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Using the multidimensional logarithmic residue we show a simple formula for the difference between the
number of integer points in a bounded domain of R"™ and the volume of this domain. The difference
proves to be the integral of an explicit differential form over the boundary of the domain.
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Introduction

Classical function theory is of great importance in number theory, let alone the analytical
extension of the Riemann zeta function and prime number theorem, see [6,8,9], etc.

This work was intended as an attempt at applying the theory of functions of several com-
plex variables to classical problems of number theory. To wit, we apply the multidimensional
logarithmic residue which is an efficient numerical tool of algebraic geometry, see [1].

Let Z be a bounded domain with piecewise smooth boundary in the space C™ of n complex
variables z = (21,...,2,). Consider a holomorphic mapping w = f(z) of the closed domain Z
into C™ which has no zeros at the boundary of Z. Then f has only isolated zeros in Z and the
number of zeros counted with their multiplicity is given by the logarithmic residue formula

Nz = [ DS S )

0z Cm) 2 T

(see [1, § 2]), where |f|*> = | f1|?+. . .4|fa|?, f; being the j th component of f, by df = df1A...Adfn
is meant the exterior product of the differentials dfi,...,df,, and df[j] stands for the exterior
product of the differentials dfi, ..., df, after each other, the differential d fj being omitted. The
domain Z is oriented in such a way that

1
——dz Adz > 0.
/z (20)"

We apply formula (1) to get an equality for the difference between the number of lattice points
in the domain Z and its volume. A number of classical problems of number theory, e.g. the
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problem on the number of lattice points in a ball [10], the problems on Dirichlet divisors [4], etc.
reduce to evaluating asymptotics of the difference. It is worth pointing out that this asymptotics
can not be found by standard methods, such as the Laplace method, stationary phase method,
or saddle point method.

The theory of lattice points in large regions has attracted the interest of many mathematicians
for more than eleven decades. The monograph [5] presents a broad survey of the main problems
and results in lattice point theory.

1. The integral formula

As usual, we write R™, n > 1, for the n-dimensional real Euclidean space of variables x =
(x1,...,2,) with z; € R. Suppose & is a bounded domain in R" whose boundary is piecewise
smooth and does not contain any point with integer coordinates. Denote by N(X) the number
of integer points in X and by V(&X) its volume.

Theorem 1. If the boundary 0X does not contain lattice points then the difference N(X)—V(X)
can be written in the form

o 2 o Zt[j] sin(27x;)v;
N(X)—V(X):/O /0 dt/aX (n = 1)! _ = ds, (2)

" ( : (t? — 2t cos(2mz;)) + n)n

Jj=1

where dt = dty A ... Ndty, t[j] = t1...tj_1tj11.. .1y, ds is the surface measure of OX and
v(z) = (v (x),...,vn(x)) is the unit outward normal vector of the boundary at x € OX.

Proof. Consider the domain Z = & x Y in C”, where ) is a bounded domain with piecewise
smooth boundary in the space R™ of variables y = (y1,...,¥yn). We assume that 0 € ). The
points z = (21,...,2,) of Z have the form z; = x; + w;, for j = 1,...,n. As holomorphic
mapping f : Z — C™ vanishing solely at the entire points of X x {0}, we take

he) = emno,

fn(z) — eZTrzzn _ 1)

each zero being simple.
By formula (1), we get

( 1)' Z(—l)j71(€727”2j _ 1)d6727m£[j] A de2™
n— =1

N(f,Z :/ 7
(f ) YA (271’2)" (|€2mzl _1|2+_“_’_|62mzn _1|2)

where ~ ~ ~ ~ ~
de=2m% /] = de 25 A L Nde T A deT 2T A LA de 2T

de?™* = de2™A N LA den

The right-hand side is easily reduced to

n . —2m i Z —2m ) Z 27 zn: z
Z(_l)rl(e = k)e =1 dzlj] Adz

/ (—2m)" (n—1)1 =L
0Z

(|627rzz1 _ 1|2 L.+ |€2‘n’zzn _ 1‘2>”
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A trivial verification shows that
dz[j] Adz = (20)" 71 ((=1)"'dx A dylj] + wdz[5] A dy) (4)
for all j =1,...,n. Using (4) one separates the real and imaginary parts of (3), these are

n ,odn Y —A4m 3 yr—2my;
Z(fl)"“ (e A cos(27rxj)>dz A dylj]

