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Introduction

In this paper we investigate the limit properties of a class of empirical processes of inde-

pendence indexed on a set of measurable functions. The necessity of considering such processes

stems from practical situations where we are interested in joint properties of pairs consisting of

random variables (r.v.-s) and events.

Let us consider the following sequence of experiments in which observed pairs are consisted

of {(Xk, Ak) , k > 1}, where Xk are random elements defined on a probability space (Ω, A,P)

with values in a measurable space (X,B). Events Ak have a common probability p ∈ (0, 1). Let

δk = I (Ak) be the indicator of the event Ak. At the n − th step of experiment is observed the

sample S(n) = {(Xk, δk) , 1 6 k 6 n}. Each pair in the sample S(n) induces a statistical model

with the sample space X⊗{0, 1}, sigma-algebra of sets of the form B×D and induces distribution

Q∗ (B ×D) = P (Xk ∈ B, δk ∈ D), where B ∈ B, D ⊂ {0, 1}. Let us define submeasures

Q1 (B) = = Q∗ (B × {1}), Q0 (B) = Q∗ (B × {0}) and Q (B) = Q∗ (B × {0, 1}) = Q0 (B) +

Q1 (B), B ∈ B. We also consider the hypothesis H of independence Xk and Ak for each

k > 1 . The validity of H can be tested by using the equations Q1 (B) = pQ (B) or Q0 (B) =

(1 − p) Q (B) for any B ∈ B. We define the measures Λ (B) = Q1 (B)−pQ (B) , B ∈ B. Thus,

under the hypothesis H : Λ(B) = 0, for any B ∈ B. Let us define the empirical measures for all

B ∈ B:

Q1n (B) =
1

n

n
∑

k=1

δkI (Xk ∈ B) ,

Q0n (B) =
1

n

n
∑

k=1

(1 − δk)I (Xk ∈ B) ,

Qn (B) =
1

n

n
∑

k=1

I (Xk ∈ B) = Q0n (B) + Q1n (B) .
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These measures are empirical estimates for Q1, Q0 and Q respectively. Since p = Q1 (X) then

estimate for p is pn = Q1n (X) =
1

n

n
∑

k=1

δk. According to the strong law of large numbers (SLLN)

for a fixed B when n → ∞, Qjn (B)
a.s.→ Qj (B), j = 0, 1 and consequently, Qn (B)

a.s.→ Q (B)

and pn
a.s.→ p. Thus, for each B ∈ B at n → ∞, Λn (B) = Q1n (B) − pnQn (B)

a.s.→ Λ (B) and

under validity of H, Λn (B)
a.s.→ 0. Thus we are naturally led to the study of limit properties of

processes of independence {Λn (B) − Λ (B)} for a certain class G sets of B. In this paper we

consider general classes of specially normalized empirical processes of independence indexed by

a class of measurable functions.

1. Empirical processes of independence

Suppose that F be a set of measurable functions f : X → R. For the signed measure G and

function f ∈ F we define the integral

Gf =

∫

X

f dG.

Let us define F is indexed empirical process Gn : F ∈ R as:

f 7→ Gnf =
√
n (Qn − Q) f = n−

1/2

n
∑

k=1

(f (Xk) − Qf), f ∈ F .

Note that Gnf = G0nf + G1nf , where {Gjnf =
√
n (Qjn − Qj) f, j = 0, 1, f ∈ F} is

subempirical processes. According to the SLLN and the central limit theorem (CLT) and under

conditions Q |f | <∞, Qf2 <∞ for the given function f we have

Qnf
a.s→ Qf, Gnf ⇒ N

(

0,Q(f − Qf)
2
)

. (1)

Uniformly variants for f ∈ F in statements (1) have well-developed theory. The generalized

analogues of classical Glivenko-Cantelli theorem and Donsker’s theorem for F-indexed empirical

processes can be found in [1–7]. One should mention the special case when F is the set of

indicators of a class G of sets B:

F = {I (B) : B ∈ G} . (2)

It is easy to see that in this case {Gnf = Gn (B) =
√
n(Qn(B) − Q(B)), B ∈ G} and this

process is called as G-indexed. An example of such process is the classical empirical process

obtained by X = Rm, G = {(−∞, x] : x ∈ Rm} , Q ((−∞, x]) = H (x) and Qn ((−∞, x]) =

Hn (x) as {Gn ((−∞, x]) =
√
n (Hn (x) −H (x)) , x ∈ Rm} .

