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Using the multidimensional logarithmic residue we show a simple formula for the difference between the

number of integer points in a bounded domain of R
n and the volume of this domain. The difference

proves to be the integral of an explicit differential form over the boundary of the domain.
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Introduction

Classical function theory is of great importance in number theory, let alone the analytical
extension of the Riemann zeta function and prime number theorem, see [6, 8, 9], etc.

This work was intended as an attempt at applying the theory of functions of several com-
plex variables to classical problems of number theory. To wit, we apply the multidimensional
logarithmic residue which is an efficient numerical tool of algebraic geometry, see [1].

Let Z be a bounded domain with piecewise smooth boundary in the space C
n of n complex

variables z = (z1, . . . , zn). Consider a holomorphic mapping w = f(z) of the closed domain Z̄
into C

n which has no zeros at the boundary of Z. Then f has only isolated zeros in Z and the
number of zeros counted with their multiplicity is given by the logarithmic residue formula

N(f,Z) =

∫

∂Z

(n − 1)!

(2πı)n

n
∑

j=1

(−1)j−1 f̄j

|f |2n
df̄ [j] ∧ df (1)

(see [1, § 2]), where |f |2 = |f1|2+. . .+|fn|2, fj being the j th component of f , by df = df1∧. . .∧dfn

is meant the exterior product of the differentials df1, . . . , dfn, and df̄ [j] stands for the exterior
product of the differentials df̄1, . . . , df̄n after each other, the differential df̄j being omitted. The
domain Z is oriented in such a way that

∫

Z

1

(2ı)n
dz̄ ∧ dz > 0.

We apply formula (1) to get an equality for the difference between the number of lattice points
in the domain Z and its volume. A number of classical problems of number theory, e.g. the

∗aizenbrg@gmail.com
†tarkhanov@math.uni-potsdam.de

c© Siberian Federal University. All rights reserved

– 134 –



Lev Aizenberg, Nikolai Tarkhanov An Integral Formula for the Number of Lattice Points in a Domain

problem on the number of lattice points in a ball [10], the problems on Dirichlet divisors [4], etc.
reduce to evaluating asymptotics of the difference. It is worth pointing out that this asymptotics
can not be found by standard methods, such as the Laplace method, stationary phase method,
or saddle point method.

The theory of lattice points in large regions has attracted the interest of many mathematicians
for more than eleven decades. The monograph [5] presents a broad survey of the main problems
and results in lattice point theory.

1. The integral formula

As usual, we write R
n, n > 1, for the n -dimensional real Euclidean space of variables x =

(x1, . . . , xn) with xj ∈ R. Suppose X is a bounded domain in R
n whose boundary is piecewise

smooth and does not contain any point with integer coordinates. Denote by N(X ) the number
of integer points in X and by V (X ) its volume.

Theorem 1. If the boundary ∂X does not contain lattice points then the difference N(X )−V (X )
can be written in the form

N(X ) − V (X ) =

∫

∞

0

. . .

∫

∞

0

dt

∫

∂X

2n−2(n − 1)!

π

n
∑

j=1

t[j] sin(2πxj)νj

(

n
∑

j=1

(t2j − 2tj cos(2πxj)) + n
)n

ds, (2)

where dt = dt1 ∧ . . . ∧ dtn, t[j] = t1 . . . tj−1tj+1 . . . tn, ds is the surface measure of ∂X and
ν(x) = (ν1(x), . . . , νn(x)) is the unit outward normal vector of the boundary at x ∈ ∂X .

Proof. Consider the domain Z = X × Y in C
n, where Y is a bounded domain with piecewise

smooth boundary in the space R
n of variables y = (y1, . . . , yn). We assume that 0 ∈ Y. The

points z = (z1, . . . , zn) of Z have the form zj = xj + ıyj , for j = 1, . . . , n. As holomorphic
mapping f : Z → C

n vanishing solely at the entire points of X × {0}, we take

f1(z) = e2πız1 − 1,
. . .

fn(z) = e2πızn − 1,

each zero being simple.
By formula (1), we get

N(f,Z) =

∫

∂Z

(n − 1)!

(2πı)n

n
∑

j=1

(−1)j−1(e−2πız̄j − 1)de−2πız̄[j] ∧ de2πız

(

|e2πız1 − 1|2 + . . . + |e2πızn − 1|2
)n ,

where
de−2πız̄[j] = de−2πız̄1 ∧ . . . ∧ de−2πız̄j−1 ∧ de−2πız̄j+1 ∧ . . . ∧ de−2πız̄n ,

de2πız = de2πız1 ∧ . . . ∧ de2πızn .

