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Quantum dynamics of a classically chaotic 1D system in the presence of external noise is studied. Stability

and reversibility properties of the motion (characterized by the Peres fidelity) as functions of the noise

level σ are considered. We calculate fidelity analytically in the cases of weak and very strong noise and find

critical value, σc(t), below which the effect of perturbation remains small. Decay of critical perturbation

with time is found to be power-like after the Ehrenfest time tE. An estimation of the decoherence time

td(σ) is presented after which the averaged density matrix becomes diagonal and its evolution turns into

a Markovian process.
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purity.

Introduction

Classical dynamical chaos caused by the exponential sensitivity of the motion to arbitrary

weak perturbations results in practical irreversibility [1]. On the contrary, the quantum dynam-

ics is discovered to be much more stable with respect to perturbations and therefore be fairly

reversible [2].

Recent observation [3, 4] showed that the quantum evolution is quite stable and time-

reversible as long as the strength ξ of an instant perturbation applied at the moment t does

not exceed a critical value ξc(t) =

√
2

M(t)
. Here the number M(t) of angular harmonics of the

quantum Wigner function characterizes complexity of the quantum state at the moment of time

t. Therefore there exists direct relation between sensitivity of dynamics to perturbations and

complexity of the quantum state.

The number of harmonics M(t) grows exponentially with a rate that corresponds to the clas-

sical Lyapunov exponent up to the Ehrenfest time tE only. After the Ehrenfest time the growth

becomes merely a power-like one, and the corresponding critical value ξc(t) of the perturbation

decreases with time rather slow that implies sufficiently good stability of quantum dynamics.

Typically, the perturbation is not a single but instead of this it is a stationary and random

one (a noise). The goal of this study is to explore stability and reversibility of chaotic quantum

dynamics with respect to a persistent external noise.
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1. Model

1.1. Nonlinear Quantum Oscillator Driven by Periodic Kicks

As an illustrative example we consider a nonlinear oscillator driven by periodic kicks. The

Hamiltonian of the oscillator (in the absence of noise) reads

Ĥ(â, â†, t) = ~ω0n̂ + ~
2n̂2 −

√
~g(t)(â + â†) = Ĥ0 + Ĥkick, (1)

where n̂ = â†â† and â†, â† are bosonic creation-annihilation operators. The driving force g(t) =

g0

∑

s
δ(t − s) is a periodic sequence of instant kicks. Floquet one-step evolution operator is

F̂ = e−i(ω0n̂+~n̂2)e
i

g0√
~
(â+â†)

= e−
i
~

Ĥ0D̂

(

ig0√
~

)

, (2)

so that the density matrix evolves as ρ̂(t) = F̂ tρ̂(0)F̂†t. We suppose below the initial state to be

the ground state ρ̂(0) = |0〉〈0| of the operator Ĥ0.

The classical dynamics of such an oscillator becomes chaotic when the strength g0 exceeds a

critical value g0,c ≈ 1. The decay of angular phase correlations in this case is exponential and

the mean action grows diffusively with the diffusion coefficient D = g2
0 . In this paper we consider

quantum dynamics in the case when the classical chaos is well-developed.

Numerical observations show that the coarse-grained distribution of the excitation numbers

n is practically exponential [3]:

wn(t) ≡ ρnn(t) ≈ 1

〈n〉t + 1

[ 〈n〉t
〈n〉t + 1

]n

, (3)

where the mean excitation number is 〈n〉t =
∞
∑

n=1
nρnn(t).

As in [3] we characterize the complexity of the quantum state by the mean number M(t) =

√

〈m2〉t =

√

∞
∑

m=1
m2Wm(t) of angular harmonics of the Wigner function. The corresponding

distribution Wm(t) is given by

Wm>0(t) ≡ (2 − δm0)

∞
∑

n=0
|〈n + m|ρ̂(t)|n〉|2

∞
∑

n=0
|〈n|ρ̂2(t)|n〉|

. (4)

1.2. Noise

We introduce the noise V̂noise = ξt~n̂
∑

s δ(t− s) as a sequence of instant perturbations with

random amplitudes. At a moment t such a perturbation generates rotation in the phase space

P̂ (ξt) = e−iξtn̂ by a random angle ξt. The angles ξt are supposed to be uncorrelated ξtξt′ = σ2δtt′

normally distributed random variables p(ξ) =
1√

2πσ2
e−

ξ2

2σ2 (white noise). The time evolution

operator in the presence of the noise

Û(t; ξ) =

t
∏

τ=1

F̂(ξτ ) =

t
∏

τ=1

[

e−iξτ n̂F̂
]

(5)
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Fig. 1. Time evolution of the number of harmonics
√

〈m2〉σ ≈
√

2〈n〉t;σ in the cases with no
noise (crosses, σ = 0), weak (pluses, σ = 0.001) and strong noise (circles, σ = ∞) as compared
with the classical diffusion law (straight magenta lines)

is unitary for any fixed noise history ξ ≡ {ξ1, ξ2, . . . , ξt} so that the state ρ̂(t; ξ) =

Û(t; ξ)ρ̂(0)Û†(t; ξ) remains pure during the whole evolution.