Let us return to general F-indexed processes {Gnf, f ∈ F} and recall that there are var-

ious variants of the Glivenko-Cantelli theorem based on the theory of metric entropy un-

der certain conditions on the set of measurable functions F . These conditions ensure that

‖Gn‖F = sup {|Gnf | : f ∈ F} converges in probability to zero or it almost surely converges

to zero. Such classes F are called the weak or strong Glivenko-Cantelli classes, respectively.

Donsker-type theorems provide general conditions on F under which

Gnf ⇒ Gf in l∞(F), (3)

where l∞(F) is the space of all bounded functions f : X → R equipped with the supremum-norm

‖f‖
F

and ⇒ means the weak convergence (see [6], p. 81).
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Class F for which convergence (3) holds is called a Donsker class. Limiting field {Gf, f ∈ F}
called Q-Brownian bridge. It is a tight Borel measurable element of l∞(F) and it is a Gaussian

field with zero mean and covariance function

EGf1Gf2 = Q (f1 − Qf1) (f2 − Qf2) = Qf1f2 − Qf1Qf2. (4)

Q-Brownian bridge {Gf, f ∈F} can be represented in terms of Q-Brownian sheet {W (f) , f ∈F}
as

Gf
d
= W (f) − W (1) Qf, f ∈ F , (5)

where EW (f) = 0, EW (f1) EW (f2) = Qf1f2 and W (1) is the value of Q-Brownian sheet for

f ≡ 1.

In connection with the problem of testing the hypothesis H, we introduce F-processes

Λf = Q1f − pQf, Λnf = Q1nf − pnQnf, f ∈ F . (6)

Let us note that for the given function f , when n → ∞, Qj |f | < ∞, j = 0, 1, we have

Λnf
a.s.→ Λf in accordance with SLLN and under validity of H, Λf = 0. It is easy to see that for

the fixed f, variable
√
n (Λn − Λ) f is a linear functional of subempirical processes provided that

Qjf
2 < ∞, j = 0, 1, and it has the limit normal distribution with zero mean. In this paper we

propose and study the following F-indexed normalized process in order to test the hypothesis H:

∆nf =

∫

X

fd∆n =

(

n

pn (1 − pn)

)1/2

(Λn − Λ) f, f ∈ F . (7)

Process (7) has the important property: it converges to the same Q-Brownian bridge

{Gf , f ∈ F} under validity of H. Certain of the results presented in this paper can be found in

reports [8–11].

2. Asymptotical results

Let Lq(Q) be the space of functions f : X → R with the norm

‖f‖Q,q = (Q|f |q)
1/q =

{
∫

X

|f |qdQ
}

1/q

.

To prove the F-uniform variants of Glivenko-Cantelli theorem and Donsker’s theorem we

define the complexity or entropy of class F . To determine the entropy it is necessary to define

the concept of ε-brackets. The ε-bracket in Lq(Q) is a pair of functions ϕ,ψ ∈ Lq(Q) such that

Q (ϕ(X) 6 ψ(X)) = 1 and ‖ψ − ϕ‖Q,q 6 ε, i.e. Q(ψ−ϕ)q 6 εq. Function f ∈ F is in (or covered

by) bracket [ϕ,ψ], if Q (ϕ(X) 6 f(X) 6 ψ(X)) = 1. One should note that the functions ϕ and ψ

may not belong to the class F , but they must have finite norms. Bracketing (or covering) number

N[ ] (ε,F ,Lq (Q)) is the minimum number of ε-brackets in Lq(Q) needed to cover F (see [1–7]):

N[ ] (ε,F ,Lq (Q)) = min

{

k : for some f1, ..., fk ∈ Lq (Q) ,

F ⊂ ∪
i,j

[fi, fj ] : ‖fj − fi‖Q,q 6 ε.

Number Hq (ε) = logN[ ] (ε,F ,Lq (Q)) is called the metric entropy with bracketing of the

class F in Lq(Q). Number Hjq (ε) = logN[ ] (ε,F ,Lq (Qj)) , j = 0, 1 denotes the metric entropy
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of a class F in Lq(Qj), j = 0, 1, respectively. To prove the weak convergence of F-indexed

empirical processes (7) we introduce the integral of the metric entropy with bracketing as

J
(q)
j[ ] (δ) = Jj[ ] (δ;F ;Lq (Qj)) =

∫ δ

0

(Hjq (ε))
1/2
dε, j = 0, 1, for 0 < δ < 1.

Recall that numbers N[ ] (·) converge to +∞ at ε ↓ 0. However, it is necessary for Donsker’s

theorem that they converge not very fast to +∞. This speed is measured by the integrals J
(q)
j[ ] (δ)

(see [6, 7]).

