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We investigate the solutions for the following nonlinear degenerate parabolic equation in non-divergent

form with density

|x|n
∂u

∂t
= u

m
div

(

|∇u|p−2 ∇u
)

We discuss the properties, which are different from those for the equations in divergence form, thus

generalizing various known results. Then getting a self-similar solution we show the asymptotic behavior

of solutions at t → ∞. Slow and fast diffusion cases are investigated. Finally, we present the results of

some numerical experiments.

Keywords: nonlinear degenerate parabolic equation, non-divergent form, self-similar solution, asymptotic

behavior of solutions.

Introduction

We consider the Cauchy problem for a parabolic nonlinear equation in non-divergent form
with density

|x|
n ∂u

∂t
= umdiv

(

|∇u|
p−2

∇u
)

, (x, t) ∈ R
N × R+, (1)

u|t=0 = u0 (x) > 0, x ∈ R
N (2)

for real numbers p>1, 0 > m <
(p − 2)(N + n) + p + n

p − N
and nonnegative integer n.

The equation (1) describes many physical problems such as dispersal mechanisms on specials
survival, plasma physics, damage mechanics and curve shortening flow, see [11–13].

The equation (1) may be degenerate at the points where u = 0 and ∇u = 0. So we can-
not expect to have a classical solution in general, we consider only weak solutions which are
nonnegative and in the following weak sense.

Definition 1. A nonnegative function u(x, t) is called a weak solution of (1)–(2) if u satisfies

1) u ∈ Lm+p−1 (Ω × (τ, T )) , ut ∈ L2
loc (ΩT ) , |u|

m/(p−1)
∇u, |u|

(m−1)/p
∇u ∈ Lp (ΩT )

for ∀τ ∈ (0, T ) and a bounded domain Ω ⊂ R
N with smooth boundary, ΩT = Ω × (0, T );

2)

∫ T

0

∫

Ω

(

u
∂ϕ

∂t
− |∇u|

p−2
∇u∇ (umϕ)

)

dxdt +

∫

Ω

u0ϕ (0, x) dx = 0;

3) u|(0,T )×∂Ω > 0;
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4) for all 0 6 ϕ ∈ C1
(

Ω̄T

)

ϕ|(0,T )×∂Ω = ϕ|t=T = 0.

The properties of the solution to the problem (1)–(2) depend on the values of the parameters
of the equation (1). The cases m = 1 or p = 2 (i.e. p-Laplacian equation and porous medium
equation) were thoroughly studied by many authors (see e.g. [9, 10,18]).

For 0 < m < 1 , the definition v(x, t) := (1 − m)
1−m

m u1−m(x, t) transforms (1) into a reaction-
diffusion equation with double nonlinearity in divergent form, which has been studied in [1].

The existence of a unique so-called viscosity solution of the Cauchy problem (1)–(2) for
p = 2, was proved in [14]. The authors investigated both viscosity sub-solutions and viscosity
sup-solutions for a short time interval. Giving the requirements for the initial values and defining
the solutions in a specific way they showed a property of uniqueness for the viscosity solutions
which is missing for classic and even other weak solutions.

Indeed, existence of week solutions and also uniqueness have been established in most cases
for divergent form equations using various techniques [9, 10], but these results do not hold the
non-divergent equation (1). Dal Passo and Luckhaus claim that for the case p = 2 uniqueness
fails since for every T > 0 a weak solution with extinction time T . They just got a unique
maximal solution and showed that its support remains constant [5]. However, in [12] a counter
example was shown by Ughi, who has proved uniqueness of the. This phenomenon was fully
discussed later in a cooperative work of these authors [2]. Also, non uniqueness was investigated
for p > 1,m = 1 in [17].

The support of solutions of the equation (1) will never expand at m > 1, while it is known that
the equations in divergence form have the property of the finite (or infinite) speed of propagation
of disturbance [5, 12,14].

