Generation of the Chevalley Group of Type G_{2} over the Ring of Integers by Three Involutions Two of which Commute

Ivan A. Timofeenko*
Institute of Mathematics and Computer Science
Siberian Federal University
Svobodny, 79, Krasnoyarsk, 660041
Russia

Received 10.12.2014, received in revised form 21.12.2014, accepted 24.01.2015
It is proved that $G_{2}(\mathbb{Z})$ is generated by three involutions. Two of these involutions commute.
Keywords: ring of integers, generating involutions, Chevalley group

Introduction

The main result of this article is
Theorem 1. The Chevalley group $G_{2}(\mathbb{Z})$ over the ring of integers \mathbb{Z} is generated by three involutions and two of these involutions commute.

Theorem 1 answers the question formulated by Ya. N. Nuzhin [1, question 15.67] for the group $G_{2}(\mathbb{Z})$: What adjoint Chevalley groups over the ring of integers are generated by three involutions, two of which commute?

This problem has not been solved. We just know that groups $S L_{n}(\mathbb{Z}), n \geqslant 14$ are generated by three involutions, two of which commute [2]. Groups $P S L_{n}(\mathbb{Z})$ are generated by three involutions, two of which commute when $n \geqslant 5$ [3]. Note also that adjoint Chevalley group $B_{2}(\mathbb{Z})$ is not generated by three involutions, two of which commute. It follows from the fact that group $P S p_{4}(3)$ is not generated by three involutions, two of which commute [4].

1. Notation and preliminary results

Let Φ be a reduced indecomposable root system. Let us denote adjoint Chevalley group over a field K by $\Phi(K)$. This group is generated by root subgroups $X_{r}=\left\{x_{r}(t) \mid t \in K\right\}, r \in \Phi$. Let us denote special linear group by $S L_{2}(K)$ and subgroup generated by the set M by $\langle M\rangle$.

Lemma 1 ([5, Theorem 6.3.1., p.88]). There is a homomorphism from $S L_{2}(K)$ onto subgroup $\left\langle X_{r}, X_{-r}\right\rangle$ of $\Phi(K)$ such that

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right) \longrightarrow x_{r}(t), \\
\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right) \longrightarrow x_{-r}(t) .
\end{gathered}
$$

[^0]Then K^{*} is the multiplicative group of the field K. Let us assume that
$n_{r}(t)=x_{r}(t) x_{-r}\left(-t^{-1}\right) x_{r}(t)$,
$h_{r}(t)=n_{r}(t) n_{r}(-1)$,
$n_{r}=n_{r}(1), r \in \Phi, t \in K^{*}$.
With conjugations the diagonal elements act on root elements as follows:

$$
\begin{equation*}
h_{r}(t) x_{s}(u) h_{r}(t)^{-1}=x_{s}\left(t^{A_{r s}} u\right), \tag{1}
\end{equation*}
$$

where $A_{r s}=2(r, s) /(r, r)$ and (x, y) is the scalar product of vectors x, y.
Let H be a diagonal subgroup of a group $\Phi(K)$ generated by elements $h_{r}(t), r \in \Phi, t \in K^{*}$. Let N be a monomial subgroup of the group $\Phi(K)$ generated by H and elements $n_{r}, r \in \Phi$ and let W be a Weyl group of type Φ.
Lemma 2. The Chevalley group $\Phi(R)$ over an euclidian ring R is generated by the root elements $x_{r}(1), r \in \pm \Pi$, where Π is a fundamental root subsystem of the root system Φ.

Proof. Let us assume that $G=\left\langle x_{r}(1) \mid r \in \pm \Pi\right\rangle$ then $n_{r} \in G$ for $r \in \pm \Pi$. Fundamental reflections $w_{r}, r \in \Pi$ are images of elements $n_{r}, r \in \Pi$ under homomorphism from N into W. Elements $w_{r}, r \in \Pi$ generate the group W [5, Proposition 2.1.8, p.17]. Hence $n_{s} \in G$ for all $s \in \Phi$. Since

$$
n_{s} x_{r}(t) n_{s}^{-1}=x_{w_{s}(r)}(\pm t)
$$

and group W acts transitivly on the roots with the same length then $x_{r}(1) \in G$ for all $r \in \Phi$. By consequence 3 from [6, c. 107] group $\Phi(K)$ is generated by root elements $x_{r}(1), r \in \Phi$, hence $G=\Phi(K)$.

