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We study Rabi oscillations between the bands of an arbitrary biased two-band tight-binding model. We

reduce the problem to an equation of Whittaker–Hill type and, in absence of any known solutions in closed

form, discuss different approximations to describe the oscillations between the Bloch bands. We identify

regimes of weak and strong inter-band coupling and compare predictions for these Rabi oscillations to

numerical results.
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Introduction

The motion of electrons in a periodic potential under a constant external force is one of the
fundamental phenomena of solid-state physics and treated in many text books [1]. Bloch oscil-
lations [2] and transitions between energy bands via Landau–Zener tunneling [3] are important
effects discussed in this context. They have been studied in many different contexts, like elec-
trons in semiconductor superlattices [4], optical waves in photonic lattices [5], and Bose–Einstein
condensates in optical lattices [6]. The latter allow a particularly high degree of control over
various system parameters.

In the present work, we consider a two-band tight-binding model with an additional tilting
force and study the force-induced coupling between the two Bloch bands. This has been an
active area of research for quite some time, although mainly focused on electronic motion in
superlattices [7–11]. For ultra-cold atoms in optical lattices [12, 13], nearly closed two-band
systems are also realisable using different techniques as described, e.g., in [14]. Besides the
possibility of experimental realisation, a closed two-band model is also interesting as a simple
model system. Here, we discuss the two lowest energy bands of an optical lattice Ṽ (x) =
V0 cos(2kLx), with the wave vector of the optical lattice kL = 2π/λL. All energies are measured
in units of the recoil energy ER ≡ ~

2k2
L/(2m) and we set ~ = 1. This has the advantage, that

all parameters of the model Hamiltonian depend only a single quantity, the depth of the optical
lattice V0, and can easily be computed [15].

The two-band Hamiltonian in the tight-binding approximation reads

H = −τa

2

∑

l

(|al+1〉〈al| + h.c.) − τb

2

∑

l

(|bl+1〉〈bl| + h.c.) +

+
∑

l

ǫ−l |al〉〈al| + ǫ+l |bl〉〈bl| + V (|al〉〈bl| + h.c.)
(1)

with ǫ±n = ±∆/2 + nF . Here, τa(b) denote the hopping strength in band a(b), ǫ±l the on-site
energies, and V = C0F the local coupling between the energy bands. In a realisation with
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optical lattices, the parameters ∆, C0, τa, τb depend on the depth of the lattice V0, Fig. 1 shows
this dependence of the Hamiltonian parameters for different values of V0. In the following, we
consider the external Stark force F as a free parameter and our focus will lie on the oscillations
between the two Bloch bands.
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Fig. 1. Hamiltonian parameters as a function of the lattice depth V0. Left panel: Average band
gap ∆. Right panel: Hopping coefficients τa (dashed), τb (dashed-dotted), and interband coupling
constant C0 (solid)

1. Momentum Space Analysis

We start by changing to Fourier space in two steps: first we remove the force term in the
time-dependent Schrödinger equation by performing a gauge transformation and in a second step
we will switch to momentum space. The applied force breaks the translational invariance of the
system which can be restored by changing to the interaction-picture with respect to the external
force [16], such that the Stark term is absent but momentum p̂ is replaced by p̂ − Ft and the
system is explicitly time-dependent. We introduce Fourier components

a(k) =
∑

l

eilkal & b(k) =
∑

l

eilkbl (2)

and obtain from the original non-interacting two-band model the following time-periodic two-
level Hamiltonian [8]

H(k, t) =

(−∆
2 − τa cos(k + Ft) V

V ∆
2 − τb cos(k + Ft)

)

(3)

The spectrum at fixed time is shown in Fig. 2. Transforming ã(k, t) = a(k, t)exp[i(−∆
2 t −

τa

∫ t

0
cos(k + Ft′)dt′)] and b̃(k, t) = b(k, t)exp[i(+∆

2 t − τb

∫ t

0
cos(k + Ft′)dt′)], one arrives at a

purely off-diagonal Schrödinger equation

i∂t

(

ã(k, t)

b̃(k, t)

)

=

(

0 V e−iφ(k,t)

V eiφ(k,t) 0

)(

ã(k, t)

b̃(k, t)

)

