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Unsteady 2D Motions a Viscous Fluid Described by Partially
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8D continuous subalgebra is used to searching partially invariant solution of viscous incompressible fluid
equations. It can be interpreted as a 2D motion of one or two immiscible fluids in plane channel. The
arising initial boundary value problem for factor-system is an inverse one. Unsteady problem for creeping
motions is solved by separating of variables method for one fluid or Laplace transformation method for
two fluids.
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Introduction

The Navier—Stokes equations for 2D motions of a viscous fluid are recorded by

1
Ut + Uy + VUy + ;pz = V(Uga + Uyy),

1 (0.1)
UVt + UV, +’U'Uy + ;py = V(Umx +Uyy) -9,

Uy + vy =0,
where p is the constant fluid density, v and v are the velocity components in the « and y directions,
respectively, p is the pressure and g is the gravity acceleration, v is the fluid viscosity. The group
of point transformations admitted by the system (0.1) is computed in [1, 2]. Corresponding this
group basic continuous Lie algebra includes the three parametrical subalgebra (0, 0y + t0s, Op).
It has the invariants ¢, y, v and partly invariant solution of (0.1) rang two and defect two

necessary to seek in the form v = u(z,y,t), v = v(y,t), p = p(x,y,t). From continuity equation
ug + vy = 0 we obtain the relations

’LL((E,y7t) = w(y7t)x+u1(y7t)7 U)(y,t) +/Uy(yvt) =0.
Navier—Stokes equations (0.1) are equivalent to the system

1 x?
wi + vwy, + w? = f(t) + vwy,, P Wy, t) — f(t) - — 9,

2
y
v = f/ w(z,t)dz, 1, =vvy, — vy — vy,
0

Uit + VULy + WU = VUyy-

(0.2)

In what follows we assume that uq(y,t) = 0.
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1. Flow in layer with two rigid walls

In this section the solution (0.2) under consideration shall be interpreted as 2D motion viscous
liquid fills the layer 0 < y < h with a rigid walls y = 0, y = h = const. Let us attach the initial
and boundary conditions

h
w(y,0) =wo(y), woe(0)=wo(h)=0, /0 wo(z) dz = 0; (L.1)

h
w(0,t) = w(h,t) =0, / w(z,t)dz = 0. (1.2)
0
Thus, the function w(y,t) is the solution of integro-differential equation
y
wy — wy/ w(z,t)dz + w? = vwy, + f(t) (1.3)
0

with initial and boundary conditions (1.1), (1.2).
Here and further suppose the Reynolds number Re = m[ax] lwo(y)|h?/v < 1. In such case
y€(0,1

we can neglect the nonlinear terms in equation (1.3) and the following initial boundary value
problem is arised

wy = vwy, + f(t), ye€(0,h), t>0; (1.4)
w(y,0) = wo(y); (1.5)
h
w(0,8) =0, w(h,t) =0, / w(y, £) dy = 0. (1.6)
0
Integrating equation (1.4) we obtain function f(t)
F(t) = 5 (w,(0.6) = wy (1)), £(0) = 3 (w0, (0) — woy (h)): (L.7)

Hence, we deduce the so-called loaded equation
Wy = vWyy + wy(1,1) — wy(0,1).

But we determine new function Wy, t) = w,(y,t). It satisfies the problem

Wy =vWyy, ye(0,1), t>0; (1.8)
W (y,0) = woy; (1.9)
/h yW(y,t) dy = 0; (1.10)
’ h
/0 W(y,t)dy = 0. (1.11)

This problem is not classical one for the heat equation (1.4).
The problem (1.8)—(1.11) has the exact solution

= AN2ut Me(2y — h
W(y,t) —Zakexp<— thV )sin[ k( g}i )}
k=1

where )\ is kth positive root of the equation

tg A = Ay A — 2k +1D)7/2, k — oo
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A constants a;, are the Fourier series coefficients of known function wg,, i.e.

Woy = Z ag sin [W} .
k=1

Hence, from (1.7)

14 >0 21/
F(t) = LW (0,8) — W(h, 1)) = —% S arexp (- N t) Sin Ay, =
k=1

h2

SN

402 1/t>

QI/i >\k e <
=—— ap———= €X - — 5
O = A

Functions w(y,t) and velocity component v(y,t) can be found by the formulae

- 477 2y —
w(y,t) = g Z% exp (— );l’;wg){cos)\k—cos [W}},

h o= ay, ANVt [ h [ . A2y —h) , ‘
v(y,t)QZexp< 2 ){2)% [s1n<h +sin | —ycosAg ;.

