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Quantum dynamics of a classically chaotic 1D system in the presence of external noise is studied. Stability

and reversibility properties of the motion (characterized by the Peres fidelity) as functions of the noise
level o are considered. We calculate fidelity analytically in the cases of weak and very strong noise and find
critical value, oc(t), below which the effect of perturbation remains small. Decay of critical perturbation
with time is found to be power-like after the Ehrenfest time tg. An estimation of the decoherence time
ta(o) is presented after which the averaged density matriz becomes diagonal and its evolution turns into

a Markovian process.
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Introduction

Classical dynamical chaos caused by the exponential sensitivity of the motion to arbitrary
weak perturbations results in practical irreversibility [1]. On the contrary, the quantum dynam-
ics is discovered to be much more stable with respect to perturbations and therefore be fairly
reversible [2].

Recent observation [3, 4] showed that the quantum evolution is quite stable and time-
reversible as long as the strength £ of an instant perturbation applied at the moment ¢ does
V2
M(t)
quantum Wigner function characterizes complexity of the quantum state at the moment of time
t. Therefore there exists direct relation between sensitivity of dynamics to perturbations and

not exceed a critical value £.(t) = . Here the number M(t) of angular harmonics of the

complexity of the quantum state.

The number of harmonics M(t) grows exponentially with a rate that corresponds to the clas-
sical Lyapunov exponent up to the Ehrenfest time ¢g only. After the Ehrenfest time the growth
becomes merely a power-like one, and the corresponding critical value £.(t) of the perturbation
decreases with time rather slow that implies sufficiently good stability of quantum dynamics.

Typically, the perturbation is not a single but instead of this it is a stationary and random
one (a noise). The goal of this study is to explore stability and reversibility of chaotic quantum
dynamics with respect to a persistent external noise.
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1. Model

1.1. Nonlinear Quantum Oscillator Driven by Periodic Kicks

As an illustrative example we consider a nonlinear oscillator driven by periodic kicks. The
Hamiltonian of the oscillator (in the absence of noise) reads

H(a,a',t) = hwon + h*n* — Vhg(t)(a + a') = Ho + Hyicr, (1)

where 7 = afa’ and af, a' are bosonic creation-annihilation operators. The driving force g(t) =

go Y. d(t — s) is a periodic sequence of instant kicks. Floquet one-step evolution operator is
S

F= e_i(“°ﬁ+hﬁ2)ei%(&+dT) = e o] (Zgo) ’ (2)

Vh

so that the density matrix evolves as j(t) = F*3(0)FT. We suppose below the initial state to be
the ground state $(0) = |0)(0| of the operator Hy.

The classical dynamics of such an oscillator becomes chaotic when the strength gy exceeds a
critical value go . ~ 1. The decay of angular phase correlations in this case is exponential and
the mean action grows diffusively with the diffusion coefficient D = g2. In this paper we consider
quantum dynamics in the case when the classical chaos is well-developed.

Numerical observations show that the coarse-grained distribution of the excitation numbers
n is practically exponential [3]:

Wy (t) = pun(t) = <n>t1+ 1 {<n<>7:>‘ft' J , ’

(oo}
where the mean excitation number is (n); = > np,,(t).
n=1

As in [3] we characterize the complezity of the quantum state by the mean number M(t) =

oo}
Vi{m?), = m2 W, (t) of angular harmonics of the Wigner function. The corresponding
m=1
distribution W, (t) is given by

S [+ mlp(t)n)
Winso0(t) = (2 — dpmo) n=
[l 22(8)\m)

i

1.2. Noise

We introduce the noise Vnoise =&hn ) 0(t — s) as a sequence of instant perturbations with
random amplitudes. At a moment ¢ such a perturbation generates rotation in the phase space
P(&) = e~%" by a random angle &;. The angles &; are supposed to be uncorrelated &£y = 0204/

1 2
V2mo?