Since we study the influence of the noise on the system dynamics it is interesting to trace

how different characteristics of the motion depend on the noise history. We see from the

numerical data (Fig. 1) that excitation number 〈n〉t;ξ as well as the mean number of har-

monics
√

〈m2〉t;ξ ≈ 2〈n〉2t;ξ do not depend on the realization ξ and therefore they are self-

averaged quantities. Moreover, these quantities depend on the noise level σ rather weakly, i.e.

〈n〉t;σ=0 ≈ 〈n〉t;σ=∞ and
√

〈m2〉t;σ=0 ≈
√

〈m2〉t;σ=∞.

2. Stability

Stability of the motion with respect to the noise could be characterized by the overlap

F (t; ξ) = Tr[ρ̂(t)ρ̂ξ(t)] of the states developed by the moment t during the evolutions with

and without noisy perturbation. However, contrary to the quantities 〈n〉t;ξ and
√

〈m2〉t;ξ, the

fidelity F (t; ξ) strongly depends on the noise realization and therefore is not self-averaging one.

Thus the noise-averaged fidelity is appropriate measure of dynamics’ stability

F (t;σ) = Tr[ρ̂(t)ρ̂ξ(t)] = Tr[ρ̂(t)ρ̂(av)(t;σ)]. (6)

This definition implicates averaged density matrix ρ̂(av)(t;σ) = ρ̂(t; ξ).

It is easy to see that one-step evolution of the averaged density matrix is given by the following

recurrence relation

ρ
(av)
nn′ (τ ;σ) = 〈n|e−iξτ n̂F̂ ρ̂(av)(τ − 1;σ)F̂†eiξτ n̂|n′〉 =

= e−
σ2

2
(n−n′)2〈n|F̂ ρ̂(av)(τ − 1;σ)F̂†|n′〉

(7)

that describes non-unitary dynamics of ρ̂(av)(t;σ). The normalization condition Tr[ρ̂(av)(τ ;σ)] =

1 holds here for every τ and σ.

Numerical simulations prove that the coarse-grained distribution w
(av)
n (t;σ) (similar to the

case (3) of the dynamics without noise) is exponential:

w(av)
n (t;σ) ≈ 1

〈n〉t;σ + 1

[ 〈n〉t;σ
〈n〉t;σ + 1

]n

(8)

where 〈n〉t;σ =
∞
∑

n=1
nw

(av)
n (t;σ) = 〈n〉t;ξ is the noise-averaged excitation number.
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Fig. 2. Fidelity F (t;σ) decay vs noise strength σ for different moments of time (log-linear plot).
Black, red and green solid lines correspond to t = 10, 35, 60. Weak noise approximation (9) is
also presented (dotted lines)

Analytical expressions for the fidelity F (t;σ) can be obtained in the two limiting cases of

very weak and very strong noise.

2.1. Weak Noise

While calculating fidelity in the lowest order with respect to the level σ of the noise we keep

perturbation ξτ only in one exponential factor in the (5) thus reducing the problem to that

considered in [3]. For a single perturbation with a small strength ξτ applied at the instant τ

fidelity reads F (t; ξτ ) = 1 − ξ2
τ

2
〈m2〉τ + O(ξ4

τ ) [3]. Summing then over all moments 1 6 τ ≤ t

and averaging over ξτ we immediately obtain

F (t;σ) = 1 − 1

2
σ2

t
∑

τ=1

〈m2〉τ + O(σ4) = 1 − σ2

σ2
c (t)

+ . . . , (9)

where the critical perturbation strength is defined as σc(t) =

√

2
/

t
∑

τ=0
〈m2〉τ and the mean

values 〈m2〉τ are taken in the absence of the noise. While deviation of fidelity from unity is

small, this estimate agrees well with data, see Fig.2. After the Ehrenfest time the relation

〈m2〉τ ≈ 2〈n〉τ (〈n〉τ + 1) is valid [3] between the number of harmonics and degree of excitation

with the same accuracy as exponential anzatz (3). Since, as has been mentioned above, the mean

excitation number does not practically depend on the noise level we arrive at 〈n〉2τ ≈ 〈n〉2τ ;∞ =
(

g2
0

~

)2

τ2. As a result 〈m2
τ 〉 ≈ 2

(

g2
0

~

)2

τ2 and σc(t) ≈
[√

3~

g2
0

]

t−3/2 ∝ t−3/2, i.e. the critical

perturbation decreases with time power-like when t > tE .

