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The Cauchy problem for multidimensional difference equations in rational cone is formulated and suf-

ficient condition for its solvability is given. The notion of multisection of multiple Laurent series with

the support in a rational cone is defined. The formulae which express any multisection through original

series are presented.
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Introduction

In this paper we discuss some issues related to the Cauchy problem for multidimensional

difference equations whose solutions are sought at the intersection of rational cone K with integer

lattice. Methods of the theory of generating functions (z-transformations) play an important role

in the study of the Cauchy problem. Problems of solvability of the Cauchy problem in the positive

octant of the integer lattice and the algebraic nature of the generating function of its solution

are studied in [1]. When passing from positive octant to more general case of a rational cone

difficulties arise. They are associated with the fact that the cone K, in general, not unimodular.

In the first section we formulate the Cauchy problem and provide the sufficient condition for

its solvability (see Theorem 1). The multi-dimensional analogue of the notion of the multisection

of a power series helps us to overcome mentioned above difficulties in study of generating functions

(series) with supports in rational cones. This multi-dimensional analogue is defined in the second

part of the paper. Relation that represents the multisections of the series in terms of the original

series (see Theorem 2) is also presented in the second part of the paper.

1. On solvability of the Cauchy problem

Let us introduce complex-valued functions f(x) = f(x1, . . . , xn) of integer variables

x1, . . . , xn. We define the shift operators δj with respect to the variables xj : δjf(x) =

f(x1, . . . , xj−1, xj + 1, xj+1, . . . , xn) and polynomial difference operator of the form

P (δ) =
∑

ω∈Ω

cωδω,
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where Ω ⊂ Zn is a finite set of points of n-dimensional integer lattice Zn, δω = δω1

1 · · · · · δωn
n and

cω are constant coefficients of the difference operator.

Let us consider the difference equation of the form

P (δ)f(x) = g(x), x ∈ X, (1)

where f(x) is unknown function and g(x) is a function defined on some fixed set X ⊂ Zn. Subset

X0 ⊂ X is called the initial (boundary) set. Let us formulate the problem.

Find function f(x) that satisfies equation (1) and the following equation

f(x) = ϕ(x), x ∈ X0 (2)

for a given function ϕ(x).

It is naturally to designate this problem as Cauchy problem for equation (1) and function

ϕ(x) in condition (2) is designated as initial data of the Cauchy problem. The existence and

uniqueness of solutions of the Cauchy problem depends on all objects involved in the setting this

problem: the difference operator P ( delta), set X on which we define function g(x) in equation

(1) and set X0 on which we define the initial data ϕ(x).

We are interested in problems of the form (1)–(2) that arise in combinatorial analysis. Dif-

ference operator in the one-dimensional case (see [2, 3]) is given by P (δ) =
m
∑

ω=0
cωδω, cm 6= 0,

the set X is the set of non-negative integers Z+ and the set X0 = {0, 1, . . . ,m − 1}. Under

these conditions problem (1)–(2) obviously has the unique solution. In multidimensional case we

usually have X = Zn
+ and the choice of set X0 depends on the properties of the set Ω on which

the characteristic polynomial P is defined. The problem of correct formulation (formulation that

ensures the existence and uniqueness of the solution) of Cauchy problem in the positive octant

Zn
+ of the integer lattice for difference equation (1) was studied [1]. In addition, there was studied

the algebraic nature of the generating function of solution of the difference equation.

In this paper we study the problem of solvability of Cauchy problem (1)–(2), that is, the

problem of existence and uniqueness of the function f(x) that satisfies (1)–(2). The function is

defined at integer points K ∩ Zn of rational cone K. Let us give some needed notations and

definitions.