Next we need 7-dimensional matrix representation of the Chevalley group $G_{2}(K)$ [7]. Let us fix a fundamental system of roots of $\{a, b\}$ of type G_{2}. Then the root elements have the following representation

$$
\begin{gathered}
x_{a}(t)=e+t\left(e_{67}+2 e_{45}-e_{34}-e_{12}\right)-t^{2} e_{35}, \\
x_{-a}(t)=e+t\left(e_{76}+e_{54}-2 e_{43}-e_{21}\right)-t^{2} e_{53}, \\
x_{a+b}(t)=e+t\left(e_{13}-e_{24}+2 e_{46}-e_{57}\right)-t^{2} e_{26}, \\
x_{-a-b}(t)=e+t\left(e_{31}-2 e_{42}+e_{64}-e_{75}\right)-t^{2} e_{62}, \\
x_{2 a+b}(t)=e+t\left(e_{47}+e_{36}-e_{25}-2 e_{14}\right)-t^{2} e_{17}, \\
x_{-2 a-b}(t)=e+t\left(e_{74}+e_{63}-e_{52}-2 e_{41}\right)-t^{2} e_{71}, \\
x_{b}(t)=e+t\left(e_{56}-e_{23}\right), \\
x_{-b}(t)=e+t\left(e_{65}-e_{32}\right), \\
x_{3 a+b}(t)=e+t\left(e_{15}-e_{37}\right), \\
x_{-3 a-b}(t)=e+t\left(e_{51}-e_{73}\right), \\
x_{3 a+2 b}(t)=e+t\left(e_{27}-e_{16}\right), \\
x_{-3 a-2 b}(t)=e+t\left(e_{72}-e_{61}\right),
\end{gathered}
$$

where e is the indentity matrix, matrices $e_{i j}$ have entries equal to 1 at (i, j) and other entries equal to 0 .

2. Proof of Theorem 1

As in previous section $\{a, b\}$ is a fundamental root system of type G_{2}, where a is the short root.

Let us denote

$$
\begin{aligned}
\alpha & =x_{a}(1) h_{b}(-1) \\
\beta & =x_{-b}(1) h_{a}(-1) \\
\gamma & =n_{a} n_{3 a+2 b} h_{b}(-1)
\end{aligned}
$$

Our goal is to show that $\{\alpha, \beta, \gamma\}$ are three involutions that generate group $G_{2}(\mathbb{Z})$ with $\alpha \beta=\beta \alpha$.

Let us show that α, β and γ are involutions. Applying equality (1), we obtain

$$
\alpha^{2}=x_{a}(1) h_{b}(-1) x_{a}(1) h_{b}(-1)=x_{a}(1) x_{a}\left((-1)^{A_{b a}}\right)=1,
$$

because $A_{b a}=\frac{2(b, a)}{(b, b)}=\frac{-2 \sqrt{3}|b||a|}{2|b||b|}=1$.
Similarly we have

$$
\beta^{2}=x_{-b}(1) h_{a}(-1) x_{-b}(1) h_{a}(-1)=x_{-b}(1) x_{-b}\left((-1)^{A_{a,-b}}\right)=1
$$

because $A_{a,-b}=\frac{2(a,-b)}{(a, a)}=\frac{2 \sqrt{3}|a||b|}{2|a||a|}=3$.
Elements n_{a} and $n_{3 a+2 b}$ are commute because $a \pm(3 a+2 b)$ is not a root. Hence we have

$$
\begin{aligned}
\gamma^{2}= & n_{a} n_{3 a+2 b} n_{a} n_{3 a+2 b}= \\
& =n_{a} n_{a} n_{3 a+2 b} n_{3 a+2 b}= \\
& =h_{a}(-1) h_{3 a+2 b}(-1)=1
\end{aligned}
$$

Now we show that the equality above is true. Diagonal elements $h_{a}(-1)$ and $h_{3 a+2 b}(-1)$ act equally by conjugations (1) on generating elements $x_{a}(1)$ and $x_{b}(1)$ of group $G_{2}(\mathbb{Z})$. Note also that elements $h_{a}(-1)$ and $h_{3 a+2 b}(-1)$ from matrix representation of group $G_{2}(K)$ over field K [7] are represented by matrix $\operatorname{diag}(-1,-1,1,1,1,-1,-1)$.

Then we show that $\alpha \beta=\beta \alpha$. For this we just need to show that $(\alpha \beta)^{2}=1$. Simple manipulations give us the following result

$$
\begin{aligned}
(\alpha \beta)^{2}= & x_{a}(1) h_{b}(-1) x_{-b}(1) h_{a}(-1) x_{a}(1) h_{b}(-1) x_{-b}(1) h_{a}(-1)= \\
& =h_{b}(1) h_{a}(1) x_{a}(-1) x_{-b}(-1) x_{a}(1) x_{-b}(1) h_{b}(-1) h_{a}(-1)= \\
& =h_{b}(1) h_{a}(1) x_{a}(-1) x_{a}(1) x_{-b}(-1) x_{-b}(1) h_{b}(-1) h_{a}(-1)= \\
& =h_{b}(1) h_{a}(1) h_{b}(-1) h_{a}(-1)= \\
& =h_{b}(1) h_{b}(-1) h_{a}(1) h_{a}(-1)=1 .
\end{aligned}
$$

