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The Lyapunov exponents for Anderson localization are studied in a one dimensional disordered system.
A random Gaussian potential with the power law decay ~ 1/|z|? of the correlation function is considered.
The exponential growth of the moments of the eigenfunctions and their derivative is obtained. Positive

Lyapunov exponents, which determine the asymptotic growth rate are found.
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In this paper we consider Anderson localization [1] in a one dimensional disordered system
with a long-range correlations. The recent realization of disordered systems by using ultra cold
atoms [2, 3] in optical lattices and microwave realization of the Hofstadter butterfly [4] show
that the random potential in the experiments are highly correlated. The increased interest in
the problem of Anderson localization in random potentials with long-range correlations is also
relevant to studies of the metal-insulator transition [5, 6].

Anderson localization in a one dimensional disordered system is described in the framework
of the eigenvalue problem

2
L ol@) — V(@)o(a), (1)
with a Gaussian random potential V' (z). The long-range correlations of the disorder is modelled
by the two point correlation function C(z) with the power law decay at the large scale
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(V(@")V(x)) = Cq(x — 2') (2)
where ¢ > 0. Spectral properties of the random operator of Eq. (1) (and its discrete counterpart)
were studied [7-9], and a rigorous result on localization of Eq. (1) with the power-law correlation
functions was stated in [8]. It has also been shown by various techniques under study of the
metal-insulator transition. that all eigenfunctions are localized for correlated potentials with the
correlation decay rate 0 < ¢ < 1 [6,10-12]. Due to the physical interpretation, see discussion
in Ref. [5], one of the main results is the absence of the absolutely continuous spectra for the
random Schrodinger operator (1) with the correlation properties due to Eq. (2). This means that
the eigenfunctions ¢(x) are localized, and investigation of Lyapunov exponents is a serious task
related to localization of the eigenfunctions.

The Lyapunov exponents are important in spectral theory, since they govern the asymptotic
behavior of the wave functions. They are defined on the asymptotic behavior of the averaged
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2
envelope v5(€) = lim %A It was shown by rigorous analysis that the positive Lyapunov
exponents are abgez:o for thg absolutely continuous spectrum, while the positiveness of the Lya-
punov exponents ensures that the spectrum is pure point [9,13].
In this paper, we calculate (¢?(x)) of solutions of Eq. (1) for a certain energy €, with given
boundary conditions at some point, for example ¢(z = 0) and ¢'(x = 0), where prime means
the derivative with respect to x. Since the distribution of random potentials is translationally

invariant, it is independent of the choice of the initial point as = 0. It will be shown that this

1 2
M > 0. Note that it is different

from ~,, which supposes a knowledge of all the even momentxs [14-17].

We develop a general procedure which is suitable for calculation of all moments of the wave
function and its first derivative. To this end the Schrédinger equation (1) is considered as the
Langevin equation and the x coordinate as a formal time. For the ¢ correlated process it can be
easily mapped on the Fokker-Planck (diffusion) equation for the probability distribution function
P(¢,¢') [13,18]. Unlike this, the two point correlation function (2), which corresponds to the
stationary process, leads to additional integration over the formal "time” with a memory kernel.
The method of consideration enables one to observe the exponential growth of (¢?(x)) with the
Lyapunov exponent y(e) > 0.

Since the Schrodinger equation (1) is a linear stochastic equation, equations for the 2n mo-

quantity grows exponentially with the rate y(¢) = lim

r—00

ments of the type
Mi(z) = ([p(@))*[¢' (@)]"), k+1=2n, k1=0,1,2,..., (3)

can be obtained in the closed form. To this end we rewrite Eq. (1) in the form of the Langevin
equation. The x coordinate is considered as a formal time on the half axis x =7, 7 € [0,00) and
the new dynamical variables u(7) = ¢(x), v(r) = © = ¢'(z) are defined. In the new variables
the Langevin equation reads

w=v, 0v=—le+V(r)u, (4)

where V(7) is now the long-range correlated noise

Calr) = 5o (5)