The following theorem shows validity of Glivenko-Cantelli type theorem for the process

{∆nf, f ∈ F}. Here sign ∗ means a.s. convergence by outer probability.

Theorem 2.1. Let the class F such that

N[ ] (ε,F ,L1 (Qj)) <∞, j = 0, 1. (8)

Then under validity of the hypothesis H and at n→ ∞
∥

∥

∥
n−1/2∆nf

∥

∥

∥

∗

F

a.s.→ 0. (9)

Proof. According to SLLN when n → ∞, pn
a.s.→ p ∈ (0, 1). Therefore, convergence of (9) is

equivalent to

‖Λnf‖∗F
a.s.→ 0, n→ ∞. (10)

If hypothesis H is valid, then it is easy to verify that

‖Λnf‖F 6 ‖(Q1n − Q1) f‖F + pn‖(Qn − Q) f‖
F

+ ‖Qf‖
F
· |pn − p| 6

6 2‖(Q1n − Q1) f‖F + ‖(Q0n − Q0) f‖F + ‖f‖Q,1 · |pn − p| , (11)

where

‖f‖Q,1 =

∫

X

|f |dQ 6

∫

X

|f | dQ1 +

∫

X

|f | dQ0 =‖f‖Q1,1 + ‖f‖Q0,1 <∞. (12)

Under conditions (8) F is a Glivenko-Cantelli class with respect to measures Qj , j = 0, 1.

Hence, by Theorem 19.4 in [7] for each ε > 0:

lim sup
n→∞

(

sup
f∈F

|(Qjn − Qj) f |
)∗

6 ε. (13)

Now relations (10) and (9) follow from (11)–(13). Theorem is proved. 2

To prove the weak convergence of process (7) to a Gaussian process, we first investigate

the limiting properties of two-dimensional empirical field {(Anf,A1ng) , f, g ∈ F}, where Anf =

n
1/2 (Qn − Q) f and A1ng = n

1/2 (Q1n − Q1) g.

Theorem 2.2. Let the class F such that

F ⊂ L2(Qj) and J (2)
j[ ]

(1) <∞, j = 0, 1. (14)

Then for n → ∞ sequence {(Anf,A1ng) , f, g ∈ F} of F → R2 maps weak converge in
l∞ (F) × l∞ (F) to the two-dimensional Gaussian field {(Af,A1g) , f, g ∈ F} with zero mean
and the following covariance structure for f, g ∈ F :

E (Af · Ag) = Qf g − QfQg,

E (A1f · A1g) = Q1f g − Q1fQ1g, (15)

E (Af · A1g) = Q1f g − QfQ1g.
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Proof. From the first condition in (14) it follows that for the fixed fi, gi ∈ F : Qfi
2 =

Q0f
2
i + Q1f

2
i < ∞ and Q1g

2
i < ∞, i = 1,m. Then according to multidimensional CLT finite

dimensional distributions of vector (Anf,A1ng) converge to multivariate Gaussian distribution

with zero mean vector. Covariance matrix defined by structure (15) is the normalized sum of

independent and identically distributed r.v.-s :

(Anf,A1ng) = n−
1/2

n
∑

k=1

(f (Xk) − Qf, δkg (Xk) − Q1g).

It remains to prove tightness of (Anf, A1ng). Under conditions (14) and n → ∞ we have

following Donsker’s theorems (see [6]):

Anf ⇒ Af in l∞ (F) , A1nf ⇒ A1f in l∞ (F) , (16)

where limiting processes are respectively Q - and Q1- Brownian bridges, i.e. tight Borel mea-

surable elements of l∞ (F). Then the sequences of marginal distributions which induced by

processes {Anf, f ∈ F} and {A1nf, f ∈ F} are tight (see, Lemma 1.3.8 in [6]). Process

{(Anf,A1ng) , f, g ∈ F} is element of space l∞ (F) × l∞ (F) and by Lemma 1.4.3. in [6] also

induces in this space the tight sequence of distributions. Theorem is proved. 2

Remark. In formula (15) at g ≡ 1 we have Q11 = p and

E (Af · A11) = Q1f − pQf, f ∈ F . (17)

Hence, when hypothesis H is valid then covariance (17) is equal to zero for all f ∈ F .
Thus under hypothesis H the Brownian bridge {A f, f ∈ F} and r.v. µ0 = A11 with normal

distribution N (0, p (1 − p)) are independent.