Let us assume that a1, . . . , an are linearly independent vectors with integer coordinates aj =
(

a
j
1, . . . , a

j
n

)

, a
j
i ∈ Z. Rational cone generated by the vectors a1, . . . , an is the set K = {x ∈ Rn :

x = λ1a
1 + · · ·+ λnan, λj ∈ R+, j = 1, . . . , n}. Let us note that this cone is simplicial cone, that

is, each element of the cone is uniquely expressed in terms of generators. In addition, simplicial

cone is also salient cone, that is, this cone contains no lines. Let us introduce matrix A. The

columns of this matrix are composed of the vectors aj and ∆ = det A. If ∆ = 1 then the cone

K is a unimodular cone.

Let us define a partial order >
K

between points u, v ∈ Rn as follows

u >
K

v ⇔ u ∈ v + K,

where v+K is the shift of the cone K by the vector v. In addition, we write u �
K

v if u ∈ K\{v+K}.

Let us fix m ∈ Ω and specify problem (1)–(2) as follows: we take the intersection K ∩ Zn

of rational cone and the integer lattice as X and X0 = {x ∈ K ∩ Zn : x �
K

m}. Let us find a

function f(x) that satisfies the equation

P (δ)f(x) = g(x), x ∈ K ∩ Zn (3)
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and coincides with the given function ϕ(x) on set X0:

f(x) = ϕ(x), x ∈ X0. (4)

In the positive octant Zn
+ of integer lattice (that is Aj = ej , ej — unit vectors, j = 1, . . . , n)

degrees of monomials zx on the set of variables are defined as follows x1 + x2 + dots + xn and

degrees of the monomials are the same when their exponents lie on the hyperplane x1 + x2 +

· · ·+ xn = d. Note that ν = e1 + e2 + · · ·+ en is normal vector to this hyperplane. In the case of

an arbitrary simplicial rational cone generated by the vectors a1, a2, . . . , an it is natural to take

ν = a1 + a2 + · · · + an and denote 〈ν, x〉 = ν1x1 + · · · + νnxn.

Theorem 1. If for any ω ∈ Ω the condition 〈ν, ω − m〉 6 0 is fullfield and m is the only point
of Ω, which lies on the hyperplane 〈ν, xm〉 = 0, then problem (3)–(4) has the unique solution.

The proof of theorem 1 is reduced to the solvability of an infinite system of linear equations

with an infinite number of variables. The system has a feature: each equation contains only

a finite number of unknowns. Such system is consistent, if any system of a finite number of

equations is consistent (see, [4], Ch. 6, Lemma 6.3.7). We construct sequence of subsystems

(3)–(4) that consists of a finite number of equations. These subsystems are arranged so that

each following subsystem includes all equations of the previous one. Because of the mentioned

above lemma the compatibility of each of these subsystems consistency means that system (3)–(4)

is consistent.

Let us introduce the relation ≺
K

on the lattice points of rational cone K. If ≺ is the relation

of lexicographical order in Zn
+ then for x, y ∈ K ∩ Zn we define the ratio ≺

K
as follows

x≺
K

y ⇔ ∆A−1x ≺ ∆A−1y,

where A−1 is the matrix inverse to A and ∆ = det A.

For the vector ν we consider the linear in x function 〈ν, x〉, x ∈ K. We form the set of its

values on the points of the set K∩Zn in orderly pattern and designate it as S. Note that S ⊂ Z+

because ν is in the dual cone to cone K. We defined weighted lexicographic ordering ⊳ on the

set of lattice points of the cone K as follows. For x, y ∈ K ∩ Zn the ratio x ⊳ y means that

〈ν, x〉 < 〈ν, y〉 and if 〈ν, x〉 = 〈ν, y〉 then x≺
K

y.

Let us take some s ∈ S. Unknown elements of the set are numbered by Js = {y ∈ K ∩ Zn :

〈ν, y〉 6 s} and equations are numbered by elements of two sets Is = {x ∈ K ∩ Zn : 〈ν, x〉 6

s − 〈ν,m〉} and Im,s = {µ ∈ X0 : 〈ν, µ〉 6 s}. Points x of the set Is « » are assigned numbers of

points m+x inJs. Points x of the set Is are numbered in the same way as points m+x ∈ Js. We

denote number of elements of a finite set M by #M then it is easy to see that #Is+#Im,s = #Js.