/ (4m)"H (n—1)1 = . +
82 (|€27”21 _1|2+.“_|_|€27r1zn _1|2>

5
—A4rm Y yr—27y; ( )

Z(—l)j_le K7 sin(2mx;)dx[j] A dy

(|e27mz1 . 1|2 o+ ‘627mz” N 1|2>"

and
n ) —4r f . —4m 3 yp—2my;
Z(fl)]*l (e &t g cos(27r:cj))dx[ ] A dy
4m)Y(n—1)1 =L
/82( 7T) (Tl ) 2mizy 2 2120 2 " +
e 1°+...+ e 1|
n . AT Y yk—2my;
Z(—l)”ﬂ_le kA7 ’ sin(27x;)dx A dylj]
j=1
+ / (4m)" "t (n—1)! 2 - :
92 (|e27mz1 71|2+.”+|627rzzn 71|2>
respectively.

The number N(f, Z) is real, hence it suffices to consider the mere real part (5) of formula (1).
Moreover, we make the change of variables

t1 = 6727@1,
tn .:. e—27ryn,
obtaining
Z(—l)j_l t1...ty (t; — cos(2mx;))dt[j] A dx
N(f,2) = / Lo T +
0% (Z (3 — 2t cos(2mx;)) + n)
j=1
n (6)
Z(—l)""‘j_lt[j] sin(2mz;)dt A dz[j]
2n2(n—1)! j=1
L+ / (n=1)! _ 4T
o0z’ ™ 9 n
(Z(tj — 2t; cos(2mx;)) + n)
j=1
where Z’ is the image of the domain Z under the change of variables t; = e ™2™ for j = 1,...,n.
This change involves the mere variables y whence Z/ = X x 7, where 7 is the image of )
by t; = e~ 2™ with j = 1,...,n. Since ) contains the origin, the n-tuple with coordinates 1

belongs to 7. We now give the domain 7 the following concrete form

T={teR": P <|tP<R*}N{teR":ty,...,t, >¢},
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where r < \/n, R > +/n and € > 0 is small enough. The boundary 97 consists of a piece S, of
the (n — 1)-dimensional sphere {t € R™ : |t| = r}, a piece Sg of the (n — 1)-dimensional sphere
{t € R™ : |[t| = R}, and pieces H; of hypersurfaces ¢; = € parallel to the coordinates hyperplanes
t; = 0. According to this structure of the boundary of 7 we represent the integral I; as the sum
of integrals I g, I s, and Iy JH; with 7 =1,...,n.

Let the piece H; tend to the hyperplane {t1 = 0}. At this hyperplane we obviously get

Z (t3 — 2t; cos(27x;)) +n = Z(tj — cos(27x;))? + sin®(2mz;) + 1 > 1.

Jj=2

Therefore, the integral I; g, tends to zero as Hy tends to the hyperplane {¢; = 0}. Analogously,
I, p; tends to zero as H; tends to the hyperplane {t; = 0}, for each j =2,...,n

It remains to consider the limits of the integrals I1 s, and I; s, when r — 0 and R — oo. Let
S’;gl be the part of the unit sphere with centre at the origin which lies in the cube 0 < ¢; < 1,
j=1,...,n. We endow SZO with the usual orientation, then S, = — S’;O and Sp = S’;Ol.
(When we tended H; to the hyperplane {t; =0} forall j =1,...,n, then S, and Sk became
one 2" -th spheres.) Hence it follows readily that

Z Y TEe2n Ty oty (rty — cos(2mx;))dt (4]

/ dx/ 2" n—1)1 = — —0
s%, ! 9 n
(r - QZrtj cos(2mz;) + n)

=1

asr — 0.
On the other hand, we get

n

D (1Y RT My Lty (Rt — cos(2ma;) )t j]

/ dm/ 2" (n—1)! =1 — —
n—1 n
v 520 <R2 -2 Z Rt; cos(2ma;) + n)

j=1
- /dm/ 2" (=11 (=1t ],
X szt =1

as R — oo. The last integral just amounts to V(X), for

n
/ 2" n—1)! Y (1)t tydt]f] = / 2" (n—1)ty .. . t,ds = 1.
Snfl - Sn—l
>0 j=1 >0

Thus, if the domain 7 expands to the nonnegative one 2" -th space as above, the integral Iy
tends to V(X'). And the integral I converges to the integral on the right-hand side of formula (2),
for 02" = (0X x T) U (X x 0T and (—1)7"'dz[j] = vjds for all j = 1,...,n, as desired. O

For the most practical cases n = 2 and n = 3 Theorem 1 was first proved in [2].