2.2. Strong Noise (Markovian Limit)

In the recurrence relation (7) the factor e−
σ2

2
(n−n′)2 σ→∞−−−−→ δnn′ and the density matrix

remains diagonal ρ̂(av) ⇒ ρ̂(d) during the whole evolution. One-step evolution equation reads
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Fig. 3. Fidelity F (t;σ) vs σ for the different moments of time (log-log plot). Black, red and
green solid lines correspond to t = 5, 10, 15. Asymptotics (11) for the strong noise are presented
(dotted lines)

now

w(d)
n (τ) =

∞
∑

k=0

|〈n|D̂
(

ig0√
~

)

|k〉|2w(d)
k (τ − 1). (10)

This expression contains only transition probabilities in the absence of noise. The extremely

strong noise destroys coherence of the quantum state and the density matrix evolution turns into

Markovian process. The dynamics is fully determined by the kick operator and nonlinearity of

the system is inessential in this limit.

The fidelity (6) can be easily calculated with the help of the exponential anzatz (8):

F∞(t) = Tr[ρ̂0(t)ρ̂
(d)(t)] =

1

1 + 〈n〉t;0 + 〈n〉t;∞
, (11)

where 〈n〉t;0 is the mean excitation number in the absence of noise and 〈n〉t;∞ =
g2
0

~
t corresponds

to the classical-like diffusion induced by the noise.

Such an asymptotical behavior corresponds to full stirring over all the states available at the

moment t.

2.3. Moderate Noise

It is impossible to calculate F (t;σ) analytically for intermediate values of σ. Numerically, we

observe some scaling law : the fidelity F (t;σ) depends on the only variable [σ/σc(t)] in a wide

domain of σ up to a new critical value σ̃c(t), where the fidelity decay changes to the asymptotic

law F∞(t) (11) (see Fig.3). A simple fit

F [σ/σc(t)] =
1

1 + σ2/σ2
c (t)

(12)

describes our numerical data rather well (see Fig. 4). The second critical value defines the

decoherence time td(σ) =

√
6~

g0σ
when the transition F [σ/σc(td)] = F∞(td) from the scaling

regime to strong noise behavior takes place.
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Fig. 4. Fidelity data vs scaling factor σ/σc(t). Crosses, triangles, open circles and squares
correspond to the different levels of the noise: σ = (0.5, 1, 2, 16, 64) × 10−3. The blue dashed
line is the weak noise approximation (9), the black and green dashed lines are the strong noise
asymptotics (11) for the two latter values of σ. The red line is the fit (12)

3. Reversibility and Purity

Reversibility of quantum dynamics is characterized by the overlap of the initial ρ̂(0) and re-

versed ρ̂(t|0; ξ, ξ′) = Û†
ξ′(t)ρ̂(t; ξ)Ûξ′(t) at the moment t states: F (rev)(t;σ) = Tr[ρ̂(0)ρ̂(t|0; ξ, ξ′)].

As the noise histories ξ and ξ′ are uncorrelated we have

F (rev)(σ; t) = Tr [ρ̂(0)ρ̂(0|t; ξ, ξ′)] =

= Tr [ρ̂(t; ξ)ρ̂(t; ξ′)] =

= Tr
[

ρ̂(av)(t;σ)ρ̂(av)(t;σ)
]

≡ P(σ; t).

(13)

The quantity P(t;σ) is referred for as purity [5]. Using as usual the exponential anzatz we get

the purity as a function of σ:

P(t;σ) =
2〈|m|〉t;σ + 1

2〈n〉t;σ + 1
, (14)

where the quantity 〈|m|〉t;σ =
∞
∑

m=1
m Wm(t;σ) is the mean number of harmonics of the averaged

Wigner function. The probability distribution Wm is defined by the averaged density matrix

Wm(t;σ) ≡ (2 − δm0)

∞
∑

n=0
|〈n + m|ρ̂(av)(t;σ)|n〉|2

∞
∑

n=0
|〈n|[ρ̂(av)(t;σ)]2|n〉|

. (15)