Let us denote $M=\langle\alpha, \beta, \gamma\rangle$. We show that $M=G_{2}(\mathbb{Z})$. We have the following relation

$$
\begin{align*}
\alpha^{\gamma} & =n_{a} n_{3 a+2 b} h_{b}(-1) x_{a}(1) h_{b}(-1) n_{a} n_{3 a+2 b} h_{b}(-1)= \\
& =n_{a} n_{3 a+2 b} x_{a}\left((-1)^{\frac{2(b, a)}{(b, b)}}\right) n_{a} n_{3 a+2 b} h_{b}(-1)= \\
& =n_{a} n_{3 a+2 b} x_{a}\left((-1)^{\frac{2 \sqrt{3}|a||b|}{2|a||a|}}\right) n_{a} n_{3 a+2 b} h_{b}(-1)= \tag{2}\\
& =n_{a} n_{3 a+2 b} x_{a}\left((-1)^{1}\right) n_{a} n_{3 a+2 b} h_{b}(-1)= \\
& =n_{3 a+2 b} n_{a} x_{a}(-1) n_{a} n_{3 a+2 b} h_{b}(-1) .
\end{align*}
$$

In matrix representation of the group $G_{2}(\mathbb{Z})$ we have

$$
\begin{aligned}
& n_{a}=\left(\begin{array}{ccccccc}
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right), \\
& n_{3 a+2 b}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& x_{a}(-1)=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Following some manipulations we obtain

$$
n_{3 a+2 b} n_{a} x_{a}(-1) n_{a} n_{3 a+2 b}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)=x_{-a}(1) .
$$

Thus, in view of (2) we have

$$
\alpha^{\gamma}=x_{-a}(1) h_{b}(-1) .
$$

Let us introduce

$$
\theta=\alpha \alpha^{\gamma}=x_{a}(1) x_{-a}(-1) .
$$

We show that $\theta^{3}=h_{a}(-1)$. Since mapping ψ from Lemma 1 is isomorphism for group $G_{2}(\mathbb{Z})$ we can use matrix representation. Then manipulations with matrices of the second order give the following equalities

$$
\begin{aligned}
\theta^{3}= & \left(x_{a}(1) x_{-a}(-1)\right)^{3}=\left(\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\right)^{3}= \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)^{3}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=h_{a}(-1) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
h_{a}(-1) \in M . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\beta^{\gamma}=x_{b}(1) h_{a}(-1) . \tag{4}
\end{equation*}
$$

It follows from (4) that $x_{b}(\pm 1)=\beta^{\gamma} h_{a}(-1)$. After applying (3), we get inclusion

$$
x_{b}(\pm 1) \in M .
$$

By definition $n_{b}=x_{b}(1) x_{-b}(-1) x_{b}(1)$. Then $x_{-b}(\pm 1)=\left(x_{b}(1)\right)^{\gamma}$ and $n_{b} \in M$. Therefore

$$
\begin{equation*}
n_{b}^{2}=h_{b}(-1) \in M \tag{5}
\end{equation*}
$$

From relation (5) and equality $x_{a}(1)=\alpha h_{b}(-1)$ we get inclusion

$$
x_{a}(1) \in M .
$$

The ring of integers \mathbb{Z} is euclidean ring then by Lemma 2 and inclusions

$$
x_{ \pm a}(1), x_{ \pm b}(1) \in M
$$

we obtain $M=G_{2}(\mathbb{Z})$.
Therefore, group $G_{2}(\mathbb{Z})$ is generated by three involutions α, β and γ. First two involutions commute.

The author thanks Ya. N. Nuzhin for problem formulation and attention to the work.

References

[1] The Kourovka Notebook. Unsolved problems in group theory, 17th edition, 2010 (in Russian).
[2] M.C.Tamburini, P.Zucca, Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute, J. of Algebra, 195(1997), 650-661.
[3] Ya.N.Nuzhin, On Generation of Groups $P S L_{n}(\mathbb{Z})$ by Three Involutions, Two of Which Commute, Vladikavkaz. Matemat. Zh., 10(2008), no. 1, 68-74 (in Russian).
[4] Ya.N.Nuzhin, Generating triples of involutions of the groups of Lie type over finite field of odd characteristic. II, Algebra i Logika, 36(1997), no. 4, 422-440 (in Russian).
[5] R.W.Carter, Simple Groups of Lie Type, John Wiley and Sons, 1972.
[6] R.Steinberg, Lectures on Chevalley groups, Yale Univ., Math. Dept. 1967.
[7] V.M.Levchuk, Ya.N.Nuzhin, Structure of Ree groups, Algebra i Logika, 24(1985), no. 1, 26-41 (in Russian).

Порождающие тройки инволюций группы Шевалле типа G_{2} над кольцом целых чисел

Иван А. Тимофеенко

В работе доказано, что группа $G_{2}(\mathbb{Z})$ порождается тремя инволючиями, две из которых перестановочны.

[^0]: *ivan.timofeenko@gmail.com
 © Siberian Federal University. All rights reserved