Thus, we obtain a system of linear equations for the unknown f(y), y ∈ Js of the form

∑

ω∈Ω

cωf(x + ω) = g(x), x ∈ Is, (5)

f(µ) = ϕ(µ), µ ∈ Im,s. (6)

Determinant of system (5)–(6) is denoted by ∆m, s.

Proof of Theorem 1.

All elements in the rows of the determinant ∆m,s but one are equal to zero. This element

is equal to one and it lies on the main diagonal. This follows from the algorithm of ordering of
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unknowns and equations of system (5)–(6). Consider the rows of the determinant corresponding

to equations (5). Firstly, only cω are equal to zero. Secondly, it follows from the conditions of

Theorem 1 that ω ⊳ m, ω ∈ Ω, ω 6= m then x+ω ⊳ x+m. So in the rows of the determinant that

corresponds to equation (5), the last non-zero element is cm. Element cm stands on the main

diagonal because of the equation has the number x + m and number of unknown is y = x + m.

Thus, ∆m,s is the determinant of a lower triangular matrix. Non-zero elements cm are on the

main diagonal of the matrix, that is, ∆m,s 6= 0 for all s ∈ S. 2

Note that in the case K = Rn
+ theorem 1 is proved with the use of other method (see [1]).

2. Multisection of Laurent series with the support

in a rational cone

We recall the notion of multisection of power series in the one-dimensional case. For a fixed

positive integer q we define the k-th q-section Tk,q of series G(ξ) =
∞
∑

j=0

g(j)ξj as follows

Tk,qG(ξ) =

∞
∑

j=0

g(k + jq)ξk+jq, k = 0, 1, . . . , q − 1,

where Tk,q is a linear operator acting on the ring of formal power series C[[ξ]]. It is known that

every k-th q-section of series is expressed through the original series (see [5]) as follows

Tk,qG(ξ) =
1

q

q
∑

j=1

rq−kjG(rjξ), k = 0, 1, . . . , q − 1, (7)

where r is a primitive q-th root of unity, that is rq = 1, r 6= 1.

Let us note that multisection is used to prove identities with binomial coefficients and the

Bernoulli numbers [5]. The need for a multi-dimensional analogue of the notion of multisec-

tion multiple series arises in the study of the Cauchy problem for multidimensional difference

equations (see [1, 6–9]). In particular, this is the case when supports of generating functions of

equation solutions is in rational cone. Generating functions are naturally divided into the sum

of multisections. The question arises as to whether the original series and multisections are of

the same class, for example, the class of rational or algebraic functions. Let us introduce some

needed notations and definitions.

Let Λ = {x ∈ Zn : x = λ1a
1+. . .+λnan, λi ∈ Z, i = 1, . . . , n} be sublattice of Zn generated by

the vectors a1, . . . , an. We fix τ ∈ Λ∩K and introduce µ = (µ1, . . . , µn), where µi are coordinates

of τ in the basis a1, . . . , an. We denote by Πτ the parallelotope Πτ = {x ∈ Rn : 06
K

x <
K

τ} and

denote by Λτ = {x ∈ Zn : x = λ1µ1a
1 + . . . + λnµnan, λi ∈ Z, i = 1, . . . , n} the sublattice

of Zn generated by the vectors µ1a
1, . . . , µ1a

n. Next, we assume that v are points with integer

coordinates that belong to parallelotope Πτ . The number of points is equal to the volume of

parallelotope V ol(Πτ ) = µ1 . . . µn∆n. It is obviously that
⋃

v∈Πτ∩Zn

(v + Λτ ) = Zn.

Let CK [[z]] be the ring of Laurent series of the form F (z) =
∑

x∈K∩Zn

f(x)zx. Then, the v-th

τ -section of multiple Laurent series F (z) is a series of the form

Tv,τF (z) =
∑

x∈K∩{v+Λτ}

f(x)zx. (8)
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It is easy to see that any series F (z) from the ring CK [[z]] can be uniquely expressed as the

sum

F (z) =
∑

v∈Πτ∩Zn

Tv,τF (z). (9)

The following theorem generalizes relation (7) to the case of multiple series.