& . . . .
e 202 (white noise). The time evolution

normally distributed random variables p(§) =

operator in the presence of the noise

0 = 176 = 1 e 7] (5)

T=1
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Fig. 1. Time evolution of the number of harmonics /{m?), ~ v/2(n):., in the cases with no
noise (crosses, o = 0), weak (pluses, o = 0.001) and strong noise (circles, o = 00) as compared
with the classical diffusion law (straight magenta lines)

is unitary for any fixed noise history §& = {&,&2,...,&} so that the state p(t;€) =
U(t; €)p(0)UT (t; €) remains pure during the whole evolution.

Since we study the influence of the noise on the system dynamics it is interesting to trace
how different characteristics of the motion depend on the noise history. We see from the
numerical data (Fig. 1) that excitation number (n):;c as well as the mean number of har-
monics /(m?),.e =~ 2<”>t2;§ do not depend on the realization ¢ and therefore they are self-
averaged quantities. Moreover, these quantities depend on the noise level o rather weakly, i.e.
(N)t:0=0 = (N)t,0=cc and \/<m2>t;020 ~ \/<m2>t§0:00‘

2. Stability

Stability of the motion with respect to the noise could be characterized by the overlap
F(t;€) = Tr[p(t)pe(t)] of the states developed by the moment ¢ during the evolutions with
and without noisy perturbation. However, contrary to the quantities (n)y¢ and /(m?).e, the
fidelity F(¢; &) strongly depends on the noise realization and therefore is not self-averaging one.
Thus the noise-averaged fidelity is appropriate measure of dynamics’ stability

F(t;0) = Te[p(t)pe (8)] = Trlp(1)p' " (t; 0)]. (6)

This definition implicates averaged density matrix p(@)(t; ) = p(t; €).
It is easy to see that one-step evolution of the averaged density matrix is given by the following
recurrence relation

(7)

o2

P (70) = (nle= A F )0 (7 — 1;0) Fleid-n /) =
= e~ T (=) (| Fple0) (7 — 1;.0) Fl|n)
that describes non-unitary dynamics of 5(*)(t; ¢). The normalization condition Tr[p(®")(;0)] =
1 holds here for every 7 and o.
Numerical simulations prove that the coarse-grained distribution wi™ (t;0) (similar to the
case (3) of the dynamics without noise) is exponential:

w @) (4: o) ~ 1 (neo 1"
" (t7 ) <n>t;<7 +1 |:<”>t;<7 + 1:| (8)

o0 —
where (n)r.e = 3. nwi™ (t;0) = (n)ye is the noise-averaged excitation number.
n=1
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Fig. 2. Fidelity F(t;0) decay vs noise strength o for different moments of time (log-linear plot).
Black, red and green solid lines correspond to ¢ = 10,35,60. Weak noise approximation (9) is
also presented (dotted lines)

Analytical expressions for the fidelity F(¢;0) can be obtained in the two limiting cases of
very weak and very strong noise.

2.1. Weak Noise

While calculating fidelity in the lowest order with respect to the level o of the noise we keep
perturbation & only in one exponential factor in the (5) thus reducing the problem to that
considered in [3]. For a single perturbation with a small strength &, applied at the instant 7

2
fidelity reads F(t;&;) = 1 — %<m2>7 + O(&}) [3]. Summing then over all moments 1 < 7 < ¢

and averaging over &, we immediately obtain

(9)

/ ¢
where the critical perturbation strength is defined as o.(t) = (/2 / 3 (m?); and the mean
7=0

values (m?), are taken in the absence of the noise. While deviation of fidelity from unity is
small, this estimate agrees well with data, see Fig.2. After the Ehrenfest time the relation
(m?), ~ 2(n),;({n), + 1) is valid [3] between the number of harmonics and degree of excitation
with the same accuracy as exponential anzatz (3). Since, as has been mentioned above, the mean

excitation number does not practically depend on the noise level we arrive at (n)2 ~ (n)Z, =

o\ 2 2\ 2

3h

(gf;)) 72. As a result (m2) ~ 2 (ig) 72 and o.(t) ~ [\/;] t73/2 o t73/2 ie. the critical
90

perturbation decreases with time power-like when t > tg.