In the strong noise limit the averaged density matrix becomes diagonal, so the only zero

harmonic survives Wm(t;∞) = δm0 and

P(t;σ) = F (rev)(t;σ) = Tr[ρ̂(d)(t)]2 =
1

1 + 2〈n〉t;∞
. (16)

4. Entropy

Instead of M(t), complexity of the quantum state can also be described in the absence of

noise in terms of the information Shannon entropy defined as I(t) = −
∞
∑

m=0
Wm(t) lnWm(t).
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Fig. 5. Von Neumann entropy S(t) for the different noise levels σ = [0.125, 1, 8, 64, 512, 4000] ×
10−3. Limiting curve (circles) corresponds to the Shannon entropy I(t) without noise

Using the exponential anzatz (3) and relation Wm(t) = (2− δmo)
∞
∑

m=0
ρn(t)ρn+m(t) we find that

Wm ≈ (2 − δmo)

2〈n〉t;0 + 1

[ 〈n〉t;0
〈n〉t;0 + 1

]n

and finally I(t) ≈ ln〈n〉t;0 + 1 + 1
2〈n〉t;0

+ ... (t ≫ 1).

From the other hand reversibility of dynamics is closely related to the von Neumann invariant

entropy S(t;σ) = −Tr[ρ̂(av) ln ρ̂(av)]. This entropy monotonically grows with time (see Fig. 5)

and approaches from below the Shannon entropy when t → td(σ). After the decoherence time

the evolution becomes Markovian and

S∞(t) ≈ −
∞
∑

n=0

w(d)
n (t) ln w(d)

n (t) ≈ ln〈n〉t;∞ + 1 +
1

2〈n〉t;∞
+ ... = I(t). (17)

In particular, in the strong noise limit σ → ∞ the decoherence time td(∞) = 0 so that S∞(t) =

I(t) for any time 0 < t < ∞.

Similar correspondence between information and correlational entropies has been found in

the theory of random band matrices [6].

Conclusion

Quantum dynamics of a classically chaotic system after the Ehrenfest time has been studied

in the presence of noise. We have shown numerically that such global characteristics of evolution

as the degree of excitation 〈n〉t;ξ and the mean number of harmonics
√

〈m2〉t;ξ do not depend

on the noise history, so they are self-averaging quantities. We have proved that the coarse-

grained distribution w
(av)
n (t;σ) ≡ ρ

(av)
nn (t;σ) obeys the universal exponential law. Stability and

reversibility properties of dynamics have been investigated using the noise-averaged Peres fidelity.

Analytical expressions have been obtained in two limiting cases of weak and strong noise. We have

found a critical perturbation σc(t) =

√

2
/

t
∑

τ=0
〈m2〉τ below which the effect of the noise remains

small. This critical perturbation decays with time in accordance with power law σc(t) ∝ t−3/2

contrary to the exponential decay in the classical limit. However the decay caused by noise is

faster than in the case of a single perturbation when ξc(t) ∝ t−1. In the limit σ → ∞ the

density matrix ρ
(av)
nn′ (t;σ) becomes diagonal and its evolution turns into Markovian process. For
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the intermediate values of the noise level we have discovered a scaling law: the fidelity F (t;σ)

depends on the only variable [σ/σc(t)] in a wide domain of σ up to some new critical value σ̃c(t)

where transition to the Markovian regime takes place. This allowed us to estimate the time td(σ)

of full decoherence.

The relation between degree of reversibility and purity of the quantum state, F (rev)(t;σ) =

P(t;σ), has been established. We have also proved that the von Neumann entropy coincides in

the limit of the strong noise with the information Shannon entropy I(t) = S∞(t).
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Квантовый хаос при наличии внешнего шума

Ярослав А. Харьков
Валентин В. Соколов

Олег В. Жиров

В работе изучена квантовая динамика классически хаотичной системы при наличии внешнего

шума. Рассматриваются свойства устойчивости и обратимости движения (характеризуемые

величиной фиделити Переса) в зависимости от уровня шума σ. Мы получили аналитическое

выражение для фиделити в случаях слабого и сильного шума, а также нашли критическое зна-

чение, σc(t), ниже которого влияние возмущения остаётся малым. Было обнаружено, что по-

сле времени Эренфеста tE критическое возмущение падает со временем по степенному закону.

Представлена оценка для времени декогерентности td(σ), после которого матрица плотности

становится диагональной, а ее эволюция является марковским процессом.

Ключевые слова: квантовый хаос, функция Вигнера, фиделити, стабильность, обратимость,

марковская цепь, чистота состояния.

– 310 –