2. Flow in layer with one rigid wall and free boundary

In the same assumptions like section 1 the function w(y,t) is governed by the equation (1.4).
The initial data and boundary conditions are (1.5), (1.6), but it is necessary to change second
condition in (1.6) on wy(h,t) = 0. For the function f(t) one obtains

F(t) = 5w, (0,2). (2.1)

As concerning function W(y,t) = w,(y,t) it satisfies the equation (1.8) with initial data (1.9)
and boundary conditions

h
W(h,t) =0, /0 (h —y)W(y,t)dy = 0.

Using separation of variables technique the problem can be solved to obtain W:

2 o, (1+X2) vt . [A(h—vy)
W(y,t):E’;ka exp | — =5 | sin 3 .

Therefore

> 1 2 2 _
w(y,t) = QkZ_lbk(—;;k) exp (— )\Z;t){cos [)\k(hhy)] —cos)\k},

and from (2.1), (0.2) we get

W \/1+)\i )\iut
f(t)—m;bk)\kexp(— )7

h2
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> 1 2 2 _
v(y,t) = 2;%(—;;"’) exp (— )\]’;Zt>{ycos)\k + )% {sin (W) +sin/\k] }

A constants by, are the Fourier series coefficients of function wy,, i.e.
2 i (1 + A2) . [A(h—vy)
- sin .
o=, k_ Ak

3. Layered motion of two immiscible fluids

Let us consider a system of two immiscible fluids separated by the interface y = hy. The
parameters of the fluid moving in the band 0 < y < h;, € R are indicated by the subscript
"1", and the parameters of the fluid moving in the band h; < y < h, x € R are indicated by the
subscript "2". In the plane motion considered here, the functions w;(y,t) and f;(t), j = 1,2, are
the solutions of the equations

Wit = VjWiyy + fj (t), (31)

related by the conditions on the interface [3]

h1
/ wi(z,t)dz = 0; (3.2)
0

wy(hi,t) = wa(hy,t), prwiy(hy,t) — powsy (h,t) = 0; (3.3)

the no-slip conditions on the solid boundaries of the flow domain

w1(0,¢) =0, wa(h,t) =0; (3.4)

h
/ wa(z,t)dz =0, (3.5)
h

1

and initial data
w1 (y,0) = wio(y), 0<y<hy,

wa(y,0) = wao(y), h1 <y<h.

Remark 1. The initial value problem (3.1)—(3.5) has not a solution expanded into a Fourier
series.

A priori estimates. Using equalities (3.2), (3.4) and integrating equation (3.1) we obtain
the relations

(3.6)

v v
1) = 25 fwiy (0,8) —wiy (b, D], f1(0) = 3 [wi0y (0) — wioy(h)),
1V2 ! " (3.7)
fo(t) = 7—— [way(h,t) —way(h,t)],  f2(0) = -—— [waoy (h1) — waoy(h)].
h — hl h— hl
There exists the energetic identity for the problem (3.1)—(3.5)
ha h
9 2 2
at ( ) + H1 wly dy + H2 N w2y dy = 07 (38)
where
1 Mo 1 e
E(t) = 5P wy dy + 5P| w2 dy. (3.9)
0 h1
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Lemma 1. The following inequality holds

Ry h ha h
/ wfdy+/ wgdy<M<u1/wfydy+uz/ wgydy)
0 h1 hl
0

where M is the solution of the variational problem

hy h
/ v dy +/ v3 dy
M = Supv ?ll & h
v1,v2€
e m/ vfyderug/ v3, dy
0 h1

Here V.C W4(0,h1) x W3 (hy,h) and conditions (3.3), (3.4) for vy, vy are satisfied.
The proof is given in [4]. Due to this lemma we get M = (h — hy)?/u123, where z is the
minimal positive root of the equation

sin(a;2) cos(azz) + as sin(asz) cos(az) = 0.

Here a; = hy/(h — h1), az = (u1/p2)"/?. From (3.8), (3.9) we get inequality

E 1 1 1
8—+25E<07 (5:min(,),

ot M P P2
hence
E(t) < BE(0)e 2, (3.10)
. 1 i 2 1 " 2
with E(0) = 5[’1/ wig(y) dy + §P2/h wag(y) dy.
0 1

Moreovere, there is another identity for the problem (3.1)—(3.6)

h1 h 1 a hq h
pl/ widyﬂ)z/ whydy + 5= ul/ wfydy+u2/ wh, dy | =0
0 hy 20t 0 hy

and then following estimates hold

h1 W h W
/ wfydy <2, / wgydyg -9 (3.11)
0 k1 h1 H2

where

h1 h
Wy = m/ wiy dy + uz/ w3 dy.
0 h

1

From (3.4), (3.10), (3.11) we have the estimates

SE(0)Wo ) /*

sl < (BEEE) e (3.12)
Vj

Therefore, the motion of fluids are slowed down by the viscous friction according to inequali-

ties (3.12).