(4)
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Fig. 2. The two energy bands (solid line) of Eq. (3) in momentum space at t = 0. A non-
zero force F leads to periodic motion within the energy bands. Parameters are for V0 = 4:
∆ = 4.39, τa = 0.062, τb = −0.62

where φ(k, t) = ∆ · t − ∆x[sin(k + Ft) − sin(k)] is the phase between the two Bloch bands and
∆x = (τa − τb)/F . Where the pure existence of two energy bands allows phenomena like Rabi
oscillations, it is the non-trivial phase difference caused by ∆x 6= 0, that gives rise to interesting,
non-trivial phenomena for the time-evolution in both bands to be discussed below. Please note,
that our model is slightly different from a tight-binding superlattice, as e.g. in [11], since we
include a local on-site coupling of the bands. Let us discuss the special case τa = τb first. The
non-linear time dependence vanishes and we can write the system of differential equations as a
linear differential equation of second order. We differentiate the second equation and insert it
into the first one, arriving at the simple equation ¨̃a + i∆˙̃a + V 2ã = 0. This is easily solved and
one finds Rabi-like oscillations

|a(k, t)|2 =
V 2

∆2 + 4V 2
sin2(∆̃ · t/2) (5)

with frequency ∆̃ =
√

∆2 + 4V 2 and an amplitude much smaller than unity for the parameters
chosen here. The same procedure can be applied for the general problem, but the differential
equation to be solved has now time-dependent coefficients

0 = ¨̃a + i
[

∆ + (τa − τb) cos(k + Ft)
]

˙̃a + V 2ã. (6)

We make an ansatz a = y exp[iΩ(t)] and choose

Ω̇ = −1

2
[∆ + (τa − τb) cos(k + Ft)] , (7)

to remove the second term in Eq. (6). We finally arrive at

0 = 2ÿ + y
[

2V 2 − iF (τa − τb) sin(k + Ft)

−3
(

∆ + (τa − τb) cos(k + Ft)
)2

]

.
(8)

This equation is of the Whittaker–Hill type, described for instance in [17], and solutions in
closed form are not known for the general case. For the rest of this work, we will study different
approximate solutions of the problem, i.e., of Eqs. (1) and (4).

A formal solution of Eq. (4) is given by
(

ã(k, t)

b̃(k, t)

)

= T exp

[

−i

∫ t

0

H̃(k, t′)dt′
] (

ã(k, 0)

b̃(k, 0)

)

, (9)
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where T denotes time-ordering. Following Zhao et al. [8], it can be solved approximately by
dropping the time-ordering (valid to first order in V ). Choosing occupation in the lower band
only as initial state, i.e. a(k, 0) = 1 and b(k, 0) = 0, one obtains for the occupation of the upper
band

|b(k, t)|2 = sin2

∣

∣

∣

∣

V

∫ t

0

eiφ(k,t′)dt′
∣

∣

∣

∣

, (10)

with φ(k, t) = ∆ · t − ∆x[sin(k + Ft) − sin(k)] as above. Unfortunately, this integral can not
be expressed in simple terms of elementary functions, but has to be treated in different levels of
approximation or numerically. To obtain an idea of the physics contained in the above expression,
we stick to some simple approximation and will find signs of resonances in this system. Writing
eiφ = cos φ+ i sin φ and using the addition theorems, we find integrands of the form cos(∆x sin t)
and sin(∆x sin t) which are not accessible. We therefore expand the functions in Fourier series

cos(∆x sin t) = J0(∆x) +

∞
∑

n=1

2J2n(∆x) cos(2nFt)

sin(∆x sin t) =

∞
∑

n=0

2J2n+1(∆x) sin ((2n + 1)Ft)

where Jl(x) denotes the ordinary Bessel function of order l. Taking only the first terms, the
integrals can be solved analytically and expressions of the following form (n = 1, 2) appear

|b(k, t)|2 ∝ sin2

∣

∣

∣

∣

sinn(∆x/n)
sin[(∆ − nF ) t]

∆˘nF

∣

∣

∣

∣

.

The higher orders in the expansion lead to similar terms. Thus, a truncated Fourier expansion
indicates the existence of resonances in the occupation of the upper band for ∆ ≈ nF , that is for
values of the external force where the tilt between sites of different bands equals the band gap.
To test this expectation, we evolved an initial state with a(k, 0) = 1 and b(k, 0) = 0 in time for
a resonant value and the resulting occupation of the upper band |b(t)|2 is shown in Fig. 3. We
observe small Rabi oscillations with a high frequency, which are described by Eq. (5), and on top
of these are Rabi oscillations of large amplitude and long period T ≫ TB. The latter oscillations
only take place near resonances ∆ ≈ nF .