Let us introduce the empirical process
{

n
1/2 (Λn − Λ) f = G∗

nf, f ∈ F
}

. This process con-

nected with process (7) by the following relation:

G∗
nf = (pn (1 − pn))

1/2 · ∆nf, f ∈ F . (18)

Process (18) plays a supporting role in study of basic process (7) which property of weak

convergence to a Q -Brownian bridge is contained in the following statement.

Theorem 2.3. Under the conditions of Theorem 2.2 for n→ ∞
∆nf ⇒ ∆f in l∞(F), (19)

where {∆f, f ∈ F} is a Gaussian field with zero mean and under validity of the hypothesis H it
coincides with Q -Brownian bridge.

Proof. We consider process (18) and represent it in the form G∗
nf = A1nf − pnAnf −µnQf ,

where Anf = A0nf +A1nf , Ajnf = n
1/2 (Qjn − Qj) f, j = 0, 1; µn = n

1/2 (pn − p) = A1n1. It is

easy to see that G∗
nf is asymptotically equivalent (in terms of convergence to the same process)

to the process G0
nf = A1nf − pAnf − µnQf . According to Theorem 2.2 for n→ ∞

G0
nf ⇒ G0f = A1f − pAf − µ0Qf in l∞ (F) . (20)

Let us note that process
{

G0f, f ∈ F
}

is a linear functional of Gaussian processes. It is also

a Gaussian process with zero mean and covariance which calculated with the use of (15) and

(17) for f, g ∈ F as

EG0fG0g =
9
∑

j=1

Cj , (21)
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where

C1 = Q1fg − Q1fQ1g; C2 = −p (Q1fg − QfQ1g) ; C3 = − (1 − p) QfQ1g;

C4 = −p (Qfg − QgQ1f) ; C5 = p2 (Qfg − QfQg) ; C6 = −pQf (Q1g − pQg) ;

C7 = − (1 − p) QgQ1f ; C8 = −pQg (Q1f − pQf) ; C9 = p (1 − p) QfQg.

Under validity of the hypothesis H and taking into account the remark to Theorem 2.2

it is easy to verify that from (21) we have EG0f G0g = p (1 − p) (Qfg − QfQg) . Then

[p (1 − p)]
−

1/2G0f
d
=Gf . Thus we obtain a Q -Brownian bridge with covariance (4). Therefore,

according to (18) for n→ ∞

∆nf ⇒ [p (1 − p)]
−

1/2G0f in l∞ (F)

and when hypothesis H is valid then

∆nf ⇒ Gf in l∞ (F) .

2

Let us consider a generalization of Theorem 2.3 to the case of random sample size. Suppose

that at n-th stage of observations a random number of observations from an infinite sequence of

independent and identically distributed pairs (X1, δ1), (X2, δ2), ... is available Here Nn is integer-

valued nonnegative r.v. defined on the same probability space (Ω,A,P). Let the sequence Nn

converges to infinity in the strong sense that there is a r.v. ν and at n→ ∞
Nn

Cn

p−→ ν, (22)

Here P(ν > 0) = 1 and Cn → ∞ is a deterministic sequence of numbers. Let {∆Nn
f, f ∈ F}

be a sequence of normalized empirical processes of independence obtained from (7) by replacing

index n to a random sequence Nn. The following theorem shows that this process has the same

limiting distribution as {∆nf, f ∈ F}.
Theorem 2.4. Under the conditions of Theorem 2.3 and (22) at n→ ∞

∆Nn
f ⇒ ∆f in l∞(F). (23)

Consequently, from Theorem 2.3 and (23) under validity of hypothesis H, distribution of ∆f

coincides with the distribution of Q-Brownian bridge with covariance (4).

Proof is the consequence of Theorem 3.5.1 from [6] and Theorem 2.3 and hence details are

omitted. 2

Now suppose that {Nn, n > 1} a sequence of Poisson r.v.-s with the mean n and independent

identically distributed r.v.-s (X1, δ1), (X2, δ2), ... . Let us denote by {∆∗
nf, f ∈ F} a normalized

empirical process of independence obtained from (7) by replacing the upper bounds n in all

summations to Nn . Next theorem shows that the limiting process is the Q− Brownian sheet as

defined in (5).