The aim of this paper is to find some self-similar solutions, which can be constructed in two
ways: forward and backward, then to prove that all solutions satisfying equation (1) has the
following asymptotic:

f (ξ) → C
(

a − bξ
p+n

p−1

)

p−1
p+m−2

at ξ → (a/b)
(p−1)/(p+n)

if b > 0 and ξ → ∞ when b < 0, (3)

where C is an arbitrary constant.
We will study self-similar solutions of the equation (1) in the form

u(x, t) = (t + 1)−αf (ξ) ,

where ξ = (t + 1)−β |x| and α =
1 − β (p + n)

m + p − 2
satisfy the following

fmξ1−N d

dξ

(

ξN−1

∣

∣

∣

∣

df

dξ

∣

∣

∣

∣

p−2
df

dξ

)

+ βξn+1 df

dξ
+ αξnf = 0. (4)

In the recent work [7], for the equation (1) without density was obtained the the same self-
similar equation.

1. Asymptotic behavior of the self-similar solutions

In accordance with the statement of the original problem we will consider nontrivial, nonneg-
ative solutions of the equation (4) satisfying the following conditions:

f ′ (0) = 0, f (∞) = 0. (5)

An exact solution for the problem (4)–(5) can be obtained a solution of the following form

f (ξ) = (a − bξγ1)
γ2

+ . (6)
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The solution of this form first was found by Zel’dovich, Kompaneets and Barenblatt in 1950
for porous medium equation [19]. Hence, these type of solutions usually are named as ZKB
solutions.

A constant a is arbitrary and positive, but it is advisable to choose it when

aγ2 > u0(x), ∀x ∈ RN .

Notation (s)+ = max(0, s) is used to show that we are searching the solution with compact
support for initial value problem (4), (5).
The constants b, γ1 and γ2 will be defined after substituting (6) into (5) which yields

− (bγ1γ2)
p−1

(N − 1 + (γ1 − 1) (p − 1))
∣

∣

∣
ξ(γ1−1)(p−1)−1(a − bξγ1)γ2m+(p−1)(γ2−1) +

+bpγp
1γp−1

2 (p − 1) (γ2 − 1)
∣

∣

∣
ξ(γ1−1)(p−1)−1+γ1(a − bξγ1)γ2m+(p−1)(γ2−1)−1 −

−βbγ1γ2

∣

∣

∣
ξγ1+n(a − bξγ1)γ2−1 +

1 − β (p + n)

m + p − 2

∣

∣

∣
ξn(a − bξγ1)γ2 = 0.

Considering that the first and the third terms are as the second and the fourth ones respectively,
we can define γ1 and γ2 by equalizing relevant powers,

{

(γ1 − 1) (p − 1) − 1 = n,
γ2m + (p − 1) (γ2 − 1) = γ2

=>











γ1 =
p + n

p − 1
,

γ2 =
p − 1

p + m − 2

we came to the following form

[(

b
p + n

p + m − 2

)p

(1 − m) − βb
p + n

p + m − 2

]

∣

∣

∣
ξγ1+n(a − bξγ1)γ2−1 +

+

[

1 − β (p + n)

m + p − 2
−

(

b
p + n

p + m − 2

)p−1

(N + n)

]

∣

∣

∣
ξn(a − bξγ1)γ2 = 0.

This equation is true only if both coefficients are zeros, i.e















β =

(

b
p + n

p + m − 2

)p−1

(1 − m),

1 − β (p + n)

m + p − 2
=

(

b
p + n

p + m − 2

)p−1

(N + n)

=>

=>















β =
1 − m

(N + n) (m + p − 2) + (1 − m) (p + n)
,

b =
p + m − 2

p + n

[

1

(N + n) (m + p − 2) + (1 − m) (p + n)

]1/(p−1)

We defined not only b, but also β which is positive in case 0 < m 6 1, and negative if

1 < m <
(p − 2)(N + n) + p + n

p − N
and p > N.