Now, let us go over to estimate the function f;(t) defined by (3.7). Firstly, the new unknowns
V;(y,t) = w;t(y, t) are satisfies the problem (3.1)—(3.6) with f;; instead of f;(¢) and initial data
at t = 0 equal to

v
Vio(y) = viwioyy (y) + h% [w10y(0) — wioy(h1)],
Vo

s w20y () = waoy ().

Vao(y) = vawaoyy (y)
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Hence, we get estimates like (3.12)

SEL(0)yW\ /4
h%%Mé(()°> o2, (3.13)
Vi
here
1 b, 1 b,
lfm>:fp3/ vm@ww+—p2/ V2,() dy,
2 0 2 ha
hy h
Wo =pm [ Vio,(w)dy+ pe : Vo, (y) dy.
0 1

If we multiply equation (3.1) by y(h1 —y) (j = 1) or (y — h1)(h —y) (j = 2) and integrate,
then we obtain equalities

h3 h1
El fi(t) = / y(h1 — y)wie(y, ) dy — vihiwy(ha, t),
0

_ h
% fa(t) = / (y — h1)(h — y)wa(y,t) dy — va(h — hy)wa(h,t).
h1

Using inequalities (3.12), (3.13) we get estimates
£5(1)] < Cre®t2, (3.14)

with constants are .
SEY YWY 6y (SE0)W,
Cl =6( —— + ? - 5

1

%41 141
o _ g (SENOWS 1/ LG (BE(O)W, 14
2= Vo (h — h1)2 Vo ’

4. Solution in the Laplace representation

Let us apply the Laplace transform to problem (3.1)—(3.5)

@) = [ wlpte e (4.1
0
As a result, we obtain a boundary-value problem for the ODE:
} P filp)  wioly) .
I i S AS A =1.2: 4.2
w1(0,p) =0, wa(h,p) = 0; (4.3)
Wi (h1,p) = wa(h1,p), w1W1y(h1,p) — Hoay(hi,p) = 0;
i h
/ w1 (y,p)d =0, / W (y,p) dy =0 (4.5)
0 h1

with the exact solution

ﬁ)j(y,p):C’}sh (1/53/) +C]2Ch( fy)
j j




riant Solutions

a Viscous
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07 Y2 = h7

where 1

(4.7)

(4.6), (4.7) from (4.5), we get

unt formulae

Taking into acco

(4.8)

),

(G2a1 — Ghas

fa=

a2)a

(G1a4 — Gy

a104 — aga3

(o) () - B E)
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Simple, but cumbersome calculations with the use of asymptotic representations for functions
shz and chx show that

Jim w;(y,t) = limpd;(y,p) =0, lim f;(t) = lim pf(p) = 0.

Lust results obtained are good agrement with the a priori estimates (3.13) and (3.14).

Conclusions

The partly invariant solution of Navier—Stokes equations is investigated. This solution may
describes the plane unsteady motions of a viscous fluid in a strip with two rigid walls, the fluid
motion with one rigid wall and free boundary or the motion of a two immiscible fluids with
interface in a strip bounded rigid walls. The motion arised due to initial velocity field. It was
shown that this problem can be reduced for creeping motions to the linear initial boundary
inverse problem for parabolic equations. Two problem were solved by Fourier method. At that
time, the interface problem is solved by using some properties of the Laplace transformation.
For any cases the motions are retarded by viscous friction.
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YacTuyHO MHBaApUAHTHBIE pelieHusl ypaBHEHU
HaBbe—CTokca, onuchIBaoIie HEeCTAI[MOHAPHBIE
ABYMEpPHBbIE NBUXKEHNA BA3ZKOU >KNJIKOCTU

Bukrop K. Auapeen

Tpexrmepras HENPEPOIBHAA N00GAZEOPA UCTIONDIYEMCA OASL HATONCOEHUA HACTNUNHO UHBAPUAHIMHO20 De-
wenus ypasHenull 8A3K0U Hecorcumaemol srcudkocmu. Ono unmepnpemupyemcs Kax 0symeproe 06u-
orcenue 00Ol UAU 08YT HECMEWUBAOUWUTCA HCudKocmel 6 naockom Kanase. Boshuxarowas nauasvro-
Kpaesas 3adaua 0as Paxmop-cucmemos asasemcs obpamnot. Hecmayuonapras 3adaua s NOASYULUT
deusicenuli pewena Memodom paddeseHus NEPEMERHOT i 00H0T HCUIKOCTU U MEMOAOM NPeobpasosa-
nua Jlanaaca das deyx orcudxocmet.

Karouesvie c06a: 4acmusHo UHBAPUAHMHOE PEWEHUE, BA3ZKAA AHCUIKOCMD, 300046 CO c80000H0T 2paHuU-
uetl, n0BeEPTHOCTML Pasdenq.
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