F(t;o)=1- 502§<m2>7 +0(*) =1~

2.2. Strong Noise (Markovian Limit)

(’2—2(71—1'7,/)2 o—00

In the recurrence relation (7) the factor e~ Onns and the density matrix

remains diagonal p(*) = p(@ during the whole evolution. One-step evolution equation reads
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Fig. 3. Fidelity F(t;0) vs o for the different moments of time (log-log plot). Black, red and
green solid lines correspond to ¢t = 5,10, 15. Asymptotics (11) for the strong noise are presented
(dotted lines)

now

w®(r) = S| |D(’g°)|k>|2 @(r 1), (10)
k=0

This expression contains only transition probabilities in the absence of noise. The extremely
strong noise destroys coherence of the quantum state and the density matrix evolution turns into
Markovian process. The dynamics is fully determined by the kick operator and nonlinearity of
the system is inessential in this limit.

The fidelity (6) can be easily calculated with the help of the exponential anzatz (8):

1

Fuo(t) = Trlpo(t)p'D (1)) = L+ ()0 + (M)t;00

: (11)

2
. o . . g
where (n),o is the mean excitation number in the absence of noise and (n)¢.oo = fot corresponds

to the classical-like diffusion induced by the noise.
Such an asymptotical behavior corresponds to full stirring over all the states available at the
moment ?.

2.3. Moderate Noise

It is impossible to calculate F'(t;0) analytically for intermediate values of o. Numerically, we
observe some scaling law: the fidelity F(t;0) depends on the only variable [o/c.(t)] in a wide
domain of o up to a new critical value 6.(t), where the fidelity decay changes to the asymptotic
law Fo(t) (11) (see Fig.3). A simple fit

1

Flo/o.(t)] = T 0%/02() (12)

describes our numerical data rather well (see Fig. 4). The second critical value defines the

decoherence time tq4(c) = VGh when the transition Flo/o.(tq)] = Fs(tq) from the scaling
00

regime to strong noise behavior takes place.
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Fig. 4. Fidelity data vs scaling factor o/o.(t). Crosses, triangles, open circles and squares
correspond to the different levels of the noise: o = (0.5,1,2,16,64) x 1072, The blue dashed
line is the weak noise approximation (9), the black and green dashed lines are the strong noise
asymptotics (11) for the two latter values of o. The red line is the fit (12)

3. Reversibility and Purity

Reversibility of quantum dynamics is characterized by the overlap of the initial p(0) and re-
versed p(t]0;&, &) = Ug, (t)p(t; €)Ue (1) at the moment ¢ states: F(°)(t;a) = Tr[p(0)p(t[0; €, &)].
As the noise histories £ and &’ are uncorrelated we have

Frev)(git) = Tr[p(0)p(0]t: €, &)] =
=Tr[p(t; )p(t; )] = (13)
= Tr [pl") (t;0)p ) (t;0)] = P(o3t).

The quantity P(¢; o) is referred for as purity [5]. Using as usual the exponential anzatz we get
the purity as a function of o:

_ 2(Impio +1

P(t;0) = )i 1 (14)

[ee]
where the quantity ((m|)i.. = Y., mW,,(¢;0) is the mean number of harmonics of the averaged
1

m=
Wigner function. The probability distribution W,,, is defined by the averaged density matrix

S [+ mlpe) (£ o) )2
W, (t;0) = (2 = Gmo) 2% . (15)
2 [tnllp () )

In the strong noise limit the averaged density matrix becomes diagonal, so the only zero

harmonic survives W,,(¢; 00) = §,,0 and

1

Bltio) = P (t50) = Tp (0] = 15—

(16)

4. Entropy

Instead of M(t), complexity of the quantum state can also be described in the absence of

noise in terms of the information Shannon entropy defined as Z(t) = — > Wy, (t) ln Wi, (t).
m=0
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Fig. 5. Von Neumann entropy S(t) for the different noise levels o = [0.125,1, 8, 64,512,4000] x
1073. Limiting curve (circles) corresponds to the Shannon entropy Z(t) without noise

o0
Using the exponential anzatz (3) and relation Wy, (t) = (2 — dmo) Y. pn(t)pn+m(t) we find that
m=0

- (2 = 6mo) (n)t0 " - 1
W S eo + 1 | o +1) 2t finally Z(t) = In(n)eo + 1+ grgg + - (> 1)