Theorem 2. Every v-th τ -section Tv,τF (z) is expressed in terms of the original series F (z) as
follows

Tv,τF (z) =
1

µ1 . . . µn∆n

∑

J

Rτ−v⊙JF (RJz), (10)

where R = (R1, ..., Rn), Rj 6= 1, j = 1, . . . , n is some solution of the system of equations

Rµia
i

= 1, i = 1, . . . , n, (11)

and J = (j1, . . . , jn), 1 6 j1 6 µ1∆, . . . , 1 6 jn 6 µn∆, where µi are coordinates of τ in the
basis a1, . . . , an.

From (10) we immediately get

Corollary 1 If the series F (z) is a rational (algebraic) series then the series Tv,τF (z) for any

τ ∈ Λ ∩ K and v ∈ Πτ is rational (algebraic) series.

Let us consider first the case K = Rn
+, that is, the case of multiple it power series. Let

ξ = (ξ1, . . . , ξn) ∈ Cn, ξλ = ξλ1

1 · · · · · ξλn
n . We fix q = (q1, . . . , qn) ∈ Zn

+ and consider the

half-open parallelepiped Πq = {x ∈ Rn
+ : 0 6 x < q}. Number of points k ∈ Πq ∩ Zn with

integer coordinates is equal to #Πq ∩Zn = q1 · . . . · qn. Integer lattice Zn can be written as Zn =
⋃

k∈Πq∩Zn

(k + qZn), where the union is taken over all shifts of sublattice qZn = (q1Z)×· · ·× (qnZ)

by vectors k ∈ Πq ∩ Zn.

Let us denote

F(ξ) =
∑

λ∈Z
n
+

h(λ)ξλ ∈ C[[ξ]]. (12)

Then from (8) we obtain

Tk,qF(ξ) =
∑

λ∈k+qZ
n
+

h(λ)ξλ.

Theorem 3. For k-th q-section of the power series (12) the following relation

Tk,qF(ξ) =
1

q1 · . . . · qn

∑

J

rq−k⊙JF(rJξ), (13)

is valid, where J = (j1, . . . , jn), 1 6 j1 6 q1, . . . , 1 6 jn 6 qn, r = (r1, . . . , rn) and rj is a
primitive qj-th root of unity.

Proof. It is easy to verify that the k-th q-section of the power series (12) can be written as

T i
ki,qi

F(ξ) =
∑

j∈Z
n
+

h(j1, . . . , ki + qiji, . . . , jn)ξj1
1 . . . ξ

ki+qiji

i . . . ξjn

n . (14)

Note that the last equality can be taken as a definition of multisection.

Sequential execution (composition) of qi-th and qj-th sections is designated as T i
ki,qi

◦ T
j
kj ,qj

.

It should be noted that operation ◦ is commutative and associative.
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For k = (k1, . . . , kn) and q = (q1, . . . , qn) the k-th q-section of multiple power series F(ξ) is

the following series

Tk,qF(ξ) = T 1
k1,q1

◦ · · · ◦ Tn
kn,qn

F(ξ) =
∑

j∈Z
n
+

h(k + qj)ξk+qi.

Using (14) and n times (7), we obtain

Tk,qF(ξ) = T 1
k1,q1

◦ · · · ◦ Tn
kn,qn

F(ξ) =

= T 1
k1,q1

◦ · · · ◦ Tn−1
kn−1,qn−1

∑

j∈Z
n
+

h(j1, . . . , jn−1, kn + qnjn)ξj1
1 . . . ξ

jn−1

n−1 ξkn+qnjn

n =

= T 1
k1,q1

◦ · · · ◦ Tn−1
kn−1,qn−1

1

qn

qn
∑

jn=0

rqn−knjn

n F(ξ1, . . . , ξn−1, r
jnξn) =

= T 1
k1,q1

◦ · · · ◦ Tn−2
kn−2,qn−2

1

qn−1

qn−1
∑

jn−1=0

r
qn−1−kn−1jn−1

n−1 ×

×
1

qn

qn
∑

jn=0

rqn−knjn

n F(ξ1, . . . , ξn−2, r
jn−1ξn−1, r

jnξn) =

=
1

q1

q1
∑

j1=0

r
q1−k1j1
1 . . .