The right-hand side is easily reduced to

∫

∂Z

(−2πı)n−1(n−1)!

n
∑

j=1

(−1)j−1

(

e
−2πı

n
∑

k=1

z̄k − e
−2πı

∑

k 6=j

z̄k
)

e
2πı

n
∑

k=1

zk

dz̄[j] ∧ dz

(

|e2πız1 − 1|2 + . . . + |e2πızn − 1|2
)n . (3)
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A trivial verification shows that

dz̄[j] ∧ dz = (2ı)n−1
(

(−1)n−1dx ∧ dy[j] + ıdx[j] ∧ dy
)

(4)

for all j = 1, . . . , n. Using (4) one separates the real and imaginary parts of (3), these are

∫

∂Z

(4π)n−1(n−1)!

n
∑

j=1

(−1)n+j
(

e
−4π

n
∑

k=1

yk − e
−4π

∑

k 6=j

yk−2πyj

cos(2πxj)
)

dx ∧ dy[j]

(

|e2πız1 − 1|2 + . . . + |e2πızn − 1|2
)n +

+

∫

∂Z

(4π)n−1(n−1)!

n
∑

j=1

(−1)j−1e
−4π

∑

k 6=j

yk−2πyj

sin(2πxj)dx[j] ∧ dy

(

|e2πız1 − 1|2 + . . . + |e2πızn − 1|2
)n

(5)

and

∫

∂Z

(4π)n−1(n−1)!

n
∑

j=1

(−1)j−1

(

e
−4π

n
∑

k=1

yk − e
−4π

∑

k 6=j

yk−2πyj

cos(2πxj)
)

dx[j] ∧ dy

(

|e2πız1 − 1|2 + . . . + |e2πızn − 1|2
)n +

+

∫

∂Z

(4π)n−1(n−1)!

n
∑

j=1

(−1)n+j−1e
−4π

∑

k 6=j

yk−2πyj

sin(2πxj)dx ∧ dy[j]

(

|e2πız1 − 1|2 + . . . + |e2πızn − 1|2
)n ,

respectively.
The number N(f,Z) is real, hence it suffices to consider the mere real part (5) of formula (1).

Moreover, we make the change of variables

t1 = e−2πy1 ,
. . .

tn = e−2πyn ,

obtaining

N(f,Z) =

∫

∂Z′

2n−1(n−1)!

n
∑

j=1

(−1)j−1 t1 . . . tn (tj − cos(2πxj))dt[j] ∧ dx

(

n
∑

j=1

(t2j − 2tj cos(2πxj)) + n
)n

+

+

∫

∂Z′

2n−2(n−1)!

π

n
∑

j=1

(−1)n+j−1t[j] sin(2πxj)dt ∧ dx[j]

(

n
∑

j=1

(t2j − 2tj cos(2πxj)) + n
)n

= I1 + I2,

(6)

where Z ′ is the image of the domain Z under the change of variables tj = e−2πyj , for j = 1, . . . , n.
This change involves the mere variables y whence Z ′ = X × T , where T is the image of Y

by tj = e−2πyj with j = 1, . . . , n. Since Y contains the origin, the n -tuple with coordinates 1
belongs to T . We now give the domain T the following concrete form

T = {t ∈ R
n : r2 < |t|2 < R2} ∩ {t ∈ R

n : t1, . . . , tn > ε},
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where r <
√

n, R >
√

n and ε > 0 is small enough. The boundary ∂T consists of a piece Sr of
the (n − 1) -dimensional sphere {t ∈ R

n : |t| = r}, a piece SR of the (n − 1) -dimensional sphere
{t ∈ R

n : |t| = R}, and pieces Hj of hypersurfaces tj = ε parallel to the coordinates hyperplanes
tj = 0. According to this structure of the boundary of T we represent the integral I1 as the sum
of integrals I1,Sr

, I1,SR
and I1,Hj

with j = 1, . . . , n.
Let the piece H1 tend to the hyperplane {t1 = 0}. At this hyperplane we obviously get

n
∑

j=1

(t2j − 2tj cos(2πxj)) + n =

n
∑

j=2

(tj − cos(2πxj))
2 + sin2(2πxj) + 1 > 1.

Therefore, the integral I1,H1
tends to zero as H1 tends to the hyperplane {t1 = 0}. Analogously,

I1,Hj
tends to zero as Hj tends to the hyperplane {tj = 0}, for each j = 2, . . . , n.

It remains to consider the limits of the integrals I1,Sr
and I1,SR

, when r → 0 and R → ∞. Let
S

n−1

>0
be the part of the unit sphere with centre at the origin which lies in the cube 0 6 tj 6 1,

j = 1, . . . , n. We endow S
n−1

>0
with the usual orientation, then Sr = −r S

n−1

>0
and SR = R S

n−1

>0
.