From the other hand reversibility of dynamics is closely related to the von Neumann invariant
entropy S(t;0) = —Tr[p(®¥) In p(*)]. This entropy monotonically grows with time (see Fig. 5)
and approaches from below the Shannon entropy when ¢t — t4(0). After the decoherence time
the evolution becomes Markovian and

Soo(t) ~ — Z w® () Inw!d (t) =~ n(n)e + 1+

n=0

1
— +...=1I(). 17
i (t) (17)
In particular, in the strong noise limit ¢ — oo the decoherence time t4(c0) = 0 so that S (t) =
Z(t) for any time 0 < ¢t < oo.

Similar correspondence between information and correlational entropies has been found in
the theory of random band matrices [6].

Conclusion

Quantum dynamics of a classically chaotic system after the Ehrenfest time has been studied
in the presence of noise. We have shown numerically that such global characteristics of evolution
as the degree of excitation (n):,¢ and the mean number of harmonics /(m?)s¢ do not depend
on the noise history, so they are self-averaging quantities. We have proved that the coarse-
grained distribution wﬁfw)(t; o) = pgﬁf)(t; o) obeys the universal exponential law. Stability and
reversibility properties of dynamics have been investigated using the noise-averaged Peres fidelity.
Analytical expressions have been obtained in two limiting cases of weak and strong noise. We have

/ ¢
found a critical perturbation o.(t) = /2 / > (m?); below which the effect of the noise remains
7=0

small. This critical perturbation decays with time in accordance with power law o (t) o t=3/2
contrary to the exponential decay in the classical limit. However the decay caused by noise is
faster than in the case of a single perturbation when &.(t) oc t~!. In the limit ¢ — oo the

(av) (t; o) becomes diagonal and its evolution turns into Markovian process. For

density matrix p,,,,
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the intermediate values of the noise level we have discovered a scaling law: the fidelity F'(¢;0)
depends on the only variable [o/0.(t)] in a wide domain of o up to some new critical value 6.(t)
where transition to the Markovian regime takes place. This allowed us to estimate the time ¢4(o)
of full decoherence.

The relation between degree of reversibility and purity of the quantum state, F(Tev)(t; o) =
P(t; o), has been established. We have also proved that the von Neumann entropy coincides in
the limit of the strong noise with the information Shannon entropy Z(t) = Soo(t).
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KBaHTOBBIIT Xa0cC IIp1 HaJINYMHM BHEIIHEro mnmrymMa

Apocnas A. XapbKoB
Basientun B. CokoJsioB
Ouer B. 2Kupos

B pabome usyuena k6aHmMO06as OUHAMUKG KAQGCCUMECKU TAOMUYHOT CUCTIEMDBL NPU HGAUNUL GHEULHE20
wyma. Pacemampusaromes ceoticmsa yemotiuusocmuy U 06pamumocmu 08UNCEHUSA (TaPAKMEPUIYEMbBIE
seaununotll Pudeaumu Ilepeca) 6 zasucumocmu om ypoeHs wyma o. Mu noaywuiu anasumuseckoe
svipasicenue 0aa Gudesumu 8 CAYNAAL CAab020 U CUADHOZ0 WYMA, G MOKIAHCE HAWAU KPUMUYECKOE 3HA-
wenue, oc(t), nudtce KOmopozo BAUAHUE BO3MYULEHUSL OCTRAEMCA MaAbM. Bolio obrapysicero, wmo no-
cae epemenu Ipendecma tg Kpumuieckoe 603mMyuwerue nadaem co 8PEMEHEM N0 CMENEHHOMY 3AKOHY.
IIpedcmasaena ouenka dasn epemenu dexozepenmuocmu tq(o), nocae KOMOPoO2o MAMPUUA NAOTIHOCTIU
cmanosumcsa 0uazoHaALHOU, A €€ IB0MOUUA ABAALMCA MAPKOBCKUM NPOUECCOM.

Knaoueswie caosa: keanmoswili xaoc, gynkuyus Buenepa, dudesumu, cmabusvhocmv, odbpamumocmo,
MAPKOBCKAA UMb, YUCTNOMG COCTIOANUS.
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