Above we considered p + m− 2 6= 0. For other case we have to find the solution of this form,

f (ξ) = Ceγ .
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By using the above calculations we can obtain the following general exact solution,

f̄ (ξ) =







(

a − bξ
p+n

p−1

)

p−1
p+m−2

+
, if m + p − 2 6= 0

exp (−cξ)
p

p−1 , if m + p − 2 = 0

, ξ = (t + 1)
−β

|x| , (7)

where a > 0,

b =
p + m − 2

p + n

(

1

(p + m − 2) (N + n) + (1 − m)(p + n)

)
1

p−1

, c =

(

(p − 1)

p

)2− 2
p

[

β

(2)(p − 1)

]
2
p

,

β =











1 − m

(p + m − 2) (N + n) + (1 − m)(p + n)
, if m + p − 2 6= 0,

−
2

p
, if m + p − 2 = 0,

α =











1 − β (p + n)

m + p − 2
, if m + p − 2 6= 0,

N

p(p − 1)
, if m + p − 2 = 0,

are given constants.
We can conclude that the support remains constant in time at β = 0, while for β > 0, the

supports keep shrinking and asymptotically go to a single point as t → ∞ as stated in [7].

1.1. Slow diffusion (case m+p–2>0)

The solution (7) is also a sub-solution as it satisfies the condition

fmξ1−N d

dξ

(

ξN−1

∣

∣

∣

∣

df

dξ

∣

∣

∣

∣

p−2
df

dξ

)

+ βξn+1 df

dξ
+ αξnf 6 0.

We will show that the function (7) is an asymptotic of all solutions of the problem (1)–(2) where
p > 2 − m, 0 < m < 1.

We will find solutions to the problem in the following form

f (ξ) = f̄ (ξ) · w (η) , η = − ln
(

a − bξ
p+n

p−1

)

, (8)

where 0 < w(η) 6 1 for all η in [−ln(a);+∞). It is easy to see that

ξ →
(a

b

)

p−1
p+n

−

at η → +∞ .

After the transformation (8) the equation (4) becomes

wm
(

|Lw|
p−2

Lw
)

′

−

(

(1 − m)(p − 1)

p + m − 2

)

wm |Lw|
p−2

Lw+

+(N + n)

(

b(p + n)

(p − 1)

)

−1
be−η

a − e−η
wm |Lw|

p−2
Lw+

+β

(

(p − 1)

b(p + n)

)p−1

Lw + α

(

(p − 1)

b(p + n)

)p
be−η

a − e−η
w = 0,

(9)

where

Lw = w′ −
p − 1

p + m − 2
w.
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At first, we will show that the solution of the equation (4) has finite limit w0 at η → +∞.
Let us take the function

ϑ (η) = |Lw|
p−2

Lw.

Then the equation (9) is transformed into


































w′ =
p − 1

p + m − 2
w + |ϑ|

q−2
ϑ,

ϑ′ =

(

(1 − m)(p − 1)

p + m − 2
− (N + n)

(

b(p + n)

(p − 1)

)

−1
be−η

a − e−η

)

ϑ−

−β

(

(p − 1)

b(p + n)

)p−1

w−m |ϑ|
q−2

ϑ − α

(

(p − 1)

b(p + n)

)p
be−η

a − e−η
w1−m.

(10)

Lemma 1. Assume that 0 < A1 6 A2, σ1 < σ2l 6 0, and let (w1,ϑ1), (w2,ϑ2) be the solutions
of the system (10) with the initial value conditions wi (η0) = Ai, ϑi (η0) = σi(i = 1, 2). If w1

and w2 are positive in [η0,∞) then w1 (η) 6 w2 (η), ϑ1 (η) < ϑ2 (η) for any η ∈ [η0,∞).

Proof. As 0 < w1 (η0) 6 w2 (η0), ϑ1 (η0) < ϑ2 (η0) 6 0,

w′

2 (η0) =
p − 1

2 − m − p
w2 (η0) + |ϑ2 (η0)|

p−2
ϑ2 (η0) >

>
p − 1

2 − m − p
w1 (η0) + |ϑ1 (η0)|

p−2
ϑ1 (η0) = w′

2 (η0, ) .

