractional diffusion [20–22]. An important technique for the

treatment of the fractional equation is the Laplace transform. It is worth stressing that both

analytical properties of this fractional integration and the Laplace transform depend on α.

For −1 < α < 0 Eq. (10) is readily solved by means of the Laplace transform. Defining

L̂[Mk,l(t)] = M̃k,l(s), one obtains from Eq. (11) L̂[Dα
t Mk,l(t)] = CαΓ(−α)sαM̃k,l(s), where

Γ(α) is the gamma function. For simplicity, disregarding the sign of the correlation function (5),

we set Cα = 2σ2/Γ(−α), where the variance σ2 = 〈V 2(0)〉 determines the amplitude of the noise.

Then, we introduce 2n + 1-dimensional vectors Mn(t) =
(

M2n,0,M2n−1,1, . . . ,M1,2n−1,M0,2n

)

in the “time” space and M̃n(s) = L̂[Mn(t)] in the Laplace space, correspondingly. Then the

solution of Eq. (10) is the Laplace inversion of the following vector

M̃n(s) =
1

s − An(s)
Mn(0) , (12)

where (2n+1)× (2n+1) matrix An(s) consists of coefficients from the matrix equation (10). In

the limit s → 0 the disorder term of order of sα → ∞ is dominant, and the maximal eigenvalues

of An can be evaluated at the energy ǫ ≈ 0. Following Ref. [17], it can be proven that for ǫ = 0

the maximal eigenvalues of An behaves for large n as Ω(s) ≈ sα/3σ2/3(2n)4/3. Expanding the

initial condition Mn(0) over the eigenfunctions of An, we obtain that the maximal growth of the

nth moment is

Mn(t) = L̂−1
[ s−α/3

s1−α/3 − σ2/3(2n)4/3

]

MΩ(0) . (13)

∗The following sequence of equalities is used
∫

dτ
′C(t− τ

′)
〈

δF[V (τ)]
δV (τ ′)

〉

=
∑

p

cp

(

− d
dt

)p〈

δF[V (t)]
δV (t)

〉

=
∑

p

cp

(

− d
dt

)p
Mk+2,l−2(t) =

∫

dτC(t− τ)Mk+2,l−2(τ).
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The inverse Laplace transform is the definition of the Mittag-Leffler function [23]:

E1−α/3

(3

4
σ2/3(2n)4/3t1−α/3

)

.

Asymptotic behavior of the Mittag-Leffler function for t → ∞ is determined by the exponential

function exp
[

(2n
√

σ)4/(3−α)t
]

. Therefore the exponential growth of the nth moment is due to

the Lyapunov exponent

γ(0) ∼ (2n
√

σ)4/(3−α) (14)

for −1 < α < 0.

For α > 0 the fractional integral diverges. Therefore, to obtain the Lyapunov exponents

avoiding the difficulty one discards the causality principle and extend the consideration of the

random process on the entire x axis x ∈ (−∞,+∞). For this formal consideration, the Furutsu-

Novikov formula in Eq. (9) reads

−(l − 1)Cα

x
∫

−∞

Mk+2,l−2(y)

(x − y)1+α
dy for x > 0 ,

−(l − 1)Cα

∞
∫

x

Mk+2,l−2(y)

(y − x)1+α
dy for x < 0 . (15)

Setting again Cα = 1/Γ(−α), we obtain that Eq. (15) is the definition of the Riesz/Weyl fractional

derivative Wα
x see e.g., [21, 22,24]. Therefore, Eq. (10) now reads

d

dx
Mk,l = kMk−1,l+1 + lǫMk+1,l−1 + l(l − 1)Wα

x Mk+2,l−2 . (16)

A specific property that we use is the fractional differentiation of an exponential Wα
x exp(γx) =

γα exp(γx). Substituting this in Eq. (7), one seeks the solution for the maximal moment growth

Mk,l(x) = exp(±γx)Mk,l(x = 0) , (17)

where plus stays for x > 0 and minus for x < 0, respectively. One readily checks that the both

cases yield the same algebraic equation

γMn = An(γ)Mn , (18)

where the moment vector Mn is defined above and the matrix An(γ) is defined from Eq. (16).

Therefore, Ω(γ) = γασ2/ǫ, where conditions γ ≪ ǫ/σ2 and γα ≪ ǫ/σ2 are used. Finally, one

obtains

γ(ǫ) ∼
( ǫ

σ2

)1/(α−1)

. (19)

This solution for γ also yields conditions of validity for different values of energy ǫ. Indeed, for

0 < α < 1 Eq. (18) describe an exponential growth for asymptotically large energies ǫ ≫ σ2,

since, in this case, γ(ǫ) ≪ ǫ/σ2. On the contrary, when α > 1 the solution of Eq. (19) is valid

for ǫ ≪ σ2. This follows from the condition γα ≪ ǫ/σ2. Note that for large negative values of

the energy Ω ∼ 2
√

|ǫ|/|σ|, and this is just the Lyapunov exponent γ(ǫ) ∼ 2
√

|ǫ|/|σ| .

In conclusion, we studied the Lyapunov exponents for Anderson localization in a one-

dimensional disordered system with a long-range correlations. The averaged behavior of the
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second moment of the eigenfunction is calculated, and its asymptotic exponential growth for

|x| → ∞ is determined by the Lyapunov exponents for different values of the energy ǫ. The main

result of the study is the existence of the positive Lyapunov exponents γ(ǫ) > 0 for the rate

q = 1+α > 0 of the power law decay of the correlation function. It is relevant to the exponential

localization of the eigenfunctions of the random Schrödinger operator of Eq. (1).

I thank S. Fishman for very informative and instructive discussions. This work was supported

by the Israel Science Foundation.
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Ляпуновские экспоненты в локализации Андерсонa
с длинными корреляциями

Александр Иомин

В работе изучается показатель Ляпунова, характеризующий локализацию Андерсона в одномер-

ном случае. Рассматривается случайный потенциал в виде гауссовского случайного процесса c

корреляционной функцией, затухающей по степенному закону. Получен экспоненциальный рост

четных моментов собственных волновых функций. Показано, что асимптотический рост чет-

ных моментов собственных волновых функций определяется положительной ляпуновской экспо-

нентой. Характерные значения показателя Ляпунова найдены для разных режимов случайного

потенциала.

Ключевые слова: дальние корреляции, формула Фурутцу-Новикова, фрактальные производные.
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