Theorem 2.5. Under the conditions of Theorem 2.3 at n→ ∞

∆∗
nf ⇒ ∆∗f in l∞(F), (24)

where by hypothesis H, ∆∗f
d
= W(f), f ∈ F .
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Proof follows from Theorems 3.5.1, 3.5.3 from [6] and Theorem 3.4 if we take into con-

sideration that
Nn

n

p−→ 1, and processes A∗
Nn
f = n1/2(

Nn
∑

k=1

f(Xk) − nQf) and A∗
1Nn

f =

n1/2(
Nn
∑

k=1

δkf(Xk) − nQ1f) have following standardized representations:

A∗
Nn
f =

√

Nn

n
ANn

f +
√
n(
Nn

n
− 1)Qf,

A∗
1Nn

f =

√

Nn

n
A1Nn

f +
√
n(
Nn

n
− 1)Q1f.

The details are omitted. 2

The results of Theorems 2.3–2.5 can be used to construct the statistics for testing the hypothe-

sis H. For example, from processes {∆nf, f ∈ F}, {∆Nn
f, f ∈ F} and {∆∗

nf, f ∈ F} one can con-

struct the following Kolmogorov-type statistics Kn = ‖∆nf‖F , KNn = ‖∆Nnf‖F and ‖∆∗
nf‖F

which under validity of H have limiting distributions of r.v.-s K0 = ‖Gf‖
F

and Kn = ‖W(f)‖
F

,

respectively.

3. Application to random censoring

Let us consider a right random censoring model, where Xi = min{Ti, Ci} and Ai = {Ti 6 Ci}.
Here r.v.-s Ti and Ci denote life times and censoring times. They are mutually independent with

common continuous distribution functions F and G respectively (F (0) = G(0) = 0). Then

considering data S(n) = {(Xi, δi) , 1 6 i 6 n} with δi = I (Ai), r.v.-s of interest Ti are observed

when Ai occurs, i.e., δi = 1. Take into account that Xi have common distribution function

H = 1 − (1 − F )(1 −G) and subdistributions defined as

Q0 (B) = P (Xk ∈ B, δk = 0) = P (Ck ∈ B ∩ [0, Tk))

∫

B

(1 − F (t))G(dt),

Q1 (B) = P (Xk ∈ B, δk = 1) = P (Tk ∈ B ∩ [0, Ck])

∫

B

(1 −G(t))F (dt).

(25)

Now we consider simple proportional hazards model (PHM) or Koziol-Green model which

is very useful in practical applications (see, for example, [12–16]). In PHM we assume the

parametric relation

1 −G = (1 − F )β for some β > 0. (26)

Taking into consideration (26), it is easy to see that 1 − F = (1 −H)p, where p =
1

1 + β
=

P(Ak). One of basic properties of PHM is that (26) holds when r.v.-s Xk and δk are independent.

Such characteristic of PHM plays a basic role in constructing and studying estimators of many

functionals of distribution F . The following sufficient maximum likelihood estimator of F was

first introduced and studied [12–14]:

Fn(t) = 1 − (1 −Hn(t))pn , (27)

where Hn(t) =
1

n

n
∑

k=1

I(Xk 6 t) and pn =
1

n

n
∑

k=1

δk are independent empirical estimators of H(t)

and p, respectively.
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There are many papers devoted to statistical analysis of Fn. These papers are concerned with

the superiority of methods for estimation and the testing in PHM and methods are based on

Fn rather than on the product-limit estimator of Kaplan-Meier. Some references can be found

in [16]. Hence the question arises as to when the advantages of the PHM can be used. In other

words, there is now a need for testing of validity of PHM, i.e., for the composite hypothesis

described by relation (26). But this relation is equivalent to hypothesis H on independence of

r.v.-s (X1, ...,Xn) and (δ1, ..., δn).

Let us consider the following special empirical process (7):

∆n(t) =

(

n

pn (1 − pn)

)1/2

(H1n(t) − pnHn(t)) , −∞ < t <∞, (28)

where H1n(t) =
1

n

n
∑

k=1

I(Xk 6 t, δk = 1). Then we have the consequence of Theorem 2.3: if H
holds then as n→ ∞

∆n (·) ⇒ B (H (·)) , (29)

where {B(y), 0 6 y 6 1} is a Brownian bridge. Several statistics for testing H were consid-

ered [13–15]. Note that these statistics are based on relation (29) and corresponding tests are

consistent. Moreover, by Theorems 2.3–2.5 one can consider more general classes of statistics

using F-indexed processes that are more flexible in applications than (28).
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Класс эмпирических процессов независимости

Абдурахим А. Абдушукуров

Лейла Р. Какаджанова

В данной статье мы исследуем асимптотические свойства одного класса эмпирических процессов

для определенных классов интегрируемых функций.

Ключевые слова: эмпирические процессы, метрическая энтропия, теоремы Гливенко-Кантелли и

Донскера.
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