We did similar time evolutions for various values of the external force F and studied the long
time average of |b(t)|2. The result is depicted in Fig. 4. It clearly demonstrates the existence
of resonances in our system. The occupation of the upper band is usually very small, of the
order of a few percent, but shows sharp resonances for nF ≈ ∆. A closer numerical study
(not shown here) shows a Lorentzian shape for the lower order resonances and the possibility of
more complicated, Fano-like shapes for the narrower higher order resonances. The non-resonant
oscillations are well described by Eq. (5), compare also Fig. 4. Below we will derive an effective
model for the system in resonance that allows a quantitative prediction of the resonance width.
Similar resonant behaviour has been observed in extensive numerical studies of the occupation
of minibands for electronic motion in superlattices [7].

2. System in Resonance

Having found resonances in the system, we are now going study this resonant behaviour in
more detail. Starting from the original Hamiltonian in coordinate space, Eq. (1), we apply a
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Fig. 3. Occupation of band 2 as function time in resonance. We observe long period and large
amplitude Rabi oscillations with smaller and much faster oscillations on top. Parameters as in
fig. 2 and F = 2.2207

Fig. 4. Long time averages of the occupation of band 2 as function of the inverse force. There
is a clear signature of resonant behaviour when the band gap equals an integer multiple of the
force. The dashed line shows the average occupation of band 2 as expected from Eq. (5) and the
inset schematically shows an n = 2 resonance. Parameters as in Fig. 2

transformation known [10] to diagonalise the single band problem

|αn〉 =
∑

l

Jl−n(τa/F )|al〉 (11a)

|βn〉 =
∑

l

Jl−n(τb/F )|bl〉 (11b)
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where we defined xa(b) := τa(b)/F and ∆x = xa − xb. Using properties of Bessel functions, we
arrive at

H =
∑

l

[

ǫ−l |αl〉〈αl| + ǫ+l |βl〉〈βl| +

+V
∑

n

Jl−n(∆x) (|αl〉〈βl+n| + h.c.)
]

.
(12)

We obtain a coupling between any two sites of the two different bands, weighted by Bessel
functions. This means the coupling between different and possibly remote sites, which is originally
mediated by on-site coupling and subsequent hoppings, can be considered a higher order process
in the original basis. But in the transformed basis Eq. (12), this coupling is now direct with a
strength modified by the factor Jl−n(∆x). This is schematically depicted in Fig. 5. Interestingly,
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Fig. 5. Graphical representation of the two-band Hamiltonian: a) in the original basis, Eq. (1),
and b) in the transformed basis, Eq. (12)

the same matrix representation can be found by application of Floquet theory [18] to the time-
periodic Hamiltonian Eq. (4). One has to solve the larger but time-independent eigenvalue
problem for the Floquet operator HF having matrix elements

(HF )n,k
αγ = Hn−k

αγ + nFδαγδnk, n, k ∈ Z; α, γ = a, b.

This is based on expanding the Hamiltonian in a Fourier series with Fourier components H l. In
our case these Fourier components are 2×2 matrices and read explicitly

H0 =

(

−∆/2 V
V ∆/2

)

(13a)

H2n = V J|2n|(∆x)

(

0 1
1 0

)

(13b)

H2n+1 = sgn(n)V J|2n+1|(∆x)

(

0 −1
1 0

)

, (13c)

with the signum function sgn(x). The obtained Floquet Hamiltonian HF is the same as obtained
earlier in Eq. (12). For the special case ∆x = 0, i.e. τa = τb, the model Eq. (12) can be solved
exactly as before, cf. Eq. (5). The argument of the Bessel functions is zero for ∆x = 0 and only
on-site coupling of the two bands remains.