(When we tended Hj to the hyperplane {tj = 0} for all j = 1, . . . , n, then Sr and SR became
one 2n -th spheres.) Hence it follows readily that

I1,Sr
= −

∫

X

dx

∫

S
n−1

>0

2n−1(n−1)!

n
∑

j=1

(−1)j−1 r2n−1t1 . . . tn (rtj − cos(2πxj))dt[j]

(

r2 − 2

n
∑

j=1

rtj cos(2πxj) + n
)n

→ 0

as r → 0.
On the other hand, we get

I1,Sr
=

∫

X

dx

∫

S
n−1

>0

2n−1(n−1)!

n
∑

j=1

(−1)j−1 R2n−1t1 . . . tn (Rtj − cos(2πxj))dt[j]

(

R2 − 2
n

∑

j=1

Rtj cos(2πxj) + n
)n

→

→
∫

X

dx

∫

S
n−1

>0

2n−1(n−1)!

n
∑

j=1

(−1)j−1 t1 . . . tn tjdt[j],

as R → ∞. The last integral just amounts to V (X ), for

∫

S
n−1

>0

2n−1(n−1)!

n
∑

j=1

(−1)j−1 t1 . . . tn tjdt[j] =

∫

S
n−1

>0

2n−1(n−1)! t1 . . . tn ds = 1.

Thus, if the domain T expands to the nonnegative one 2n -th space as above, the integral I1

tends to V (X ). And the integral I2 converges to the integral on the right-hand side of formula (2),
for ∂Z ′ = (∂X × T ) ∪ (X × ∂T and (−1)j−1dx[j] = νjds for all j = 1, . . . , n, as desired.

For the most practical cases n = 2 and n = 3 Theorem 1 was first proved in [2].

2. The one-dimensional case

In this section we clarify the structure of formula (2) by directly computing the integral on
the right-hand side of this formula in the case n = 1. Let X = (a, b), where m < a < m + 1 and
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M < b < M + 1, m and M being integer numbers satisfying m < M . Then

I =

∫

∞

0

dt

∫

∂X

1

2π

sin 2πx

(t − cos 2πx)2 + (sin 2πx)2
=

=

∫

∞

0

1

2π

( sin 2πb

(t − cos 2πb)2 + (sin 2πb)2
− sin 2πa

(t − cos 2πa)2 + (sin 2πa)2

)

dt.

Substituting s = t−cos 2πb and s = t−cos 2πa into the first and second terms on the right-hand
side, respectively, we get

I =

∫

∞

− cos 2πb

1

2π

sin 2πb

s2 + (sin 2πb)2
ds −

∫

∞

− cos 2πa

1

2π

sin 2πa

s2 + (sin 2πa)2
ds =

=
1

2π
arctan

s

sin 2πb
↾∞
− cos 2πb −

1

2π
arctan

s

sin 2πa
↾∞
− cos 2πa .

To be specific, we consider the case

m + 1/2 < a < m + 1,
M < b < M + 1/2,

then sin 2πa < 0 and sin 2πb > 0. Hence it follows that

I =
1

2π

(π

2
− arctan

(

− cos 2πb

sin 2πb

)

−
(

− π

2

)

+ arctan
(

− cos 2πa

sin 2πa

))

=

=
1

2π
(π + arctan cot 2πb − arctan cot 2πa).

Finally, on using the equality arctan x = π/2 − arccot x we deduce

I =
1

2π
(π − arctan cot(2πb − 2πM) + arctan cot(2πa − 2π(m + 1/2)) = (M − m) − (b − a),

which just amounts to N(X ) − V (X ), as desired.

3. Some comments

It is easy to see that the integrations over t ∈ [0,∞)n and x ∈ ∂X in formula (2) can be
exchanged. In this way we get

N(X ) − V (X ) =

∫

∂X

n
∑

j=1

(−1)j−1Fj(x) sin 2πxj dx[j], (7)

where

Fj(x) =
2n−2(n − 1)!

π

∫

∞

0

. . .

∫

∞

0

t[j]
(

n
∑

k=1

(tk − cos 2πxk)2 +

n
∑

k=1

(sin 2πxk)2
)n

dt

are functions of cos 2πxj and sin 2πxj , for j = 1, . . . , n. The differential form under the integral
over ∂X on the right-hand side of (7) is smooth away from the lattice of half-integer points in R

n.
As is seen from Section 2, the differential form is not closed outside this lattice. The coefficients
Fj bear certain symmetry in variables x1, . . . , xn, perhaps, it suffices to compute only one of
these coefficients in order to determine the others. Moreover, Fj can be computed in a closed
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form, however, the expressions are cumbersome, cf. formula (3) in [3]. It is possible that formula
(7) can be applied to construct asymptotics of the difference N(X )−V (X ) as R → ∞, where X
is the ball of radius R with centre at 0 or, more generally, an ellipsoid

(x1

a1

)2

+ . . . +
(xn

an

)2

< R2

or another expanding domain, cf. [5, 7]. But we will not develop this point here.

This research was supported by the German Research Society (DFG), grant TA 289/4-2. The
first author wishes to express his gratitude to Professor Sinai Robins who payed attention to the
paper [2], invited the author to attend Singapore for two weeks and thus recommenced his interest
to the topic.
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Интегральная формула для числа целых точек в области

Лев Айзенберг

Николай Тарханов

Используя формулу многомерного логарифмического вычета, мы даем простую формулу для раз-

ности между числом целых точек в ограниченной области из R
n и объемом этой области. Эта

разность дается интегралом от дифференциальной формы, задаваемой точным выражением, по

границе этой области.

Ключевые слова: логарифмический вычет, целая точка.
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