It is convenient to set ¢ = 1+ a and C; = C,. In the new variables the expectation values of
Eq. (3) are now My, (1) = (u*v'). Solutions of Eq. (4) are obtained as functionals

t t

v(t) = — /[e +V(D)u(r)dr, wu(t)= /U(T)dT. (6)

0 0
Following [16] we obtain a temporal equation for the moments from the Langevin equation (4)
and its solutions (6). Differentiating My, ;(7) with respect to 7, we obtain

Mk,l = kMk—l,l-i—l - lEMk+17l_1 - Z<V(t)uk+1vl71> . (7)

Eq. (7) can be obtained in a closed form. The application of the Furutsu-Novikov formula [19]
to the last term in Eq. (7) yields

SFV(r)]
) ®)

VrEve) = [ e vV (S
0
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Eq. (8) can be found explicitly for the § correlated noise. The correlation function can be
expanded in the § function and its derivatives C(t — 7) = > ¢,6®) (¢t — 7). To this end the

P
correlation function is truncated C(z —z’) = 0 for |z — 2/| > Xy, where X is an arbitrary large.
Substituting this expansion in Eq. (8), we obtain*

t

/dTC(t - T)<‘w> =—(1-1) /Ca(t — ) Miy—a(r)dr . (9)
0 0

We also used here that the variational derivative equals zero when 7 > t. Here the solution
of Eq. (6) is used to obtain the functional derivative of the functional F[V(7)] = uFt1lv!=L.
Substituting the solution of Eq. (9) in Eq. (7), we obtain that the temporal behavior of the
moments is described by the fractional-differential equation

My = kMy 1141 — leMyi1 -1 + 11— 1)DF My yo,—o, (10)

where the convolution integral in Eq. (9) is the fractional derivative D§* f(t)

Defn = Ca [ (1)
0

Here the correlation function C,(¢) defines the memory kernel, or the causal function. Egs.
(10) and (11) are relevant to the fractional Fokker-Planck equations which describe a variety
of physical processes related to fractional diffusion [20-22]. An important technique for the
treatment of the fractional equation is the Laplace transform. It is worth stressing that both
analytical properties of this fractional integration and the Laplace transform depend on «.

For —1 < a < 0 Eq. (10) is readily solved by means of the Laplace transform. Defining
L[My,(t)] = My,(s), one obtains from Eq. (11) L[D¢ My (t)] = Col'(—a)s® My, (s), where
I'(«) is the gamma function. For simplicity, disregarding the sign of the correlation function (5),
we set C, = 202 /T'(—a), where the variance 62 = (V2(0)) determines the amplitude of the noise.
Then, we introduce 2n + 1-dimensional vectors M, (t) = (Mgn)o, Mop—11,-..,Mion_1, MO)Qn)

in the “time” space and M,,(s) = L[M,(t)] in the Laplace space, correspondingly. Then the
solution of Eq. (10) is the Laplace inversion of the following vector

M, (s) = s_%n(s)

M,.(0), (12)
where (2n 4+ 1) X (2n+ 1) matrix A, (s) consists of coefficients from the matrix equation (10). In
the limit s — 0 the disorder term of order of s — oo is dominant, and the maximal eigenvalues
of A,, can be evaluated at the energy e ~ 0. Following Ref. [17], it can be proven that for e = 0
the maximal eigenvalues of A,, behaves for large n as Q(s) =~ s%/30%/3(2n)*/3. Expanding the
initial condition M,,(0) over the eigenfunctions of A4,,, we obtain that the maximal growth of the

nth moment is
g—/3

-1
Ll—a/3 — 02/3(2n)4/3

M,(t) =L |Ma(0). (13)

*The following sequence of equalities is used

- p p
Jarew—r)( SR ) =S (= &) () = S (= ) Mugoioa(t) = [ drC(t—7)Myo, (7).
P p
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The inverse Laplace transform is the definition of the Mittag-Leffler function [23]:
3 2/8/0. \4/3,1—a/3
El_a/?)(Z{T (Zn) t )

Asymptotic behavior of the Mittag-Leffler function for ¢ — oo is determined by the exponential
function exp [(Qn\/E)‘l/ (3_“)15] Therefore the exponential growth of the nth moment is due to

the Lyapunov exponent
7(0) ~ (2ny/o) "/ =) (14)

for -1 < a<0.