When the system is exactly in resonance, there is a degeneracy between two energy levels of
the two bands and the most relevant coupling in the transformed basis, is the direct one between
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these two levels. Taking only this coupling, we arrive at an effective Rabi problem [19]. In a
resonance of order m, this reduces to a simple 2×2-matrix:

H(m)
eff

=

(

ǫ−N+m V Jm(∆x)
V Jm(∆x) ǫ+N

)

. (14)

The occupation of the upper band follows a simple Rabi formula

|b(t)|2 =
4V 2J2

m

(mF − ∆)2 + 4V 2J2
m

sin2 (Ωrest) , (15)

with a Rabi frequency for the resonant oscillations given by Ωres = 1
2

√

(ǫ−N+m − ǫ+N ) + 4V 2J2
m ≈

|V Jm(∆x)|. This frequency is much smaller than the Bloch frequency ωB = 2π/TB and the
corresponding periods are given by

T (m)
res =

F

2|V Jm(∆x)| TB . (16)

Thus, the system in resonance exhibits oscillations between the two bands of an amplitude
close to unity and on a time scale much larger than the direct on-site oscillations. In Fig. 6
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Fig. 6. Periods of resonant oscillation exactly in resonance as predicted by mapping on a two-
level Rabi problem (dashed lines) and compared to periods from numerical time evolution in
perturbation theory (data points). The inset shows the relative error between the two values

we compare this predictions to numerical simulations for different values of the parameters in
the Hamiltonian, Eq. (1), and different orders of resonance. We observe very good agreement.
Additionally, the inset shows the relative error between the predicted and numerically observed
values. It is approximately 5 % for the widest resonance n = 1, but smaller than 3 % for higher
resonances and slightly decreasing with increasing potential depth.

We want to compare these results to nearly degenerate perturbation theory in the original
basis. Here, the resonances of different order have to be treated separately. Starting with the
first order resonance (∆ = F ), one finds in second order degenerate perturbation theory a Rabi

frequency of Ω = 1
2 |V (τb − τa)/∆| reproducing the leading order result of Ω

(m=1)
res = |V J1(∆x)|.

For the second order resonance (∆ = 2F ), one obtains in third order degenerate perturbation
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theory Ω = 1
2 |V (τ2

b + τ2
a )/(8F 2)|, slightly differing from the leading order behaviour of the result

in the transformed basis. Higher order resonances can be computed in a similar fashion, but the
resonant basis (11) is clearly a better starting point for further calculations. Indeed, considering
the mean occupation of the upper band close to a resonance, Eq. (15), we find a Breit-Wigner
shape for the resonances as also seen numerically [7], namely

〈|b(t)|2〉(1/F ) =
1

2

Γ2
m

(m/∆ − 1/F )2 + Γ2
m

, (17)

where Γm = 2|V Jm(∆x)|/(F∆) and the width of the resonances is accordingly given by 2Γm.
Comparing to numerical simulations (not shown here), the effective model presented here gives
a good estimate for the magnitude of the resonance width. In particular, the width decreases
very quickly with the order of the resonance or the depth of the optical lattice, since

2Γm ≈ 4|C0|
∆

mm

2mm!

(

τa − τb

∆

)m

, (18)

where the factor mm/2mm! is of order one (for m = 1, . . . , 10), but since (τa − τb) ≪ ∆, the
last factor decreases very rapidly. We do not compare these values with results from numerical
calculations in more detail here. Higher accuracy can be obtained by degenerate perturbation
theory in the resonant basis.

Summary

We studied oscillations in a two-band tight-binding model. We could reduce the problem of
solving the time-dependent Schrödinger equation to a Whittaker–Hill equation and concentrated
on different physical regimes for the inter-band oscillations. We found and discussed resonances
in the system and derived an effective model for the system in resonance allowing a quantitative
characterisation of the resonances themselves and the time-scales of inter-band oscillations.

This work was supported within the framework of the Excellence Initiative by the German
Research Foundation (DFG) through the Heidelberg Graduate School of Fundamental Physics
(grant number GSC 129/1) and the Klaus Tschira Foundation.
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Об осцилляциях Раби между блоховскими зонами

Патрик Плотц

В работе изучаются осцилляции Раби между зонами проводимости сверхрешетки во внешнем

поле в приближении сильной связи. Мы сводим задачу к уравнениям типа Виттекер–Хилла и

из–за отсутствия известных решений в замкнутой форме обсуждаем различные приближения

для описания осцилляций между зонами Блоха. Мы идентифицируем режимы слабого и силь-

ного межзонового взаимодействия и сравниваем теоретические предсказания с результатами

численного моделирования.

Ключевые слова: осцилляции Блоха, туннелирование Ландау-Зенера, резонансное туннелирование,

многофотонные процессы.
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