2. The one-dimensional case

In this section we clarify the structure of formula (2) by directly computing the integral on
the right-hand side of this formula in the case n = 1. Let X = (a,b), where m < a < m+ 1 and
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M <b< M+ 1, mand M being integer numbers satisfying m < M. Then

I = /oo dt/ 1 sin 27z B
) ox 27 (t — cos 2mx)2 4 (sin 2mx)2
<1

B / 7( sin 27b _ sin 2ma )dt
Jo 2w \(t —cos2mb)2 + (sin27b)2  (t — cos2ma)? + (sin27ma)?/

Substituting s = t —cos 2wb and s = t — cos 2wa into the first and second terms on the right-hand
side, respectively, we get

> 1 sin 27b ° 1 sin 2wa
= 2% o (smorpE T 27 1 (smomar =
~ cosomp 27 82 + (sin 27h) — cos2ma 27 82 + (sin27a)
1 o0 o0
T or arctan sin 27h [ cos 2t Com arctan sin 2ma [ cos2ma
To be specific, we consider the case
m+1/2 < a < m+1,
M < b < M+1/2,
then sin 2ma < 0 and sin27b > 0. Hence it follows that
7 1 (7r ; ( cos27rb) ( 7r)+ ; ( COSQTF(L))
= —(—= —arctan | — - == arctan ( — =
2w\ 2 sin 27b 2 sin 27a

1
= 2—(7r + arctan cot 2b — arctan cot 27a).
™
Finally, on using the equality arctanz = 7/2 — arccot  we deduce

1
I= 2—(7r — arctan cot(2wb — 2w M) + arctan cot(2ma — 2n(m + 1/2)) = (M —m) — (b — a),
71'

which just amounts to N(X) — V(X), as desired.

3. Some comments

It is easy to see that the integrations over ¢ € [0,00)" and z € JX in formula (2) can be
exchanged. In this way we get

n
N(X) -V(X) = / > (1) Fy(x) sin 27z dac[f], (7)
ox =
where
M=2(p — 1)l [ [ t[j
Fj(g:):%/ / _ bl — dt
0 0 (Z(tk — cos 2mxy)? + Z(Sin 27Tl'k,)2)

k=1 k=1

are functions of cos2mx; and sin2nz;, for j = 1,...,n. The differential form under the integral

over X on the right-hand side of (7) is smooth away from the lattice of half-integer points in R™.
As is seen from Section 2, the differential form is not closed outside this lattice. The coefficients
F}; bear certain symmetry in variables z1,...,,, perhaps, it suffices to compute only one of
these coefficients in order to determine the others. Moreover, F; can be computed in a closed
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form, however, the expressions are cumbersome, cf. formula (3) in [3]. It is possible that formula
(7) can be applied to construct asymptotics of the difference N(X) — V(X) as R — oo, where X
is the ball of radius R with centre at 0 or, more generally, an ellipsoid

2 2
(ﬂ> +...+ (@) <R?
a1 QAp

or another expanding domain, cf. [5,7]. But we will not develop this point here.
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NuTterpasbHas dpopMysaa s duUcia IeJbIX TOYeK B 00JIacTu

JleB Aiizenbepr
Hwukounait TapxaHnoB

HUcnoavays Gopmysy mMHO20MEPHO20 A02APUPMUMECKO20 BBIMEMA, Mbl 0GEM NPOCTNYIO POPMYAY OAA PAS3-
HOCTMU MENHCOY YUCAOM UEABIT ToveK 6 oeparuderHnol obracmu ud R™ u obsemom smoti obaacmu. Oma
PasHoOCMB Aaemcs UHMEPatom om uPPepenHuuasvrot Gopmoi, 3a0a8aeMOT MOYHHIM BVIPAHCEHUEM, TLO
eparuye amotl obaacmu.

Karoueswie caosa: JlOZ(IpU(ﬁMU"LEC?CUﬂ GbLHEM, UENAA TMOYKA.
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