For a > 0 the fractional integral diverges. Therefore, to obtain the Lyapunov exponents
avoiding the difficulty one discards the causality principle and extend the consideration of the
random process on the entire x axis x € (—o00, +00). For this formal consideration, the Furutsu-
Novikov formula in Eq. (9) reads

My y21-2(y)

—(I-=1)C, @ = y)ite dy forz >0,
T Moy
—(1=1)C4 Wdy for z < 0. (15)

x

Setting again C, = 1/T'(—«), we obtain that Eq. (15) is the definition of the Riesz/Weyl fractional
derivative WY see e.g., [21,22,24]. Therefore, Eq. (10) now reads

d (o7

%Mk,l = kMk711l+1 + lEMkJrLlfl + l(l — 1)1/\}z Mk+2’l72 . (16)
A specific property that we use is the fractional differentiation of an exponential W< exp(yz) =
~* exp(yx). Substituting this in Eq. (7), one seeks the solution for the maximal moment growth

My (z) = exp(E£yx) My, (z = 0), (17)

where plus stays for x > 0 and minus for = < 0, respectively. One readily checks that the both
cases yield the same algebraic equation

My = An(7)My, (18)

where the moment vector M, is defined above and the matrix A, (v) is defined from Eq. (16).
Therefore, () = v*0? /e, where conditions v < ¢/0? and v* < €/0? are used. Finally, one
obtains

1/(a—1)
c ) . (19)

1)~
This solution for « also yields conditions of validity for different values of energy e. Indeed, for
0 < a < 1 Eq. (18) describe an exponential growth for asymptotically large energies ¢ > o2,
since, in this case, v(¢) < €/02. On the contrary, when a > 1 the solution of Eq. (19) is valid
for € < o%. This follows from the condition v* < ¢/0?. Note that for large negative values of
the energy Q ~ 24/|¢|/|o|, and this is just the Lyapunov exponent y(e) ~ 2+/]e|/|o] .
In conclusion, we studied the Lyapunov exponents for Anderson localization in a one-
dimensional disordered system with a long-range correlations. The averaged behavior of the

o2
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second moment of the eigenfunction is calculated, and its asymptotic exponential growth for
|z| — oo is determined by the Lyapunov exponents for different values of the energy e. The main
result of the study is the existence of the positive Lyapunov exponents (¢) > 0 for the rate
q = 1+ a > 0 of the power law decay of the correlation function. It is relevant to the exponential
localization of the eigenfunctions of the random Schréodinger operator of Eq. (1).

I thank S. Fishman for very informative and instructive discussions. This work was supported
by the Israel Science Foundation.
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J—[HHyHOBCKI/Ie JKCIIOHEHTDbI B JIOKAJIN3alllnN AH,HepCOHa
C JJIMHHBIMHA KOpPppeJjldinaMn

Anekcanap Momun

B pabome usyuaemca nokazamenadv Jlanynosa, rapaxmepudyrowul sokasudayuro Andepcona 6 odnomep-
Hom cayuae. Pacemampusaemea caywalinoili nomenyuans 6 8ude 2ayccosckozo CAYHAUH020 NPOYECCE C
KOPPEAAYUOHHOT PyHKryuet, 3amyrarowel no cmenenrnomy 3axony. lloaywern sKCNOHERUUGALHBLL POCTN
YEMHBIL MOMENRTNOE COBCMBEHHBT 80AHOBWT Pyrkuul. [lokazano, wmo acumnmomuyeckutl pocm wem-
HOT MOMEHMOE COOCTNBEHHBIL BOAHOBVEL PYHKUUT ONPEOCARALMCHA NOAOHCUMEALHOT AANYHOBCKOT IKCNO-
nenumot. Xapaxmephoie 3navenus noxazamensn Jlanynosa nwatidenv. 0na PA3HOIT PEAHCUMOE CAYHATIHO20
NOMEHYUANQ.

Karoueswie caosa: daavrue koppeasyuu, gopmysa Pypymuy-Hosukxosa, dpaxmanvrvie npouseodnvie.
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