We came to w′

2 (η0) > w′

1 (η0). Then there must exist a constant δ > 0 such that w1 (η) 6 w2 (η),
ϑ1 (η) < ϑ2 (η) on [η0; η0 + δ]. By repeating this process many times we can conclude that
w1 (η) 6 w2 (η), ϑ1 (η) < ϑ2 (η) conditions true for all η ∈ [η0;∞). 2

Lemma 2. Assume that 0 < A1 6 A2, 0 > σ1 > σ2, and let (w1,ϑ1), (w2,ϑ2) be the solutions of
the system (10) with the initial value conditions wi (η0) = Ai, ϑi (η0) = σi(i = 1, 2). If w1 and
w2 are positive in [η0,∞) then w1 (η) 6 w2 (η), ϑ1 (η) > ϑ2 (η) for any η ∈ [η0,∞).

Proof. From the hypotheses we have

ϑ2 (η0)
′
−

(

(1 − m)(p − 1)

p + m − 2

)

ϑ2 (η0) + (N + n)

(

b(p + n)

(p − 1)

)

−1
be−η

a − e−η
ϑ2 (η0) = ϑ2 (η0)

′
=

= −βw−m
2

(

(p − 1)

b(p + n)

)p−1

|ϑ2|
q−2

ϑ2 − α

(

(p − 1)

b(p + n)

)p
be−η

a − e−η
w1−m

2

∣

∣

∣

∣

∣

η=η0

=

= −β

(

(p − 1)

b(p + n)

)p−1

w−m
2 (η0)

(

|ϑ2|
q−2

ϑ +
p − 1

p + m − 2
w2 (η0)

)

=

= −β

(

(p − 1)

b(p + n)

)p−1

w−m
2 (η0) w′

2(η0) < −βw−m
1

(

(p − 1)

b(p + n)

)p−1

|ϑ1|
q−2

ϑ1−

−α

(

(p − 1)

b(p + n)

)p
be−η

a − e−η
w1−m

1

∣

∣

∣

∣

η=η0

= −β

(

(p − 1)

b(p + n)

)p−1

w−m
1 (η0) w′

1 (η0) =

= ϑ1 (η0)
′
−

(

(1 − m)(p − 1)

p + m − 2

)

ϑ1 (η0) + (N + n)

(

b(p + n)

(p − 1)

)

−1
be−η0

a − e−η0
ϑ1 (η0) = ϑ1 (η0)

′
,

which means that ϑ′

2 (η0) < ϑ′

1 (η0), w′

2 (η0) > w′

1 (η0). Then considering the proof of Lemma 1
we have w1 (η) 6 w2 (η), ϑ1 (η) > ϑ2 (η) for all η ∈ [η0;∞). 2

Theorem 1. Let p > 2 − m, then finite solution of the problem (4)–(5) has asymptotic

at ξ →
(a

b

)

p−1
p+n

−
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Proof. We first show that the solution of the system (10) has finite limit w0 at η → +∞ We
know that the function wη is bounded. So it is enough to prove that it is monotone nonincreasing
in [η0;∞). Let us take w ≡ 1, we can see that it is a sub-solution from (8). Then for other
solutions w1(η) we have w′

1(η0) 6 0. That means that any solution is nonincreasing in [η0; η1),
for any η1 > η0, where difference η1 − η0 sufficiently small. By consideration Lemma 1 and
Lemma 2 we can find two solutions w1, w2 such that w1 (η1) = w2 (η0). We can conclude

w1(η1) > w1(η0).

From the arbitrariness of η1, we see that w1 is monotonic in [η0;∞). Thus, it has limit at η → ∞.
Here taking into consideration that

lim
η→+∞

be−η

a − e−η
→ 0, w′ = 0

in (9) we will get the following algebraic equation at ξ →
(a

b

)

2(p−1)
p

−

,

(1 − m)

(

p − 1

p + m − 2

)p−1

wm+p−1 − β

(

(p − 1)

b(p + n)

)p−1

w = 0.

Calculating the one gives w = 1, considering (8) the theorem has been proved. 2

1.2. Fast diffusion (case m+p−2<0)

In this case we have different families of solutions, oscillating near at ξ = +∞, see for
example [9, 10]. For every of these families there is a constant C from (3). These kind of
solutions are called eigenfunctions [6]. Upper solution for the problem (1)–(2) is obtained by
nonlinear splitting [3].

θ (ξ) = A
(

a + ξ
p+n

p−1

)

−
p−1

2−m−p

,

where A =

(

p + n

2 − m − p

)

p−1
2−m−p

[(1 − m)(p + n) − (N + n) (2 − m − p)]
1

2−m−p , a > 0.