1

qn−1

qn−1
∑

jn−1=0

r
qn−1−kn−1jn−1

n−1

1

qn

qn
∑

jn=0

rqn−knjn

n F(rj1ξ1, . . . , r
jn−1ξn−1, r

jnξn) =

=
1

q1 · . . . · qn

∑

J

rq−k⊙JF(rJξ).

2

Now we apply (13) for the proof of Theorem 2.

Proof of the Theorem 2. We show that (10) is equivalent to (13) after some transformations.

On the left hand side of (10) we introduce the change of variables zA = ξ∆, where zA =

(z
a1
1

1 . . . z
a1

n
n , . . . , z

an
1

1 . . . z
an

n
n ). Let us denote k = ∆A−1v, q = ∆A−1τ and note that q = ∆µ.

After change x =
Aλ

∆
of summation index x ∈ K ∩ Zn on λ ∈

⋃

t∈Π∆∩Zn

(t + ∆Zn
+), where

Π∆ = {y ∈ Rn : 06y < (∆, . . . ,∆)}, we obtain

Tv,τF (z) =
∑

x∈{v+Λτ}∩K

f(x)zx =
∑

λ∈Z
n
+

f(v + Aλ ⊙ µ)zv+Aλ⊙µ =

=
∑

λ∈Z
n
+

f(
1

∆
Ak + Aλ ⊙

q

∆
)z

1
∆

Ak+Aλ⊙ q

∆ . (15)

Next, we denote

h(λ) =











f( 1
∆Aλ), if λ ∈

⋃

t∈Π∆∩Zn

(t + ∆Zn
+),

0, if λ 6∈
⋃

t∈Π∆∩Zn

(t + ∆Zn
+).

Then relation (15) becomes
∑

λ∈Z
n
+

h(k + q ⊙ λ)ξk+q⊙λ = Tk,q

∑

λ∈Z
n
+

h(λ)ξλ = Tk,qF(ξ).
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Now we do the same change of variables zA = ξ∆ on the right hand side of (10)

1

µ1 . . . µn∆n

∑

J

Rτ−v⊙JF (RJz) =

=
1

µ1 . . . µn∆n

∑

J

R
1
∆

Aq− 1
∆

Ak⊙J
∑

λ∈
⋃

t∈Π∆∩Zn
(t+∆Z

n
+

)

f(
1

∆
Aλ)RJ 1

∆
Aλz

1
∆

Aλ =

=
1

µ1 . . . µn∆n

∑

J

rq−k⊙J
∑

λ∈
⋃

t∈Π∆∩Zn
(t+∆Z

n
+

)

f(
1

∆
Aλ)rJλξλ =

=
1

q1 . . . qn

∑

J

rq−k⊙J
∑

λ∈Z
n
+

h(λ)rJλξλ =
1

q1 . . . qn

∑

J

rq−k⊙JF(rJξ).

Thus, by theorem 2 we find that the right hand side is equal to the left hand side

Tk,qF(ξ) =
1

q1 . . . qn

∑

J

rq−k⊙JF(rJξ).

After returning to the variable z we find that relation (10) is valid. 2
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О задаче Коши для многомерных разностных уравнений
в рациональных конусах

Татьяна И. Некрасова

Сформулирована задача Коши для многомерных разностных уравнений в рациональных конусах,

дано достаточное условие ее разрешимости. Определено понятие мультисекции кратных рядов

Лорана с носителями, лежащими в рациональных конусах, и приведена формула, выражающая

всякую мультисекцию через исходный ряд.

Ключевые слова: задача Коши, рациональный конус, производящая функция, мультисекция.
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