Theorem 2. Let p > 1 +
(n + N) (1 − m)

1 − m + n + N
, m < 1, then finite solution of the problem (4)–(5)

has asymptotic f ∼ θ.

Proof. Let us insert new transformation to (4)

f (ξ) = θ (ξ) · w (η) , η = ln
(

a + ξ
p+n

p−1

)

, (11)

admit that
η → +∞ at ξ → +∞.

After the transformation (11), we have

d

dη

(

|Lw|
p−2

Lw
)

−

(

(1 − m) (p − 1)

2 − m − p

)

wm |Lw|
p−2

Lw+

+(N + n)
p − 1

p + n

1

1 − ae−η
wm |Lw|

p−2
Lw+

+βA2−p−m

(

p − 1

p + n

)p−1

Lw + αA2−p−m

(

p − 1

p + n

)p
1

1 − ae−η
w = 0,

(12)
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where

Lw = w′ −
p − 1

2 − m − p
w.

Taking into the consideration that w(η) has a finite limit (see the proof of Theorem 1) and

lim
η→+∞

1

1 − ae−η
→ 1, w′ = 0

we come to the following algebraic equation
[

(1 − m)

(

p − 1

2 − m − p

)p

− (N + n)
p − 1

p + n

(

p − 1

2 − m − p

)p−1
]

wm+p−2−

−βA2−p−m

(

p − 1

p + n

)p−1
p − 1

2 − m − p
+ αA2−p−m

(

p − 1

p + n

)p

= 0

at η → +∞. The last one gives w=1 and on behalf of (11) we have proved that f ∼ θ. 2

2. Results of numerical analysis and a visualization

The main difficulty of numerical research for the problem (1)–(2) arises from the non-
uniqueness of solutions. To choose right initial data is important on the process of calculations
and for testing purposes of numerical analysis we can utilize the exact solution (7) to get initial
and boundary values. The asymptotic formula (6) will provide the similarity of the behaviour of
solutions to the exact solution (7).

Numerical experiments show properties of solutions clearly. We can see on Fig. 1. extinction
solutions for fast and slow diffusion cases. Speeds of perturbation are finite for these cases and
we can see how they slow down and maximal speed is at t = 0.

a b

Fig. 1. Divergent cases: a) fast diffusion case; b) slow diffusion case

The figures for non-divergent cases are quite different. Fig. 2 shows that if β = 0(or m = 1),
the support of the solution of the problem (1)–(2) remains constant in time. Pay attention to
two fixed points on the front of the graph a. If β > 0 (or m > 1), we get shrinking solutions,
which asymptotically go to a single point. (Fig. 2, b) It shrinks with a finite speed that also slow
down and has maximal speed at t = 0.

For numerical analysis has been used tridiagonal matrix algorithm. The results of numerical
experiments show fast convergence of iteration process (iteration doesn’t exceed of two).

– 198 –



Jakhongir R.Raimbekov The Properties of the Solutions for Cauchy Problem of Nonlinear Parabolic ...

a b

Fig. 2. Non-divergent cases: a) support remains constant; b) support shrinks
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Свойства решений одной задачи Коши нелинейного
параболического уравнения в недивергентной форме
с переменной плотностью

Жахонгир Р. Раимбеков

В данной статье изучаются свойства решений одной задачи нелинейного параболического урав-

нения в недивергентной форме с переменной плотностью

|x|n
∂u

∂t
= u

m
div

(

|∇u|p−2 ∇u
)

.

Обсуждаются свойства решенийб отличных от тех, которые применимы для уравнений в дивер-

гентной форме. Основная цель данной статьи — анализ асимптотических поведений на основе

полученных автомодельных решений для случая быстрой и медленной диффузии. Численный ана-

лиз решений был получен на основе тех же автомодельных приближений, визуализация которых

отражает ряд свойствб которые обсуждаются в статье.

Ключевые слова: нелинейное вырождающееся параболическое уравнение, недивергентная форма,

автомодельное решение, асимптотика решений.
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